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The global burden of diabetes mellitus and its complications are currently increasing.
Diabetic cardiomyopathy (DCM) is the main cause of diabetes mellitus associated
morbidity and mortality; therefore, a comprehensive understanding of DCM
development is required for more effective treatment. A disorder of epigenetic
posttranscriptional modification of histones in chromatin has been reported to be
associated with the pathology of DCM. Recent studies have implicated that histone
deacetylases could regulate cardiovascular and metabolic diseases in cellular processes
including cardiac fibrosis, hypertrophy, oxidative stress and inflammation. Therefore in this
review, we summarized the roles of histone deacetylases in the pathogenesis of DCM,
aiming to provide insights into exploring potential preventative and therapeutic strategies
of DCM.

Keywords: diabetic cardiomyopathy, histone deacetylases, cardiac fibrosis, cardiac hypertrophy, oxidative
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INTRODUCTION

Diabetes mellitus is a metabolic disease characterized by hyperglycemia. With the improvement of
living standard, the incidence of diabetes mellitus continues to rise across the world (1). Diabetes
mellitus causes long-term damage to multiple organs, ultimately leading to severe complications.
Moreover, diabetes mellitus affects the heart through various mechanisms including metabolic
disorder, microvascular injury, cardiac autonomic dysfunction, and a maladaptive immune
response (2). Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes
mellitus and increases the risk of heart failure with heavy social and economic burden worldwide
(3, 4). DCM is a clinical problem which is present in both type 1 and 2 diabetes (5). People with
diabetes (30%) always have more than twice the risk of developing heart failure as compared to
people without diabetes (23%). Emerging evidence disclosed that 19-26% of diabetic patients were
prone to develop heart failure (6, 7). DCM is characterized by left ventricular hypertrophy, cardiac
fibrosis, chronic inflammation in the absence of hypertension, coronary, and other heart diseases in
diabetic patients (4, 8, 9), ranging from left ventricular fibrosis and diastolic cardiac dysfunction in
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the early stage, to severe diastolic heart failure with normal
ejection fraction (HFpEF, EF<40%) and ultimately to systolic
dysfunction accompanied by heart failure with reduced ejection
fraction (HFrEF, EF<50%) (10, 11). Importantly, DCM also
increases the risks for the development of extensive focal
myocardial necrosis, shock and sudden death. Recent studies
have highlighted that a complex interplay between genes and
environment may significantly contribute to pathogenesis of
microvascular complications associated with diabetes (12).
Several potential mechanisms that may contribute to the
pathogenesis of the DCM have been proposed, including
cardiac structural abnormalities, metabolic disturbances,
mitochondrial damage, oxidative stress, autophagy/mitophagy
defect, apoptosis, systemic inflammation, epigenetic
modification, dampened coronary flow reserve, coronary
microvascular disease (microangiopathy), and endothelial
impairment (5, 13–17).

A concerted definition of epigenetic trait, “stably heritable
phenotype resulting from changes in a chromosome without
alterations in the DNA sequence”, was reached at a Cold Spring
Harbor meeting (18–20). There are three major epigenetic
modifications: histone modifications, DNA methylation and
microRNAs (21). Histone acetylation which is the best-
characterized histone modifications and is controlled by
histone acetyltransferases (HATs) and histone deacetylases
(HDACs). Histone deacetylases (HDACs) are a family of
enzymes that are important regulators of epigenetic gene
modification (22). Accumulating evidence has implicated that
HDACs are associated with many cardiovascular diseases
(CVDs) (19) including hypertension (23, 24), DCM (25, 26),
myocardial infarction (27–29) and atrial fibrillation (30).
HDACs have been implicated in numerous cellular processes
relevant to DCM, which include cardiac fibrosis, hypertrophy,
inflammation and oxidative stress (31). However, only quite a
few publications have reported the potential impact of HDACs
on DCM. In this review, we comprehensively reviewed the roles
of HDACs in cellular processes relevant to DCM, aiming to
discuss the implication of HDACs in the pathogenesis of DCM
and provide insights into exploring potential preventative and
therapeutic strategies of DCM.
EPIGENETICS IN DCM

Epigenetic mechanisms such as histone modification, DNA
methylation and microRNA changes may play an important
role in the development of DCM (32–34). Previous studies
suggested that factors possibly implicated in the pathogenesis
of DCM include cardiac fibrosis, cardiac hypertrophy, oxidative
stress, and inflammation, which may contribute to alterations in
the pathogenic gene expression by epigenetic mechanisms to
initiate the pathogenic changes in the target cells and organs (35).

