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We develop a novel method to completely solve the 3-term partial exponential Diophantine 
equation that represents a generalization of the standard discrete logarithm problem. Our method 
not only reveals the internal structure of the equation’s solution and yields a numerical algorithm 
to solve it systematically, but also provides an alternative approach to the discrete logarithm 
problem.

1. Introduction

The study of 3-term Diophantine equations is an important topic in the number theory. The research in this area has been 
resulted in many advanced ideas and techniques. Among the most famous examples are Fermat’s Last Theorem [4] and Pell-Type 
Equations [1].

In this paper, we develop a novel method to completely solve the 3-term Diophantine equation with two unknowns, 𝑦 and 𝑥, such 
that

𝑎𝑔𝑦 = 𝑏𝑥+ 𝑐, (1.1)

where all the parameters and the unknowns are non-negative integers. This equation also represents a generalization of the standard 
discrete logarithm problem, while the difficulty of resolving such problem is the base of the security of certain popular cryptography 
systems [2]. As will be shown in the following sections, the novel method developed here transforms the problem of solving above 
partial exponential equation to a finite set of congruence calculations. It not only reveals the internal structure of the equation’s 
solutions and yields a numerical algorithm to solve it systematically, but also provides an alternative approach to the discrete 
logarithm problem.

In order to exclude certain trivial or special cases, in Section 2, we impose some restrictions on the parameters of Equation (1.1), 
so that we can focus on the essential issues of solving the equation. We call those restrictions “the normalization restrictions”, and an 
equation that satisfies such restrictions “a normalized equation”. Under these restrictions, in Section 3, a subset of the least residue 
system modulo 𝑏 is defined as “the associated residue set” to the equation, and its properties are analyzed. In Section 4, based on the 
properties of the associated residue set, the necessary and sufficient condition for a normalized equation to be solvable is obtained, 
and if it’s solvable, the formal solutions are constructed explicitly. In Section 5, we show that, besides a few trivial cases, an equation 
that doesn’t satisfy the normalization restrictions can be transformed to a normalized equation. The necessary and sufficient condition 
for the original equation to be solvable is that its corresponding normalized equation is solvable, and if it’s solvable, the solutions 
are given by a subset of the solutions of its corresponding normalized equation. In Section 6, we discuss briefly the applications of 
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our method to the discrete logarithm problem and the 3-term Diophantine equation with two exponential unknowns. A summary is 
given in Section 7.

2. Normalization restrictions

To exclude certain trivial or special cases, so that we can focus on the essential issues of solving Equation (1.1), we impose three 
groups of restrictions on the parameters of the equation:⎧⎪⎪⎨⎪⎪⎩

0 < 𝑎,

0 < 𝑐,

1 < 𝑔,

1 < 𝑏,

(2.1)

{
𝑔𝑐𝑑(𝑎, 𝑏) = 1,
𝑔𝑐𝑑(𝑎, 𝑐) = 1,

(2.2)

⎧⎪⎨⎪⎩
𝑎 ≢ 0 (mod 𝑔),
𝑐 < 𝑏,

𝑔𝑐𝑑(𝑔, 𝑏) = 1,
(2.3)

where 𝑔𝑐𝑑(𝑚1, 𝑚2) is the greatest common divisor of 𝑚1 and 𝑚2. We call these restrictions “the normalization restrictions”, and an 
equation that satisfies such restrictions “a normalized equation”.

2.1. On the restriction delineated by Equation (2.1)

Because all the parameters and the unknowns being non-negative integers is the prerequisite for the equation, there are only a 
few trivial cases that don’t satisfy the restriction (2.1).

For example, the cases that don’t satisfy the restriction 1 < 𝑏 are 𝑏 = 0 and 𝑏 = 1. The equation with 𝑏 = 0 is a trivial 2-term 
equation with one unknown, so it is not to be processed any further here. In the case of 𝑏 = 1, Equation (1.1) becomes

𝑎𝑔𝑦 = 𝑥+ 𝑐.

Let 𝑛0 be the smallest non-negative integer such that 𝑎𝑔𝑛0 − 𝑐 ≥ 0, the equation has solutions

(𝑦,𝑥) = (𝑛, 𝑎𝑔𝑛 − 𝑐), 𝑛 ≥ 𝑛0,

where (𝑦, 𝑥) = (𝑚1, 𝑚2) represents 𝑦 =𝑚1 and 𝑥 =𝑚2 simultaneously.

2.2. On the restriction delineated by Equation (2.2)

An equation that doesn’t satisfy the restriction (2.2) can be transformed into a corresponding normalized equation, and their 
solutions are identical.

For example, in the case of 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑑 > 1, if 𝑑 doesn’t divide 𝑐, Equation (1.1) has no solution. Suppose that 𝑑 divides 𝑐. 
Dividing the both sides of the equation by 𝑑, we have

�̄�𝑔𝑦 = �̄�𝑥+ 𝑐,

where �̄� = 𝑎∕𝑑, �̄� = 𝑏∕𝑑, and 𝑐 = 𝑐∕𝑑. For the reason that 𝑔𝑐𝑑(�̄�, ̄𝑏) = 1, the equation has been normalized. Any solution of the 
original equation is the solution of the corresponding normalized equation, and vice versa. By solving the corresponding normalized 
equation, we get all the solutions of the original equation.

