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Phylogenetic distinction of iNOS and IDO function
in mesenchymal stem cell-mediated
immunosuppression in mammalian species

J Su1, X Chen1, Y Huang1, W Li1, J Li1, K Cao1, G Cao1, L Zhang2, F Li1, AI Roberts2, H Kang1, P Yu1, G Ren2, W Ji3, Y Wang*,1

and Y Shi*,1,2

Mammalian mesenchymal stem cells (MSCs) have been shown to be strongly immunosuppressive in both animal disease
models and human clinical trials. We have reported that the key molecule mediating immunosuppression by MSCs is species
dependent: indoleamine 2,3-dioxygenase (IDO) in human and inducible nitric oxide synthase (iNOS) in mouse. In the present
study, we isolated MSCs from several mammalian species, each of a different genus, and investigated the involvement of IDO
and iNOS during MSC-mediated immunosuppression. The characterization of MSCs from different species was by adherence to
tissue culture plastic, morphology, specific marker expression, and differentiation potential. On the basis of the inducibility of
IDO and iNOS by inflammatory cytokines in MSCs, the tested mammalian species fall into two distinct groups: IDO utilizers and
iNOS utilizers. MSCs from monkey, pig, and human employ IDO to suppress immune responses, whereas MSCs from mouse, rat,
rabbit, and hamster utilize iNOS. Interestingly, based on the limited number of species tested, the iNOS-utilizing species all
belong to the phylogenetic clade, Glires. Although the evolutionary significance of this divergence is not known, we believe that
this study provides critical guidance for choosing appropriate animal models for preclinical studies of MSCs.
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Mesenchymal stem cells (MSCs) exist in almost all tissues
and can be easily obtained from the bone marrow (BM),
adipose tissues, and other tissues.1,2 MSCs were first
identified, by Friedenstein and Caplan, as spindle-shaped
cells with the capacity for self-renewal and multipotent
differentiation.3 Given the lack of universal criteria for defining
MSCs, a standard panel of surface markers is employed to
define MSCs for basic research and clinical studies. Recently,
MSCs have been found to be highly immunosuppressive. As
such, they have been used in both animal models and clinical
trials to treat various immune disorders, including graft versus
host disease (GvHD),4,5 systemic lupus erythematosus
(SLE),6 and rheumatoid arthritis.7

Notably, MSCs are not innately immunosuppressive
but acquire this important function in response to the
pro-inflammatory cytokines interferon-g or tumor necrosis
factor-a in combination with interleukin (IL)-1b. This process is
orchestrated by chemokines, adhesion molecules and immu-
nosuppressive molecules, and ultimately indoleamine
2,3-dioxygenase (IDO) in human, or inducible nitric oxide
synthase (iNOS) in mouse.8,9 Immune cells are recruited by
chemokines into the vicinity of MSCs where they are retained

by adhesion molecules, and then suppressed either by locally
high concentrations of nitric oxide (NO) or by IDO-mediated
tryptophan depletion.10,11

Although MSCs have been proven to be very effective in
inducing immunosuppression in both animal models and
human trials, their reported effectiveness varies signifi-
cantly.12–14 Given that the BM-derived MSCs from mouse
differ in their immunomodulatory mechanism from that of
humans, mouse models may be inappropriate for preclinical
experiments to investigate the therapeutic effects of MSCs.
Other animal models may better mimic human diseases, and
also be more convenient than mouse models. In fact, immune
disorder models established using rabbits, rats, pigs, and
nonhuman primates can all be ameliorated or cured by MSC
administration.15–19 The underlying mechanisms, however,
remain to be elucidated.

To explore interspecies variation in the mechanisms
of MSC-mediated immunosuppression, BM-MSCs were
prepared from seven different species, including mouse, rat,
hamster, rabbit, pig, monkey, and human. First, MSCs were
defined by their morphology, marker expression, and differ-
entiation ability. Then, their immunosuppressive capacity and
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the associated key molecules were investigated. We found
that BM-MSCs isolated from the tested species conform to the
current criteria for MSC identification; they appear fibroblast
like, have the same surface markers, and can differentiate into
adipocytes or osteoblasts. As expected, the immunosuppres-
sive molecule that exerts the immunoregulatory function of
BM-MSCs depended on the species. BM-MSCs derived from
human, monkey, and pig utilized IDO for immunosuppression,
whereas BM-MSCs from mouse, rat, hamster, and rabbit
depended on iNOS expression. Interestingly, human,
monkey, and pig are similarly positioned in the iNOS gene
cladogram, whereas mouse, rat, hamster, and rabbit are all
closely located in another branch. Therefore, our studies
reveal not only the different molecules involved in MSC-
mediated immunosuppression in distinct species but also the
potential relationships in the evolution of this difference.