Reversible modifications of histones indicate covalent
posttranslational modification of histone proteins, including
methylation, acetylation, phosphorylation, ubiquitination and
sumoylation (21). Histone modification, especially histone
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acetylation, is a major epigenetic mechanism regulating gene
expression. Histone acetyltransferases (HATs) and histone
deacetylases (HDACs), which catalyze histone acetylation
resulting in gene transcriptional activation and remove acetyl
groups resulting in gene silencing respectively, are the major
players in maintaining the equilibrium of histone acetylation
(8, 36).

To date, there have been 18 HDACs reported that can be
divided into four categories based on their sequence identity and
catalytic activity (37). Descriptions of the classification, cellular
localization, substrates and main biological functions of HDACs
are shown in Table 1. Brief summary of the four class HDACs
are also mentioned below.

• Class I HDACs contain HDAC1, HDAC2, HDAC3 and
HDAC8.

• Class II HDACs are subdivided into Class IIa (HDAC 4, 5, 7
and 9) and Class IIb (HDAC 6 and 10) (81, 82).

• Class III HDACs are called sirtuins sharing sequence
homology with the yeast Sirt 2 protein, which contains
seven sirtuin members, namely, SIRT1-SIRT7 (83). This
highly conserved class of proteins thereby controls a range
of different biological processes (84, 85).

• Class IV HDACs include a solitary member HDAC 11, which
shares sequence homology with the yeast RPD 3 and HAD
1 proteins.
HDACs, CARDIAC FIBROSIS AND DCM

Cardiac fibrosis is a hallmark of DCM and is caused by excessive
matrix (ECM) proteins accumulation including collagen I and
collagen II. Fibrosis increases the passive stiffness of the
myocardium and impairs relaxation and diastolic dysfunction
(86). Elevated perivascular and intermyofibrillar fibrosis has been
observed in human myocardial samples in the absence
of coronary heart disease and hypertension (87, 88). This
further illustrates the presence of myocardial fibrosis in
diabetic cardiomyopathy.

HDACs are emerging as crucial regulators of cardiac fibrosis,
although the cellular mechanisms by which HDACs regulate
cardiac fibrosis have not been fully understood (89). Current
studies provide insufficient evidence for the role of HDACs in
DCM; however sizable explorations have reported that HDACs
were dysregulated in cardiac fibrosis (29, 90). For instance,
SIRT6 knockout mice presented cardiac fibrosis and
dysfunction with cardiomyocyte hypertrophy and increased
apoptosis (90). Recently, SIRT1, as a protein regulator, has
attracted widespread attention because of its salutary effect in
DCM (56). One study found that SIRT1 alleviated cardiac
fibrosis in the development of DCM. Specifically, bakuchiol
(BAK) alleviated cardiac fibrosis in DCM via SIRT1-induced
inhibition of ROS generation. Moreover, the TGF-b1/Smad3
signaling pathway played a key role in mediating ROS generation
to pathologic fibrosis (91). Likewise, recent researches indicated
that Class IIa HDACs could also own profibrotic functions
July 2021 | Volume 12 | Article 679655
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(92–95). Zhang et al. found that the overexpression of activated
HDAC4 exacerbated cardiac dysfunction and interstitial fibrosis
in the model of myocardial infarction (29). Another study
showed that HDAC 4 knockdown blocked cardiac fibrosis by
inhibiting the expression of a-SMA and the phosphorylation of
ERK (96). It is probably that HDAC4 is adverse to the
development of DCM, but whether it will exacerbate cardiac
fibrosis in DCM needs to be further explored.