2.3. On the restriction delineated by Equation (2.3)

An equation that doesn’t satisfy the restriction (2.3) can also be transformed into a corresponding normalized equation. However, 
in this case, although any solution of the original equation is the solution of the corresponding normalized equation, a solution of 
the corresponding normalized equation is not necessarily the solution of the original equation. Therefore, there is no guarantee yet 
that the solutions of the corresponding normalized equation contain the solutions of the original equation. Such guarantee is secured 
after we have completely solved the normalized equation. Details are discussed in Section 5.

3. Associated residue set

The core development of our novel approach to solve Equation (1.1) is to define a data set associated to the equation. We call 
this data set “the associated residue set”, denoted by < 𝐶 >. The parameters 𝑔, 𝑏, and 𝑐 are deeply involved in its definition, and its 
2

relationship with the parameter 𝑎 determines whether the equation is solvable, and if it’s solvable, how the solutions are constructed.
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Let 𝛾 be the least non-negative residue of 𝑏 modulo 𝑔, i.e.,

𝑏 ≡ 𝛾 (mod 𝑔), 0 < 𝛾 < 𝑔, (3.1)

where 𝛾 ≠ 0 is the result of the restriction (2.3), namely 𝑔𝑐𝑑(𝑔, 𝑏) = 1.

The associated residue set < 𝐶 > is defined by the following recursive formulas:{
𝑐0 = 𝑐,

𝑐𝑖+1 =
𝑏𝜇𝑖+𝑐𝑖

𝑔
,

(3.2)

where 𝜇𝑖 is solved from the linear congruence equation,

𝛾𝜇𝑖 + 𝑐𝑖 ≡ 0 (mod 𝑔), 0 ≤ 𝜇𝑖 < 𝑔. (3.3)

Lemma 3.1. If 𝑐𝑖 is an integer, so is 𝑐𝑖+1.

Proof. If 𝑐𝑖 is an integer, from Equations (3.1) and (3.3), we have

𝑏𝜇𝑖 + 𝑐𝑖 ≡ 𝛾𝜇𝑖 + 𝑐𝑖 ≡ 0 (mod 𝑔).

Hence 𝑔 divides 𝑏𝜇𝑖 + 𝑐𝑖 and 𝑐𝑖+1 is an integer. □

Lemma 3.2. If 𝑐𝑖 > 0, so is 𝑐𝑖+1.

Proof. Both 𝜇𝑖 and 𝑏 are non-negative integers, thus, if 𝑐𝑖 > 0, 𝑏𝜇𝑖 + 𝑐𝑖 > 0 which leads immediately to 𝑐𝑖+1 > 0. □

Lemma 3.3. If 𝑐𝑖 < 𝑏, so is 𝑐𝑖+1.

Proof. Replacing 𝑐𝑖 by 𝑏 in Equation (3.2), and using the condition 𝑐𝑖 < 𝑏, we have

𝑐𝑖+1 < 𝑏
𝜇𝑖 + 1
𝑔

.

Equation (3.3) requires that 𝜇𝑖 < 𝑔, which implies that 𝜇𝑖 + 1 ≤ 𝑔. As a result, the above equation becomes

𝑐𝑖+1 < 𝑏
𝜇𝑖 + 1
𝑔

≤ 𝑏
𝑔

𝑔
= 𝑏. □

To avoid unnecessary tedious discussions, in the rest of this section and Section 4, we suppose that Equation (1.1) satisfies all the 
normalization restrictions described in Section 2.

Theorem 3.1. All the elements of < 𝐶 > are integers, and their values are bounded within the range between 0 and 𝑏, i.e.,

0 < 𝑐𝑖 < 𝑏, 𝑖 ≥ 0. (3.4)

As a consequence, < 𝐶 > consists of a subset of the least residue system modulo 𝑏.

Proof. Combined with the initial condition 𝑐0 = 𝑐, and the normalization restrictions 0 < 𝑐 < 𝑏, this theorem is concluded directly 
from Lemmas 3.1 to 3.3. □

The fact that all 𝑐𝑖 are integers proves that < 𝐶 > is well-defined.

Lemma 3.4. There exists an unique inverse of 𝛾 , denoted by 𝛾−1, such that

𝛾−1𝛾 ≡ 1 (mod 𝑔). (3.5)

Hence Equation (3.3) has a single solution

𝜇𝑖 ≡ −𝛾−1𝑐𝑖 (mod 𝑔). (3.6)

Proof. Equation (3.1) implies that there is an integer 𝑚 such that 𝑏 = 𝑚𝑔 + 𝛾 . Therefore, the normalization restriction 𝑔𝑐𝑑(𝑔, 𝑏) = 1
indicates that 𝑔𝑐𝑑(𝑔, 𝛾) = 1 which guarantees the existence of the unique inverse 𝛾−1 defined by Equation (3.5) (See Theorem 3.13 
3

of [3], Page 72). □
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Lemma 3.5. If 𝑐𝑖 ≡ 0 (mod 𝑔), then 𝜇𝑖 = 0, and vice versa.