Results

Derivation of BM-MSCs from different species.
BM-MSCs from different species including human, monkey,
pig, hamster, rabbit, mouse, and rat were obtained by
adherent culture of BM cells, as described in Materials and
Methods. All MSCs could be easily isolated and expanded to
large-scale culture. They showed similar fibroblast-like cell
morphology and formed homogenous colonies (Figure 1).
Notably, MSCs derived from mouse and rat had to be
passaged several times to achieve a high level of purity.
For rabbit or pig BM-MSCs, non-adherent cells had to be
removed at 24 h otherwise these cells would begin to adhere
and thus contaminate MSCs. Although sharing the same
morphology, BM-MSCs derived from human or monkey
were bigger and had lower proliferation rates than other
species. They required 7 days to achieve 90% confluence
when started at 2� 103 cells/cm2, whereas mouse and rat
BM-MSCs reached 90% confluence within only 2–3 days
under similar plating densities. Therefore, although
BM-MSCs from different species all had the similar spindle
shape, they differed in cell size and growth rate.

Identification of BM-MSCs from different species.
Because of a lack of universal criteria for defining MSCs, a

panel looking at mRNA for surface markers was employed
to exclude other cell types, and thereby identify them. At a
minimum, MSCs should express stem cell markers
like CD105, CD73, and CD29, and always be positive for
CD44 and negative for CD45.20,21 As shown in Figure 2 and
Table 1, BM-MSCs from the various species were remark-
ably consistent: human-, pig-, monkey-, rabbit-, and mouse-
derived BM-MSCs all had the same phenotype: CD105þ

CD73þCD29þCD44þCD45� ; rat- and hamster-derived
BM-MSCs were CD105�CD73þCD29þCD44þCD45� ,
differing by their lack of CD105. Therefore, according to
mRNA analyses of MSC surface markers, BM-MSCs derived

Figure 1 Morphology of BM-MSCs from different species. BM-MSCs before passage 10 from different species were isolated and maintained in DMEM complete medium
as described. Their morphology was monitored under microscope and the scale bar indicates 100mm

Figure 2 Surface markers of different species-derived BM-MSCs. All BM-MSCs
were seeded in six-well plates and collected upon confluence for subsequent RNA
extraction, RNA reverse transcription, and PCR assay. A panel of surface markers
including CD105, CD73, CD29, CD44, and CD45 was detected for identification of
BM-MSCs while GAPDH served as an input control
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from all seven species conform closely to the definition of
MSCs.

Multipotent differentiation potential of MSCs from
different species. Besides the mRNA analyses for surface
antigen expression profile, another criteria used to define
MSCs is their potential to differentiate into adipocytes and
osteoblasts. Our laboratory has established a robust
system to induce adipocyte and osteoblast differentiation
by human and mouse MSCs. Accordingly, BM-MSCs from
human, mouse, and other species were induced to undergo
adipogenesis or osteogenesis using the respective culture
conditions, with successful differentiation checked by
staining with oil red O or Alizarin Red S, respectively.
We found that BM-MSCs derived from all seven species
could successfully differentiate into adipocytes (Figure 3a) or
osteoblasts (Figure 3b), indicating that these BM-MSCs are
indeed multipotent, further confirming their identity as MSCs.

Immunosuppression of BM-MSCs from different
species. We have reported previously that the immuno-
suppressive function of MSCs is not intrinsic.10,22 Stimulation
with pro-inflammatory cytokines is necessary to endow
MSCs with the capacity to inhibit T-cell proliferation.
The resultant immunosuppression is powerful; thus, MSCs
are emerging as a promising tool in the treatment of immune
disorders.23,24 Many laboratories have documented that the
immunosuppressive effects of mouse MSCs on splenocyte
(Spl) function is similar to that of human MSCs.23,25,26

This suggests that the same phenomenon may exist in many
commonly used laboratory animals. To verify this, we tested
the immunosuppressive function of MSCs derived from other
five laboratory animals, including hamster, rabbit, rat, pig,
and monkey. For each species, BM-MSCs were cocultured
with stimulated Spls or peripheral blood mononuclear cells
(PBMCs) at 1 : 10 ratio (MSC-to-Spl (or PBMC)) for 4 days.
The proliferation of Spls or PBMCs was measured by the
carboxyfluorescein diacetate succinimidyl ester (CFSE)
dilution assay. As shown in Figure 4, MSCs from all tested
species were found to be highly immunosuppressive to Spls
or PBMCs. This suggests that it may be prudent to create
more suitable animal models besides mouse so as to verify
MSC-mediated immunosuppression in vivo.