HDACs inhibitors have been reported to be efficacious in
rodent models of heart failure. By blocking pathological cardiac
hypertrophy and fibrosis, HDACs inhibitors can improve cardiac
function (97, 98). For example, MPT0E014 (a Class I/IIb HDAC
inhibitor) attenuated cardiac fibrosis with heart failure induced
by isoproterenol administration in rats (99). It was associated
with downregulation of Ang II type I receptor (AT1R) and
transforming growth factor-b (TGF-b) (99). HDACs inhibitors
also have been reported to show protective effects on the
diabetic heart (25, 26). Xu et al. found that selective inhibitor
RGFP966 of HDAC3 ameliorated diabetes-induced fibrosis and
deterred the development of DCM by obstructing the enhanced
phosphorylated ERK1/2, and upregulating dual specificity
phosphatase 5 (DUSP5) expression through increased acetylated
Frontiers in Endocrinology | www.frontiersin.org 3
histone H3 on the primer region of DUSP5 gene (26). Likewise,
Chen et al. reported that the protective effects of HDACs inhibitor
(sodium butyrate) in the diabetic myocardium were closely related
to mitigating apoptosis, stimulating angiogenesis and increased
SOD1 (25). Thus, their findings indicated that HDACs inhibitor
had the potential to alleviate cardiac fibrosis and prevent the
development of DCM (25).
HDACs, CARDIAC HYPERTROPHY
AND DCM

Cardiac hypertrophy is defined as an increase in heart mass through
growth of individual cardiomyocytes rather than an increment in
cardiomyocyte. Physiological and pathological hypertrophy are two
types of hypertrophy. Cardiac hypertrophy as a risk factor for heart
failure, is a compensatory response that occurs as a result of
hemodynamic overload (100–102). The process of hypertrophic
cardiac remodeling is the response to the pathological insults, and
ultimately cause impaired cardiac function (103, 104). Diabetic
patients with impaired cardiac function are prone to the
development of DCM. According to the Strong Heart study and
TABLE 1 | The HDAC family: classification, cellular localization and substrates.

Class Member Localization Substrates Biological functions Reference

I HDAC 1 Nucleus Histones, p53, MEF2, NF-kB, ATM,
AR, BRCA1, pRb,

Cell proliferation, cell survival (38–40)

HDAC 2 Nucleus Histones, HOP, NF-kB, GATA2, BRCA1,
pRb, MECP IRS-1

Cell proliferation, insulin resistance (38, 41)

HDAC 3 Nucleus Histones, HDAC4, 5, 7–9, SHP, GATA-2,
NF-kB, pRb

Cell proliferation, cell survival (38, 42)

HDAC 8 Nucleus Hsp70、PKM2 Cell proliferation (38, 43)
IIa HDAC 4 Nucleocytoplasmic

traffic
Histones, MEF2,PGC-1a,Hsp70, p53,p21,
GATA, FOXO, HIF-1a

Regulation of skeletogenesis and gluconeogenesis (44–46)

HDAC 5 Nucleocytoplasmic
traffic

Histones, MEF2, HDAC3, YY1,NRF 2 Cardiovascular growth and function; cardiac myocytes
and endothelial cell function; gluconeogenesis

(38, 47–49)

HDAC 7 Nucleocytoplasmic
traffic

Histones, MEF2, HDAC3, HIF-1a Regulation of gluconeogenesis (38, 50, 51)

HDAC 9 Nucleus Histones, MEF2, HDAC3 Cardiovascular growth and function (49, 52)
IIb HDAC 6 Cytoplasm Tubulin, HSP90, HDAC11 Homologous recombination (38, 53)

HDAC
10

Nucleocytoplasmic
traffic

LcoR, PP1 Cell survival, DNA damage repair, (54, 55)

III SIRT1 Nucleus,
cytoplasm

Histones, p53, p300, MMP9, NF-kB,
FOXO3A, AMPK, SERCA2a, PGC-1a,FGF21

Cell proliferation, cell survival, apoptosis, senescence,
DNA repair, cell metabolism, calorie restriction

(56, 57)

SIRT2 Cytoplasm Histone H3, a-tubulin, FOXO1, FOXO 3a,
NF-kB, AKT/GSK 3b, H4K16

Mitosis regulation, genome integrity,
cell differentiation, cell homeostasis,
aging, infection, inflammation, autophagy