Proof. This is the result of Equations (3.6) and (3.3). □

Theorem 3.2. Not all 𝜇𝑖 are zeros.

Proof. Lemma 3.5 indicates that 𝑐𝑖 ≢ 0 (mod 𝑔) causes 𝜇𝑖 ≠ 0, hence we only need to show that there is at least one 𝑐𝑖 such that 
𝑐𝑖 ≢ 0 (mod 𝑔). If 𝑐0 ≢ 0 (mod 𝑔), the theorem is correct. Suppose 𝑐0 ≡ 0 (mod 𝑔). Due to the normalization restriction 𝑐0 = 𝑐 > 0, 
there exist two integers, 𝑚 and 𝑐, such that

𝑐0 = 𝑔𝑚𝑐,

where 𝑚 > 0 and 𝑐 ≢ 0 (mod 𝑔). According to Lemma 3.5, 𝑐0 ≡ 0 (mod 𝑔) leads to 𝜇0 = 0. Replacing 𝜇0 by 0 in Equation (3.2) results 
in 𝑐1 = 𝑔𝑚−1𝑐, and 𝑐1 ≡ 0 (mod 𝑔) if 𝑚 > 1. Repeating this procedure 𝑚 times, we have

𝑐𝑚 = 𝑐 ≢ 0 (mod 𝑔),

which proves the theorem. □

Lemma 3.6. 𝑐𝑖+1 is uniquely determined by 𝑐𝑖, thus < 𝐶 > has no forks in the forward direction.

Proof. Due to Equation (3.6), 𝜇𝑖 is uniquely decided by 𝑐𝑖, so is the right side of Equation (3.2) which proves the lemma. □

Lemma 3.7. 𝜇𝑖 is the smallest integer such that 𝑔𝑐𝑖+1 − 𝑏𝜇𝑖 < 𝑏.

Proof. Combining Equation (3.2) and Equation (3.4), we have 𝑔𝑐𝑖+1 −𝑏𝜇𝑖 = 𝑐𝑖 < 𝑏. So we just need to prove that 𝑔𝑐𝑖+1 −𝑏(𝜇𝑖−1) > 𝑏:

𝑔𝑐𝑖+1 − 𝑏(𝜇𝑖 − 1) = 𝑔𝑐𝑖+1 − 𝑏𝜇𝑖 + 𝑏 = 𝑐𝑖 + 𝑏 > 𝑏,

where 𝑐𝑖 > 0 is used. □

Lemma 3.7 provides a formula to uniquely derive 𝑐𝑖 from 𝑐𝑖+1:

Lemma 3.8. For a given 𝑐𝑖+1, let 𝑚 be the smallest integer to make 𝑔𝑐𝑖+1 − 𝑏𝑚 < 𝑏, then{
𝜇𝑖 =𝑚,

𝑐𝑖 = 𝑔𝑐𝑖+1 − 𝑏𝜇𝑖.

Hence < 𝐶 > has no forks in the backward direction.

Theorem 3.3. < 𝐶 > is a pure cyclic sequence.

Proof. Since < 𝐶 > is bounded from both below and above (Theorem 3.1), with the increase of the index 𝑖 it will inevitably repeat 
its previous elements. Furthermore it is a sequence without any fork (Lemmas 3.6 and 3.8). Consequently, < 𝐶 > must be a pure 
cyclic sequence. □

Let 𝐿 denote the length of the cycle, i.e., the smallest non-negative integer such that

𝑐𝐿 = 𝑐0,

we have{
𝑐𝑛𝐿+𝑖 = 𝑐𝑖,

𝜇𝑛𝐿+𝑖 = 𝜇𝑖,
(3.7)

where 𝑛 is any non-negative integer.

It is useful to have the compact form for the elements of < 𝐶 >. Recursively using Equation (3.2) 𝑘 times, we have

𝑐𝑖+1 =
𝑏
∑𝑘−1

𝑗=0 𝜇𝑖+1−𝑘+𝑗𝑔
𝑗 + 𝑐𝑖+1−𝑘

𝑔𝑘
. (3.8)
4

The compact form can be obtained by setting 𝑘 = 𝑖 + 1 in the above equation:
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𝑐𝑖+1 =
𝑏
∑𝑖

𝑗=0 𝜇𝑗𝑔
𝑗 + 𝑐0

𝑔𝑖+1
. (3.9)

Let 𝑖 =𝐿 − 1 in Equation (3.8), and notice that 𝑐𝐿 = 𝑐0 = 𝑐, we have

𝑔𝑘𝑐 = 𝑏

𝑘−1∑
𝑗=0

𝜇𝐿−𝑘+𝑗𝑔
𝑗 + 𝑐𝐿−𝑘. (3.10)

Consequently,

𝑔𝑘𝑐 ≡ 𝑐𝐿−𝑘 (mod 𝑏), 0 ≤ 𝑘 < 𝐿. (3.11)