Differential mechanisms account for similar immuno-
suppression by MSCs in distinct species. In our previous
work, we have demonstrated the mechanisms underlying
MSC-mediated immunosuppression. They are not innately
immunosuppressive, but become so after exposure to
pro-inflammatory cytokines. With sufficient cytokine stimulation,

MSCs can produce large amounts of chemokines, which
recruit immune cells into their proximity.11 The recruited
immune cells are then subject to the effects of locally high
concentrations of immunosuppressive factors whose produc-
tion is also induced by pro-inflammatory cytokines. Remark-
ably, the key molecule mediating this immunosuppression
differs according to species; in mouse, it is NO produced by
iNOS, whereas in human it is tryptophan depletion resulting
from IDO upregulation.12 Yet, most researches to date have
employed mouse models to verify the therapeutic effect of
MSCs. As the mechanisms of MSC-mediated immunosup-
pression differ between mouse and human, we propose that
other in vivo animal models, more suitable than mouse,
should be used to mimic the immunosuppressive function of
MSCs in human. To this end, we used specific inhibitors of
iNOS and IDO to test whether MSCs from other species also
employ either of these two molecules for immunosuppres-
sion. Accordingly, NG-monomethyl-L-arginine acetate salt
(L-NMMA) or 1-methyl-tryptophan (1-MT), specific inhibitors
of iNOS and IDO, respectively, were added to the MSC-Spl
(or PBMC) coculture system. Interestingly, we found that
immunosuppression by MSCs from rat, hamster, and rabbit
was reversible by L-NMMA, but not 1-MT, indicating that they
share a similar mechanism with mouse MSCs. Conversely,
monkey and pig MSCs were dependent on IDO, making
them similar to human MSCs (Figure 5a). The similar results
were obtained when we measured the NO production in the
supernatant of the MSC-Spl (or PBMC) cocultures. High level
of NO concentration was detected in mouse, rat, hamster,
and rabbit coculture system, whereas little NO was detected
in human, monkey, and pig cocultures (Figure 5b). There-
fore, our findings strongly suggest that animal models using
monkey or pig would be more appropriate for preclinical
studies of the effect of MSC-based therapy in human
patients.

Discussion

MSCs exist in almost all tissues. They can be easily isolated
from multiple tissues and expanded in large scale. Although
previous studies have revealed multiple potential effector
molecules in MSC-mediated immunosuppression, including
IDO,27 prostaglandin E2,28 transforming growth factor-b1,29

IL-10,30 heme oxygenase-1,31 hepatocyte growth factor,32

iNOS,23 IL-6,33 LIF,34 galectins, and soluble HLA-G5,25,35

these studies focused mostly on either human MSCs or
mouse MSCs. The key effector in rat- and monkey-derived
MSCs also has been investigated to some extent: rat shares
the same factor with mouse, whereas monkey is similar to
human.12,36 The mechanisms in pig, hamster, and rabbit are
not known.37,38 Therefore, the potential immunomodulatory
mechanisms of MSCs from other species deserve further
investigation, as some studies have revealed potent
therapeutic effects by MSCs in vivo using these laboratory
animals. Our study reveals that distinct mechanisms are
involved in the immunosuppressive abilities of MSCs derived
from several different species of laboratory animal, some
dependent on iNOS and others on IDO. Notably, we have
demonstrated that the key effector employed by MSCs from

Table 1 Summary of MSC marker expression by BM-MSCs derived from
different species

Human Monkey Pig Mouse Rat Hamster Rabbit

CD 105 þ þ þ þ � � þ
CD 73 þ þ þ þ þ þ þ
CD 29 þ þ þ þ þ þ þ
CD 44 þ þ þ þ þ þ þ
CD 45 � � � � � � �
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different species correlates with how closely they are related
evolutionarily.