(58–60)

SIRT3 Mitochondria Histones, Ku70,IDH2,HMGCS2, GDH,
AceCS, SdhA, SOD2, LCAD

Glucose and fatty acid metabolism, apoptosis, tricarboxylic
acid (TCA) cycle, oxidative stress

(61–63)

SIRT4 Mitochondria GDH Cell metabolism, DNA damage responses (64–66)
SIRT5 Mitochondria Cytochrome c, CPS1, NRF2, FOXO3A Energy metabolism (67–70)
SIRT6 Nucleus Histone H3, TNF-a, PKM2, PGC-1a,

FOXO3
DNA damage response, inflammation, metabolism,
genome maintenance

(71–74)

SIRT7 Nucleolus P53, histone H3 rDNA transcription, lipid metabolism, DNA damage repair (75–77)
IV HDAC11 Nucleus Histones, HDAC6, Cdt1 Immunomodulators–DNA replication (78–80)
July 2021 | Volume 12
MEF 2, myocyte enhancer factor 2; NF-kB, Nuclear transcription factor-kappa B; AR, Androgen receptor; ATM, Ataxia-telangiectasia-mutated; BRCA1, Breast cancer; pRb,
Retinoblastoma protein; HOP, Homeodomain only protein; GATA, GATA binding protein; MECP, Methyl-CpG-binding domain protein; IRS, Insulin receptor substrate; SHP, Src
homology region 2-domaincontaining phosphatase; Hsp70, Heat shock protein 70; PGC, Peroxisome proliferator-activated receptor gamma coactivator; HIF, Hypoxia-inducible factor;
YY1, Yin Yang 1; NRF 2, nuclear factor erythroid 2-related factor 2; LcoR, ligand-dependent receptor co-repressor; PP1, Protein phosphatase 1; FOXO3A, Fork head box O3A; FOXO 1,
Fork head box 1; HMGCS2, Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase; GDH, glucose dehydrogenase; AceCS, Acetylcoenzyme A synthetase; SdhA, Succinate
dehydrogenase complex subunit A; SOD, Superoxide dismutase; LCAD, Long chain acyl coenzyme A dehydrogenase; GPS1, Gravity Persistent Signal 1; TNF-a, tumor necrosis
factor-a; PKM2, pyruvate kinase M2;.
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the Cardiovascular Health study, they found that cardiac
hypertrophy was often accompanied by cardiac systolic and/or
diastolic function, suggesting a link between DM and cardiac
hypertrophy (103, 105). In addition, diabetes-induced cardiac
hypertrophy has been obtained from animal studies, which
showed the increased ratio of heart weight to body weight (HW/
BW) and cardiomyocyte size and upregulated hypertrophic gene
expression (106).

Evidence for the role of HDACs in DCM is limited, but
numerous studies revealed that HDACs contribute to the cardiac
hypertrophy. Class I HDACs are generally identified pro-
hypertrophic. Class I selective HDAC inhibitors have been
reported to be efficacious agents, which could block cardiac
hypertrophy induced by angiotensin II infusion and aortic
banding (107). Similar results have been reported in other
studies, that HDAC inhibitors (trichostatin A or scriptaid)
ameliorated the cardiac hypertrophy induced by aortic banding
(108). All this amount of evidence indirectly supported that
HDACs contribute to the cardiac hypertrophy. Further studies
disclosed that sodium butyrate which was a specific HADC
inhibitor reduced heart/tibia ratio and areas of cardiomyocytes,
suggesting that sodium butyrate lessened cardiac hypertrophy
in the diabetic mice model. Adult mice were injected
intraperitoneally with streptozotocin (STZ, 200mg/kg) to
establish the diabetic mice model. In addition, sodium butyrate
lessened cardiac hypertrophy which was associated with
reducing interstitial fibrosis, relieving the apoptosis and
stimulating angiogenesis in STZ-injected diabetic mice. These
results have demonstrated that HDAC inhibitor reduced cardiac
hypertrophy which in turn preventing diabetic mice from
progressing to DCM (25). In contrast, class IIa HDACs have
been identified as negative regulators of cardiac hypertrophy, by
suppressing hypertrophic gene transcription (93, 109). Taken
together, these evidences indirectly proved that HDACs dulled
the occurrence of DCM by regulating cardiac hypertrophy.