Denote 𝑔𝑘 as the least non-negative residue of 𝑔𝑘 modulo 𝑏, i.e.,

𝑔𝑘 ≡ 𝑔𝑘 (mod 𝑏), 0 < 𝑔𝑘 < 𝑏, (3.12)

The sequence of 𝑔𝑘 is a multiplicative cyclic group generated by 𝑔, and 𝐿 is the order of 𝑔 modulo 𝑏. Since 𝑔𝐿 ≡ 1 (mod 𝑏), 𝑏 divides 
𝑔𝐿 − 1. Replacing 𝑔𝑘 by 𝑔𝑘 in Equation (3.11), we have 𝑔𝑘𝑐 ≡ 𝑐𝐿−𝑘 (mod 𝑏), or equivalently,

𝑔𝐿−𝑘𝑐 ≡ 𝑐𝑘 (mod 𝑏), 0 ≤ 𝑘 < 𝐿. (3.13)

This is another way to produce < 𝐶 >. Notice that there is a significant difference between the two ways to produce <𝐶 >: Equation 
(3.13) is modulo 𝑏, while Equation (3.2) is modulo 𝑔.

Let 𝑘 =𝐿 in Equation (3.10), we have

𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 = 𝑐

𝑔𝐿 − 1
𝑏

(3.14)

which leads to
𝑛𝐿+𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 = 𝑐

𝑔𝑛𝐿 − 1
𝑏

+ 𝑔𝑛𝐿
𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 . (3.15)

The derivation is as follows: The summation on the left side of the equation is grouped by each cycle

𝑛𝐿+𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 =

𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 +

2𝐿−1∑
𝑗=𝐿

𝜇𝑗𝑔
𝑗 +⋯+

𝑛𝐿−1∑
𝑗=(𝑛−1)𝐿

𝜇𝑗𝑔
𝑗 +

𝑛𝐿+𝑘−1∑
𝑗=𝑛𝐿

𝜇𝑗𝑔
𝑗

=
𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 +

𝐿−1∑
𝑗=0

𝜇𝑗+𝐿𝑔
𝑗+𝐿 +⋯+

𝐿−1∑
𝑗=0

𝜇𝑗+(𝑛−1)𝐿𝑔
𝑗+(𝑛−1)𝐿

+
𝑘−1∑
𝑗=0

𝜇𝑗+𝑛𝐿𝑔
𝑗+𝑛𝐿.

Using the periodic property of 𝜇𝑖 given by Equations (3.7), above equation becomes:

𝑛𝐿+𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 =

𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 + 𝑔𝐿

𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 +⋯+ 𝑔(𝑛−1)𝐿

𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 + 𝑔𝑛𝐿

𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗

=
𝑛−1∑
𝑖=0

𝑔𝑖𝐿
𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 + 𝑔𝑛𝐿

𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 .

Notice that

𝑛−1∑
𝑖=0

𝑔𝑖𝐿 = 𝑔𝑛𝐿 − 1
𝑔𝐿 − 1

,

and using Equation (3.14) to replace 
𝐿−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 , we have Equation (3.15).

4. The formal solutions

To solve the normalized Equation (1.1), we expand 𝑥 on the base of 𝑔:

𝑥 =
∑

𝜈 𝑔𝑗 , (4.1)
5

𝑗=0
𝑗
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where the coefficients 0 ≤ 𝜈𝑗 < 𝑔 are to be determined by Equation (1.1). This expansion is general and any non-negative integer can 
be expanded in this way.

Lemma 4.1. For any finite 𝑥, there always exists an index 𝑘 ≥ 0 such that{
𝜈𝑗 = 𝜇𝑗 , 𝑗 < 𝑘,

𝜈𝑘 ≠ 𝜇𝑘, 𝑗 = 𝑘.
(4.2)

Proof. Since 𝑥 is finite, there is an index 𝐽 ≥ 0 such that

𝜈𝑗 = 0, 𝑗 > 𝐽 .

Therefore, in case that 𝑘 defined by Equation (4.2) is not located in the range 0 ≤ 𝑗 ≤ 𝐽 , it can be located in the range 𝑗 > 𝐽 , because 
the sequence of 𝜇𝑗 is cyclic and Theorem 3.2 guarantees the existence of nonzero 𝜇𝑗 in that range. □

Apparently 𝑘 defined by Equation (4.2) is the smallest index that 𝜈𝑘 ≠ 𝜇𝑘. We rewrite Equation (4.1) by taking this into account:

𝑥 = 𝑔𝑘𝑧+
𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 , (4.3)

where

𝑧 =
∑
𝑖=0

𝜈𝑖+𝑘𝑔
𝑖. (4.4)

Equations (4.2) and (4.4) require respectively that 𝑧 satisfies two restrictions:{
𝑏𝑧+ 𝑐𝑘 ≡ 𝛾𝜈𝑘 + 𝑐𝑘 ≢ 0 (mod 𝑔),
𝑧 ≥ 0.