In addition to studies of the immunomodulatory effects of
MSCs in vitro, many cases of successful MSC-based
immunotherapy in mammalian species in vivo have been

reported for conditions such as GvHD,4 liver disease,39,40

chronic spinal cord injury,41 and other diseases. Moreover,
many MSC-based treatments have been tested in various
animal models: mouse MSCs have been used to improve
liver fibrosis42 and SLE;6 rat MSCs were reported to cure

Figure 3 Adipocyte and osteoblast differentiation of BM-MSCs from different species. BM-MSCs before passage 12 were induced to differentiate into adipocytes and
osteoblasts in differential medium and detected as described in Materials and Methods, untreated group used as control. (a) Adipocyte differentiation indicated by oil red O
staining; the scale bar indicates 100mm. (b) Osteoblast differentiation indicated by Alizarin red S staining; the scale bar indicates 500mm
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Parkinson’s disease16 and liver cirrhosis;43 and rabbit MSCs
were of benefit in treating experimental retinal holes.15 Finally,
MSCs derived from monkey and pig were effective in

peripheral nerve injury repair19 and myocardial infarction
treatment,44 respectively. Accordingly, MSCs have been
proposed as a promising therapeutic strategy for disorders
that benefit from their immunomodulation. Remarkably,
MSCs from human and mouse exhibited distinct mechanisms
of suppressing T-cell proliferation. In this study, we prepared
BM-MSCs from human, monkey, pig, rabbit, hamster, rat, and
mouse. These cells showed characteristics consistent with a
series of universal standards for identifying MSCs: fibroblast-
like morphology, the unique surface marker profile,
CD105þ /-CD73þCD29þCD44þ CD45� , and the ability to
differentiate into adipocytes and osteoblasts. Experiments
using specific inhibitors demonstrated that the effector
molecules of MSC-mediated immunosuppression fall into
two categories, mainly iNOS or mainly IDO, which is
associated with the evolutionary relationships of the species.

Given that MSCs from different species employ distinct
immunoregulatory molecules, we asked whether the diver-
gent mechanisms could be ascribed to their different
phylogenetic relationships. According to Carl von Linne’s
classification system, mouse, hamster, and rat are members
of the taxonomic order rodentia. Notably, rabbit belongs to
lagomorpha, which was formerly classified into rodentia.
By contrast, human and monkey are primates, whereas pig
belongs to artiodactyla. Recently, Song et al.45 verified this
using phylogenomics and the multispecies coalescent model.
An iNOS phylogenetic tree was constructed on the basis of
amino-acid sequence of commonly used laboratory animals,
including monkey, orangutan, pig, horse, cow, dog, mouse,
rat, hamster, and rabbit (Figure 6) using the neighbor-joining
method.46 From this iNOS phyletic tree, we found that current
popular laboratory animals fall into one of five orders:
primates, artiodactyla, carnivora, lagomorpha, or rodenti. All
seven of the species we examined are located at a
homologous clade that fits with the evolutionary genetics.
This result strongly supports our hypothesis that species with
the same mechanism of MSC-meditated immunosuppression
are more closely related in evolutionary genetics.

As the use of MSC-based therapy for the treatment of
disease is becoming generally accepted by both investigators
and physicians, it is urgent to decipher which are the most
suitable animal models for studying the clinical application of
MSCs. Of course, we cannot determine empirically the
mechanisms for each and every species of laboratory animal,
but of the seven species examined here, we found that the
mechanisms of MSC-mediated immunosuppression can be
divided into two groups, one dependent on IDO and the other
relying on iNOS. These two groupings seem to be similarly
defined according to relationships in iNOS evolution,47,48

based on our analysis of an iNOS phyletic tree. Therefore, the
mechanism of MSC-mediated immunosuppression employed
by a particular animal species can be estimated by its
evolutionary relationship to other well-defined species.

Figure 4 BM-MSCs isolated from different species have the same
immunosuppression effects on Spls or PBMCs. PBMCs or Spls stained with CFSE
were cocultured with BM-MSCs (2.0� 104 cells per well in 96-well plate) at a ratio of
1 : 10 (MSC: T cell) for 96 h, in the presence of conconavalin A (Con A) (1 mg/ml; for
rat, rabbit, hamster, and pig), or anti-CD3 (1mg/ml; for human, monkey, and
mouse). CFSE fluorescence intensity reduction of PBMCs or Spls was detected by
flow cytometry. Data are representative of three independent experiments