Based on Bagul’s study, SIRT1 activation by resveratrol led to
deacetylation of both NF-kB-p65 and H3. SIRT1 activation
decreased binding of NFkB-p65 to DNA, and lessened cardiac
hypertrophy and oxidative stress, thereby ultimately blunting the
development of DCM (110). The aforementioned study also
suggested that oxidative stress may affect the physiology of the
diabetic heart. There is some evidence showing the effect of
oxidative stress on cardiac abnormalities including cardiac
hypertrophy (110). These results suggest that HDACs are
regulators of cardiac hypertrophy in the development of DCM.
Figure 1 depicted the role of HDACs regulated cardiac fibrosis
and hypertrophy, and thus alleviating DCM. HDAC inhibitors
reduced cardiac fibrosis and hypertrophy.
HDACs, OXIDATIVE STRESS AND DCM

Oxidative stress is widely considered to be one of the main
contributors in the development and progression of diabetic
cardiovascular complications, including DCM (36, 111). Under
the conditions of DCM, the antioxidant factors such as
Frontiers in Endocrinology | www.frontiersin.org 4
superoxide dismutase (SOD) and glutathione peroxidase
(GSH-Px) are sharply decreased in heart tissue, while the
production of reactive oxygen species (ROS) is remarkably
increased, which are responsible for cellular oxidative stress
(112, 113). Excessive production of ROS can directly damage
proteins, lipid membranes and DNA, oxidize lipids into harmful
lipid peroxides, and increase the generation of reactive nitrogen
species (RNS) (8, 36, 114, 115). Excessive generation of ROS can
cause as well as activate several cellular stress-signaling and
inflammatory pathways (116). Previous studies have reported
that oxidative stress increased in human diabetic hearts (117).

HDACs have recently been reported to play a part in the
pathological process of DCM, including oxidative stress. SIRT1 is
the first member to be discovered in sirtuins and still the most
studied one, especially as a potential target to treat cardiovascular
diseases (56). SIRT1 mitigates oxidative stress and improves
DCM via SIRT1/NF-kB-p65, SIRT1/FOXO1, SIRT1/NRF2
pathways. Resveratrol which was a polyphenolic compound
used to be the potential prevention or therapy for DCM.
Pankaj et al. found that SIRT1 activation by resveratrol led to
deacetylation of both NF-kB-p65 at K310 and histone 3 at K9,
thereby decreasing binding of NF-kB-p65 to DNA (110). The
mice experiment showed that resveratrol ameliorated oxidative
stress in diabetic mouse hearts depending on regulation of
autophagic flux. Activation of SIRT1 led to deacetylation of
FOXO1 and increased the transcriptional activity of FOXO1,
ultimately enhanced the autophagy flux and protected diabetes-
induced cardiac injury (118). Similarly, in Ren’s study, it was
shown that curcumin treatment could alleviate DCM by
modulating apoptosis and oxidative stress via the SIRT1-
FOXO1 pathway (119). Given the oxidative stress seems a
critical cause for the development of DCM, other anti-
oxidative approaches have also been used to treat DCM, such
as allisartan isoproxil, BAK and tetrahydrocurcumin (THC).

However, these anti-oxidative approaches respectively
activated different SIRT1 signaling pathways (120–122).
Previous researches have reported that BAK (a bioactive
monoterpene phenol) and Allisartan isoproxil (a new
nonpeptide angiotensin II receptor blocker [ARB] precursor
drug) play crucial role in DCM by attenuating myocardial
oxidative damage via activating the SIRT1/NRF 2 signaling
pathway (91, 123). Furthermore, another research by Li et al.
found that THC treatment could alleviate DCM by attenuating
oxidative stress via activating the SIRT1 pathway (120).
However, the SIRT1 pathway in Li’s study was not identical to
those previously mentioned. SIRT1 activation by THC led to
deacetylation of Ac-SOD2, while leading to produce SOD which
is a vital molecule in maintaining ROS homeostasis. Thus,
generation of ROS was reduced by THC via enhancing the
SIRT1 pathway. These studies suggested that SIRT1 attenuates
oxidative stress and improves DCM via SIRT1/NF-kB-p65,
SIRT1/FOXO1, SIRT1/NRF2 pathways.