(4.5)

Substituting Equation (4.3) into Equation (1.1), we have

𝑎𝑔𝑦 = 𝑏𝑔𝑘𝑧+ 𝑏

𝑘−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 + 𝑐

= 𝑏𝑔𝑘𝑧+ 𝑔𝑘𝑐𝑘,

where Equation (3.9) is used. Dividing both sides of the equation by 𝑔𝑘, we get

𝑎𝑔𝑦−𝑘 = 𝑏𝑧+ 𝑐𝑘. (4.6)

Lemma 4.2. In order for Equation (4.6) to be valid, 𝑦 must equal to 𝑘.

Proof. If 𝑦 > 𝑘, 𝑏𝑧 + 𝑐𝑘 = 𝑎𝑔𝑦−𝑘 ≡ 0 (mod 𝑔) which conflicts the restriction (4.5). On the other hand, if 𝑦 < 𝑘, the right side of 
Equation (4.6) is an integer, while due to the normalization restriction 𝑎 ≢ 0 (mod 𝑔), the left side is an irreducible fraction. Thus 𝑦
must equal to 𝑘 for the equation to be valid. □

As a consequence, Equation (4.6) is decomposed into two equations,

𝑦 = 𝑘 (4.7)

and

𝑎 = 𝑏𝑧+ 𝑐𝑘. (4.8)

Considering the periodic property of the associated residue set < 𝐶 >, it is convenient to express 𝑘 by two parameters, 𝑛 and �̄�, 
such that

𝑘 = 𝑛𝐿+ �̄�,

where 0 ≤ 𝑛 and 0 ≤ �̄� < 𝐿. Substituting above equation into Equations (4.3) and (4.7), and replacing 
𝑛𝐿+�̄�−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 by Equation (3.15), 
6

we have
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⎧⎪⎨⎪⎩
𝑥 = 𝑔𝑛𝐿+�̄�𝑧+ 𝑐

𝑔𝑛𝐿−1
𝑏

+ 𝑔𝑛𝐿
�̄�−1∑
𝑗=0

𝜇𝑗𝑔
𝑗 ,

𝑦 = 𝑛𝐿+ �̄�.

(4.9)

Similarly, Equation (4.8) becomes

𝑎 = 𝑏𝑧+ 𝑐�̄�, (4.10)

where Equation (3.7) has been used.

Two unknowns, 𝑦 and 𝑥, are now replaced by �̄� and 𝑧, and solving Equation (1.1) is transformed to checking whether there exist 
�̄� and 𝑧 satisfying Equation (4.10).

Lemma 4.3. If there exists an element 𝑐�̄� in the associated residue set < 𝐶 > such that

𝑎 ≡ 𝑐�̄� (mod 𝑏), (4.11)

then the integer 𝑧 defined by

𝑧 =
𝑎− 𝑐�̄�

𝑏
, (4.12)

satisfies the restriction (4.5), and Equation (4.10) is valid. 𝑦 and 𝑥 constructed by Equation (4.9) are the solutions of Equation (1.1).

Proof. Equation (4.10) is a direct result of Equation (4.12) and its validity is inherited from (4.12). The normalization restrictions 
guarantee that Equation (4.5) is satisfied. In fact, Equation (4.10) gives rise to 𝑧 ≥ 0 due to that 𝑐�̄� < 𝑏 and 𝑎 > 0. It also gives rise to 
𝑧𝑏 + 𝑐�̄� ≢ 0 (mod 𝑔) due to that 𝑎 ≢ 0 (mod 𝑔). With �̄� and 𝑧 available, 𝑦 and 𝑥 can be constructed by Equation (4.9). The validity of 
Equation (4.10) proves that 𝑦 and 𝑥 are the solutions of Equation (1.1). □

Lemma 4.4. If Equation (1.1) has a solution (𝑦, 𝑥), there must exist an element 𝑐�̄� in the associated residue set < 𝐶 > such that Equation 
(4.11) is valid.

Proof. We begin the proof by using Equation (4.1) to expand 𝑥. The existence of 𝑘 is guaranteed by Lemma 4.1. We follow the steps 
from Equation (4.3) to get Equation (4.10). Because (𝑦, 𝑥) is a solution of Equation (1.1), Equation (4.10) is valid which immediately 
leads to Equation (4.11). □

We reach now the major theorem of this paper:

Theorem 4.1. The normalized Equation (1.1) is solvable if and only if there exists an element 𝑐�̄� in the associated residue set < 𝐶 > that 
satisfies Equation (4.11). If it’s solvable, 𝑧 can be constructed from Equation (4.12), and the solutions are given by Equation (4.9) with 𝑛
being any non-negative integer.

Proof. Equation (4.11) as the sufficient condition is proved by Lemma 4.3, and it as the necessary condition is proved by 
Lemma 4.4. □

5. Non-normalized equations

We discuss now the equations that violate the restriction (2.3). We suppose that (2.1) and (2.2) are satisfied, because the equations 
that violate these two restrictions are trivial and have been briefly discussed in Section 2.

5.1. Case 𝑎 ≡ 0 (mod 𝑔)

Let 𝑚 be the highest power of 𝑔 occurring in 𝑎 such that

𝑎 = 𝑔𝑚�̄�, �̄� ≢ 0 (mod 𝑔).

Replace 𝑎 by �̄� and 𝑦 by �̄� = 𝑦 +𝑚, Equation (1.1) becomes a normalized equation

�̄�𝑔�̄� = 𝑏𝑥+ 𝑐. (5.1)

Apparently, any solution (𝑦, 𝑥) of the original equation (1.1) yields a solution (�̄�, 𝑥) of its corresponding normalized equation (5.1)

with
7

�̄� ≥𝑚. (5.2)
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Hence the solvability of the corresponding normalized equation is necessary for the original equation to be solvable. On the other 
hand, if Equation (5.1) is solvable, its solutions (�̄�, 𝑥) are given by Equation (4.9), thus there always exists an 𝑛0 such that 𝑛0𝐿 + �̄� ≥𝑚, 
so all the solutions with 𝑛 ≥ 𝑛0 are the solutions of Equation (1.1). Therefore we have

Theorem 5.1. Equation (1.1) with 𝑎 ≡ 0 (mod 𝑔) is solvable if and only if its normalized equation (5.1) is solvable, and its solutions are 
derived from the solutions of (5.1) by

(𝑦,𝑥) = (�̄�−𝑚,𝑥),

where �̄� satisfy the condition delineated by Equation (5.2).

5.2. Case 𝑐 > 𝑏

By the division theorem (Theorem 1.1 of [3], Page 30), there is exactly one pair of positive integers 𝑚 and 𝑐 such that

𝑐 =𝑚𝑏+ 𝑐, 0 < 𝑐 < 𝑏.

Notice that 𝑐 = 0 is the trivial case excluded by restriction (2.1) and we don’t consider it here. Replacing 𝑐 by 𝑐 and 𝑥 by �̄� = 𝑥 +𝑚, 
Equation (1.1) becomes a normalized equation

𝑎𝑔𝑦 = 𝑏�̄�+ 𝑐. (5.3)

Similarly, any solution (𝑦, 𝑥) of the original equation (1.1) yields a solution (𝑦, �̄�) of the corresponding normalized equation (5.3)

with

�̄� ≥𝑚. (5.4)

Hence the solvability of the corresponding normalized equation is necessary for the original equation to be solvable. On the other 
hand, if Equation (5.3) is solvable, its solutions (𝑦, �̄�) are given by Equation (4.9) and there always exists an 𝑛0 such that �̄� ≥ 𝑚, so 
all the solutions with 𝑛 ≥ 𝑛0 are the solutions of Equation (1.1). Therefore we have

Theorem 5.2. Equation (1.1) with 𝑐 > 𝑏 is solvable if and only if its normalized equation (5.3) is solvable, and its solutions are derived 
from the solutions of (5.3) by

(𝑦,𝑥) = (𝑦, �̄�−𝑚),

where �̄� satisfy the condition delineated by Equation (5.4).

5.3. Case 𝑔𝑐𝑑(𝑔, 𝑏) > 1

Suppose that the prime numbers 𝑞𝑖, 𝑖 = 1, 2, ..., 𝑠, are the common divisors of 𝑔 and 𝑏, and there is no other prime number as their 
common divisor. Let 𝑢𝑖, 𝑣𝑖, and 𝑤𝑖 be the highest powers of 𝑞𝑖 occurring in 𝑔, 𝑏, and 𝑐, respectively. Because 𝑞𝑖 is a common divisor 
of 𝑔 and 𝑏, 𝑢𝑖 > 0 and 𝑣𝑖 > 0, while 𝑤𝑖 can be 0, i.e., 𝑤𝑖 ≥ 0. Let 𝑡 be the count of 𝑞𝑖 whose 𝑤𝑖 is less than 𝑣𝑖. 𝑞𝑖 can be sorted such 
that {

𝑤𝑖 < 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑡,

𝑤𝑖 ≥ 𝑣𝑖, 𝑡 < 𝑖 ≤ 𝑠,

and 𝑔, 𝑏, and 𝑐 are factorized as⎧⎪⎨⎪⎩
𝑔 = 𝑞

𝑢1
1 … 𝑞

𝑢𝑡
𝑡
𝑞
𝑢𝑡+1
𝑡+1 … 𝑞

𝑢𝑠
𝑠 �̄�,

𝑏 = 𝑞
𝑣1
1 … 𝑞

𝑣𝑡
𝑡
𝑞
𝑣𝑡+1
𝑡+1 … 𝑞

𝑣𝑠
𝑠 �̄�,

𝑐 = 𝑞
𝑤1
1 … 𝑞

𝑤𝑡

𝑡
𝑞
𝑤𝑡+1
𝑡+1 … 𝑞

𝑤𝑠
𝑠 𝑐.