Among the seven different sirtuins, SIRT3 as a major protein
deacetylase in mitochondria is involved in mediating cellular redox
status, mitochondrial energetic and apoptosis (61). In Song’s study,
it was demonstrated that SIRT3 deficiency increased ROS
July 2021 | Volume 12 | Article 679655
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accumulation, aggravated hyperglycemia-induced mitochondrial
damage, accelerated necroptosis, possibly activated the NLRP3
inflammasome, and ultimately exacerbated development of DCM
in the mice (124). Elabela, another endogenous ligand of APJ, has
been known as peptides. SIRT3 which is a downstream of APJ has
been shown to protect DCM from oxidative stress-mediated cellular
injury. Evidence from Li’s study indicated that the protective effects
of Elabela in DCM are regulated by inhibition of oxidative stress via
FOXO3a deacetylation (125).

Taken together, HDACs potentially contribute to the
pathogenesis of DCM, and they are also considered potential
therapeutic target in DCM. Figure 2 depicted the role of HDACs
regulation oxidative stress and alleviating DCM.
HDACs, INFLAMMATION AND DCM

Diabetic mellitus is a pro-inflammatory state (36, 126, 127), and
many studies have revealed that cytokine of tissue concentrations
increase in various diabetic mouse models, suggesting that
inflammation plays an important role in the development of
DCM. These studies demonstrated intramyocardial inflammation
in DCM including increased inflammatory cells (infiltration of
macrophages and leucocytes) and increased expression of
inflammatory cytokines [leptin, TNF-a, TGF-b1, intercellular
adhesion molecule 1 and vascular cell adhesion molecule 1
(ICAM-1 and VCAM-1), interleukin1 beta (IL-1b), interleukin 6
(IL-6), and interleukin 18 (IL-18)] (121, 122, 128–131).

Miao et al. revealed HDACs are associated with inflammation
under diabetic conditions. High glucose can activate NF-kB and
increase the expression of inflammation cytokines. In vivo
experiment demonstrated that recruitment of NF-kB, histone
acetyltransferases (HATs) and histone acetylation at the
promoters of inflammatory genes was increased under diabetic
conditions, which indicated that HDACs were associated with
inflammation (132). The role of NF-kB in regulating
Frontiers in Endocrinology | www.frontiersin.org 5
inflammatory gene expression is well manifested (127, 132, 133).
Likewise, NF-kB (a transcription factor) can be modified by HATs
and HDACs leading to the upregulation of inflammatory genes
(127). SIRT1 directly interacts with Rela/p65 and NF-kB subunits
and inhibits NF-kB by deacetylating Rela/p65 at lysine 310,
resulting in the nuclear translocation of NF-kB dependent
on IkBa (134). Thereby, it decreased the expression of
proinflammatory genes. Betulin and allisartan isoproxil alleviated
DCM by attenuating inflammation via SIRT1/NF-kB pathway,
however there are still differences between them (110, 123, 134,
135). NLRP3 inflammasome is a member of the NLRP superfamily.
Inflammasomes are a group of protein complexes involved in
inflammation, immunity and metabolic abnormalities of various
diseases (135). In Wen’s study, it was demonstrated that Betulin
(triterpene compound) plays anti-inflammation effect in the
development of DCM by SIRT1 simultaneously activated NF-kB
and NLRP3 (134). Moreover, Jin et al. reported that allisartan
isoproxil alleviated DCM by attenuating diabetes-induced
inflammation via the SIRT1/NF-kB pathway (123). From what
has been discussed above, we draw the conclusion that SIRT1
reduced the inflammatory response and thus alleviated DCM.
Taken together, SIRT1 is considered to be a potential intervention
target in DCM (3, 136).

Several studies have uncovered multiple important links
between the SIRT3 and inflammatory processes. SIRT3
knockout mice showed inflammation and cardiac fibrosis due
to upregulation of AP-1 activity. SIRT3 inhibited FOS by
deacetylating histone 3 at lysine K27. Palomer et al. found that
SIRT3 regulated the proinflammatory and profibrotic responses
of cardiac cells via the FOS/AP-1 pathway (137). Song et al.
demonstrated that SIRT3 deficiency raised the expression of
inflammation-related proteins containing NLRP3, caspase 1 p20,
and interleukin-1b both in vitro and in vivo. Moreover, SIRT3
deficiency affected the development of DCM via the NLRP3
inflammasome (124). These results suggest that SIRT3 can be a
molecular intervention target for the prevention and treatment
FIGURE 1 | Proposed model depicting regulation and the role of HDACs in cardiac fibrosis and hypertrophy, and thus alleviating DCM. BAK, bakuchiol; Ac,
acetylation; P, phosphorylation.
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of DCM. Figure 2 depicted the role of HDACs regulation
inflammatory and alleviating DCM.
HDACIS AND DCM

HDACs may be promising drug targets owing to their function
in cell proliferation, cell cycle regulation, apoptosis,
differentiation, metabolism, protein trafficking and DNA
repair. HDAC inhibitors (HDACIs) are chemical compounds
that block Zn2+-dependent HDAC enzymes involved in
epigenetic modifications which regulate histone acetylation
state. HDACIs have been approved by the US Food and Drug
Administration (FDA) for clinical use, particularly for cancer
treatment (138). Moreover, emerging studies indicated that
epigenetic regulation of histone acetylation state may also own
Frontiers in Endocrinology | www.frontiersin.org 6
a potential for clinical application in the treatment of
cardiovascular disease (139).

Currently, five HDACIs that are structurally divided into
hydroxamic acid derivates (e.g., trichostatin A), short chain fatty
(aliphatic) acids (e.g., sodium butyrate), cyclic peptides,
benzamides and sirtuin inhibitors have been approved and are
being used globally (140–142). While currently available
HDACIs are largely non-selective (pan- HDACIs), the effects
of HDACIs are usually studied by examining changes in bulk
histone acetylation or the therapeutic effects observed in
experimental model or in clinical trials (38). Table 2
summarizes some progress of HDACIs related to treatment of
cardiomyopathy regarding their anti-fibrotic and anti-
hypertrophy effects. Therefore, more well-designed studies
exploring the potential of selective HDACIs for DCM
treatment is needed.
FIGURE 2 | Proposed model depicting regulation and the role of HDACs in oxidative stress and inflammation, and thus alleviating DCM. BAK, bakuchiol; THC,
tetrahydrocumin, AREs, antioxidant-responsive elements; Ac, acetylation; P, phosphorylation.
July 2021 | Volume 12 | Article 679655
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FUTURE RESEARCH DIRECTION

The current evidence indicates that HDACs are involved in
several biological pathways relevant to the pathogenesis of
DCM as presented in Figures 1, 2. However, more research is
required to better understand the roles of HDACs in the
pathogenesis of DCM and the mechanism that regulate them,
and address the curative potential in treating DCM. For instance,
some HDACs outside of the nucleus can also be post-
translationally modified, which can subsequently alter the
protein function. Exploring the proteins outside of the nucleus
would therefore be a worthwhile endeavor to further understand
the potential role of HDACs in DCM. HDACs do not solely
remove acetyl residues from proteins but can also remove other
acyl modifications, which provide better understanding of the
mechanism. Likewise, assessing the relationship between
HDACs and diabetes in heart failure may offer important
insight into novel mechanisms for DCM. Nevertheless the
currently available evidence provides a strong rationale for
continuing preclinical studies and initiating clinical trials, with
the ultimate purpose of testing the clinical utility of HDACs
in DCM.
CONCLUSION

Increasing evidence from in vitro and in vivo revealed that
HDACs plays a critical role in the pathogenesis of DCM,
suggesting that HDACs could be molecular intervention
targets for the prevention and treatment of DCM. However,
more endeavors are needed to further understand the roles of
Frontiers in Endocrinology | www.frontiersin.org 7
HDACs in the pathogenesis of DCM and the mechanism that
regulate them. A comprehensive understanding of the
mechanism of HDACs may provide a novel option for the
prevention and treatment of DCM.
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