By the definitions of 𝑢𝑖, 𝑣𝑖, and 𝑤𝑖, we have

⎧⎪⎨⎪⎩
𝑔𝑐𝑑(�̄�, 𝑞𝑖) = 1,
𝑔𝑐𝑑(�̄�, 𝑞𝑖) = 1,
𝑔𝑐𝑑(𝑐, 𝑞𝑖) = 1,

i.e., 𝑞𝑖 doesn’t divide �̄�, �̄�, and 𝑐, where 1 ≤ 𝑖 ≤ 𝑠. Due to that 𝑔 and 𝑏 have no other common divisors,

𝑔𝑐𝑑(𝑔, �̄�) = 1.
8

Equation (1.1) becomes
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𝑎𝑞
𝑦𝑢1
1 … 𝑞

𝑦𝑢𝑡
𝑡

𝑞
𝑦𝑢𝑡+1
𝑡+1 … 𝑞

𝑦𝑢𝑠
𝑠 �̄�𝑦 = 𝑞

𝑣1
1 … 𝑞

𝑣𝑡
𝑡
𝑞
𝑣𝑡+1
𝑡+1 … 𝑞

𝑣𝑠
𝑠 �̄�𝑥

+ 𝑞
𝑤1
1 … 𝑞

𝑤𝑡

𝑡
𝑞
𝑤𝑡+1
𝑡+1 … 𝑞

𝑤𝑠
𝑠 𝑐.

(5.5)

Two subcases, 𝑡 > 0 and 𝑡 = 0, need to be treated differently.

5.3.1. Subcase 𝑡 > 0
Divide both sides of Equation (5.5) by 𝑞𝑤1

1 … 𝑞𝑤𝑡

𝑡
, we have

𝑎𝑞
𝑦𝑢1−𝑤1
1 … 𝑞

𝑦𝑢𝑡−𝑤𝑡

𝑡
𝑞
𝑦𝑢𝑡+1
𝑡+1 … 𝑞

𝑦𝑢𝑠
𝑠 �̄�𝑦 =

𝑞
𝑣1−𝑤1
1 … 𝑞

𝑣𝑡−𝑤𝑡

𝑡
𝑞
𝑣𝑡+1
𝑡+1 … 𝑞

𝑣𝑠
𝑠 �̄�𝑥

+ 𝑞
𝑤𝑡+1
𝑡+1 … 𝑞

𝑤𝑠
𝑠 𝑐.

(5.6)

Since 𝑣𝑖 > 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑡, the right side of the equation is an integer. In order for the left side of the equation to be an integer, we must 
have 𝑦𝑢𝑖 −𝑤𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑡. However, if 𝑦𝑢1 −𝑤1 > 0, for example, dividing both sides of the equation by 𝑞1 leads to

𝑎𝑞
𝑦𝑢1−𝑤1−1
1 … 𝑞

𝑦𝑢𝑡−𝑤𝑡

𝑡
𝑞
𝑦𝑢𝑡+1
𝑡+1 … 𝑞

𝑦𝑢𝑠
𝑠 �̄�𝑦 =

𝑞
𝑣1−𝑤1−1
1 … 𝑞

𝑣𝑡−𝑤𝑡

𝑡
𝑞
𝑣𝑡+1
𝑡+1 … 𝑞

𝑣𝑠
𝑠 �̄�𝑥

+ 𝑞
𝑤𝑡+1
𝑡+1 … 𝑞

𝑤𝑠
𝑠 𝑐∕𝑞1.

The last term of the equation is an irreducible fraction while the rest of the equation are integers, thus for the equation to be valid 
we must have 𝑦𝑢1 −𝑤1 = 0. This argument is valid for all factor 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑡. We conclude

Theorem 5.3. The necessary condition for Equation (5.6) to be solvable is that 𝑤1∕𝑢1 =⋯ =𝑤𝑡∕𝑢𝑡 = 𝑛0 is an integer, and 𝑦 = 𝑛0.

When this condition is satisfied, Equation (5.6) becomes

𝑎(𝑞𝑢𝑡+1
𝑡+1 … 𝑞

𝑢𝑠
𝑠 �̄�)𝑛0 = 𝑞

𝑣1−𝑤1
1 … 𝑞

𝑣𝑡−𝑤𝑡

𝑡
𝑞
𝑣𝑡+1
𝑡+1 … 𝑞

𝑣𝑠
𝑠 �̄�𝑥

+ 𝑞
𝑤𝑡+1
𝑡+1 … 𝑞

𝑤𝑠
𝑠 𝑐.

This is a trivial linear equation with one unknown 𝑥, so we are not to process it any further.

5.3.2. Subcase 𝑡 = 0
We divide both sides of Equation (5.5) by 𝑞𝑣11 … 𝑞𝑣𝑠𝑠 :

𝑎𝑞
𝑦𝑢1−𝑣1
1 … 𝑞

𝑦𝑢𝑠−𝑣𝑠
𝑠 �̄�𝑦 = �̄�𝑥

+ 𝑞
𝑤1−𝑣1
1 … 𝑞

𝑤𝑠−𝑣𝑠
𝑠 𝑐.

Because all 𝑤𝑖 ≥ 𝑣𝑖, the right side of the equation is an integer. In order for the left side of the equation to be an integer, it is 
needed that

𝑦 ≥ ⌈𝑚𝑎𝑥(𝑣1∕𝑢1,… , 𝑣𝑠∕𝑢𝑠)⌉, (5.7)

where ⌈𝑧⌉ is the ceiling function and 𝑚𝑎𝑥(𝑧1, … , 𝑧𝑚) is the largest value among 𝑧𝑖.
Replacing 𝑏 by �̄� and 𝑥 by �̄� = 𝑞

𝑣1
1 … 𝑞𝑣𝑠𝑠 𝑥, Equation (5.5) is normalized:

𝑎𝑔𝑦 = �̄��̄�+ 𝑐, (5.8)

where it is supposed that 𝑐 < �̄�. If 𝑐 > �̄�, then the equation can be further processed following the steps of Subsection 5.2.

As previous cases, any solution (𝑦, 𝑥) of the original equation (5.5) with 𝑡 = 0 yields a solution (𝑦, �̄�) of its corresponding nor-

malized equation (5.8). Hence the solvability of the corresponding normalized equation is necessary for the original equation to be 
solvable. On the other hand, if Equation (5.8) is solvable, its solutions (𝑦, �̄�) are given by Equation (4.9), thus there always exists an 
𝑛0 such that 𝑛0𝐿 + �̄� ≥ ⌈𝑚𝑎𝑥(𝑣1∕𝑢1, … , 𝑣𝑠∕𝑢𝑠)⌉. The �̄� of a solution with 𝑛 ≥ 𝑛0 is divisible by 𝑞𝑣11 … 𝑞𝑣𝑠𝑠 , because the other two terms 
of the equation (5.8) are divisible by the same factor. Therefore we have

Theorem 5.4. Equation (5.5) with 𝑡 = 0 is solvable if and only if its normalized equation (5.8) is solvable, and its solutions are derived from 
the solutions of (5.8) by

(𝑦,𝑥) = (𝑦, �̄�

𝑞
𝑣1
1 … 𝑞

𝑣𝑠
𝑠

)

9

where 𝑦 satisfies the condition delineated by Equation (5.7).
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Remark. In the case of 𝑐 > 𝑏 or 𝑔𝑐𝑑(𝑔, 𝑏) > 1, < 𝐶 > is still well-defined by Equation (3.2) and (3.3), but has more complicated 
structures than a pure cyclic sequence. The necessary and sufficient condition for Equation (1.1) to be solvable given by Theorem 4.1

is still valid, and the solutions are similar to Equation (4.9) with some exceptions that 𝑛 has limited values. Those exceptions 
correspond to the solvable trivial cases of this section.

6. Two applications of the method

We discuss briefly two applications of our method in this section.

6.1. The discrete logarithm problem

Let 𝑎 = 1 and 𝑐 be a least non-negative residue 𝑔𝑠 defined by Equation (3.12), i.e., 𝑔𝑠 ≡ 𝑔𝑠 (mod 𝑏) where 0 ≤ 𝑠 < 𝐿, Equation 
(1.1) becomes the standard discrete logarithm problem

𝑔𝑦 = 𝑏𝑥+ 𝑔𝑠.

The goal is to resolve 𝑠 from 𝑔𝑠 with given 𝑔 and 𝑏.

The necessary and sufficient condition for the equation to be solvable given by Equation (4.11) becomes:

𝑐�̄� = 1, 0 ≤ �̄� < 𝐿.

There always exists a �̄� satisfying this condition, because 𝑐0 = 𝑔𝑠 and 𝑔𝐿 = 1. Substituting the above result into Equation (3.13), we 
have

𝑔𝐿−�̄�𝑔𝑠 ≡ 𝑔𝐿−�̄�+𝑠 ≡ 𝑐�̄� ≡ 1 (mod 𝑏),

which leads to

𝑠 = �̄�.

As mentioned in Section 3, there are two ways to solve the problem: the traditional method of Equation (3.13) that is modulo 𝑏, 
and our novel method of Equation (3.2) that is modulo 𝑔. For certain values of 𝑏 and 𝑔, our method can deliver better optimization 
algorithm than the traditional one.

6.2. Equation with two exponential unknowns

The 3-term Diophantine equation to be discussed is

𝑎𝑔𝑦 = 𝑏ℎ𝑥 + 𝑐.

By letting �̄� = ℎ𝑥, Equation (4.11) provides a necessary condition for the above equation to be solvable. Also a solution �̄� should 
be in the form of Equation (4.3), hence we get another necessary condition for the solutions with 𝑦 > 0

ℎ𝑥 ≡ 𝜇0 (mod 𝑔).

7. Summary

We develop a novel method to completely solve Equation (1.1). The foundation of the method is the associated residue set 
< 𝐶 > which exposes the different roles played by each parameters in solving the equation. By this method, solving the equation 
is transformed to a finite set of congruence calculations. Based on the properties of < 𝐶 >, we obtain the necessary and sufficient 
condition for the equation to be solvable, and if it’s solvable, the formal solutions are constructed explicitly. This method not only 
reveals the internal structure of the equation’s solution and yields a numerical method to solve it systematically, but also provides an 
alternative approach to the discrete logarithm problem. Furthermore, the method furnishes inspiring insights on the general 3-term 
Diophantine equations.
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