Figure 5 BM-MSCs isolated from different species have different immunosuppression mechanism. (a) The immunosuppressive abilities of MSCs derived from different
species. CFSE-stained PBMCs or Spls isolated from rat, rabbit, hamster, or pig were stimulated with conconavalin A (Con A) (1 mg/ml), or from human, monkey, or mouse
were stimulated with anti-CD3 (1 mg/ml) in the presence of corresponding BM-MSCs (2.0� 104 cells per well in 96-well plate) at a ratio of 1 : 10 (MSC: T cell) for 96 h. iNOS
inhibitor L-NMMA (1 mM) or IDO inhibitor 1-MT (0.5 mM) were added into the coculture system. CFSE fluorescence intensity reduction of PBMCs or Spls was detected by flow
cytometry. Data are representative of three independent experiments. (b) NO production in the MSC and activated Spls/PBMCs cocultures of different species was determined
by Griess reagent
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Utilization of the most appropriate animal models to predict
the effects of MSC-based therapy in humans will be aided
by this knowledge and lead to better and safer clinical use
of MSCs.

Materials and Methods
Animals. BALB/c, C57BL/6 mice (Mus musculus), and Sprague–Dawley rats
(Rattus norvegicus) were obtained from the Shanghai Laboratory Animal Center of
the Chinese Academy of Sciences, Shanghai, China. New Zealand rabbits
(Oryctolagus cuniculus) were from the Laboratory Animal Center of Chedun,
Shanghai, China. Syrian hamsters (Mesocricetus auratus) were purchased from
Vital River, Beijing, China. Rhesus macaques (Macaca mulatta) were from
Kunming Institute of Zoology. All animals were maintained in the vivarium of
Shanghai Jiao Tong University School of Medicine. The protocols used for animal
experiments were approved by the Institutional Animal Care and Use Committee
of the Institute of Health Sciences, Shanghai Institutes for Biological Sciences of
the Chinese Academy of Sciences, and Shanghai Jiao Tong University School of
Medicine.

Reagents. CFSE, indomethacin, dexamethasone, insulin, 3-isobutyl-1-
methylxanthine, L-ascorbic acids, b-glycerophosphate, alizarin red, oil red O,
formaldehyde solution, L-NMMA, 1-MT, and conconavalin A were purchased from

Sigma-Aldrich (St. Louis, MO, USA). Purified antibodies against human CD3 and
mouse CD3 were purchased from eBioscience (La Jolla, CA, USA). Anti-monkey
CD3 antibody was purchased from Abcam (Cambridge, MA, USA). Ficoll was
purchased from GE Healthcare (Piscataway, NJ, USA). EZ-Sep Mouse 1X was
purchased from Dakota Biotechnology (Shenzhen, China). Heat-inactivated fetal
bovine serum (FBS), DMEM low-glucose medium, RPMI-1640 medium, trypsin-
EDTA, basic fibroblast growth factor (bFGF), glutamax, and penicillin-streptomycin
solution were purchased from Invitrogen (Carlsbad, CA, USA).

Cells. Human MSCs were generated from human BM according to the approved
protocol by the Institutional Review Board of Robert Wood Johnson Medical
School. Human BM aspirates were diluted with equal parts RPMI-1640, overlaid
on Ficoll, and centrifuged at 400� g for 30 min at 18–20 1C. Interface cells were
collected, washed twice with RPMI-1640, and the cell pellet was resuspended in
DMEM complete medium (DMEM low-glucose medium supplemented with
10% heat-inactivated FBS, 2 mM glutamax, 100 U/ml penicillin, and 100 mg/ml
streptomycin). Cells were cultured at 37 1C in a humidified environment
containing 5% CO2. After 48 h, non-adherent cells were washed away and supplied
with fresh DMEM complete medium supplemented with bFGF (5 ng/ml), with medium
renewal every 3 days. Cells were collected and cryopreserved after confluence.

Monkey MSCs were obtained from rhesus monkeys BM according to the protocol
by the Institutional Animal Care and Use Committee at Kunming Zoology Institute.
To obtain BM from monkey, or pig, the animal was first anesthetized using amine
(30–50 mg/kg), and then 2–5 ml of BM was aspirated using a 12-gauge needle and
10 ml heparinized syringe. For monkey and pig MSCs, non-adherent cells were
removed after 24 h or 48 h, respectively. Cells were then purified and cultured, as for
human MSCs (above). Cells were passaged using 0.25% trypsin-EDTA after
reaching about 80% confluence.

BM from mouse, rat, and hamster was obtained from adult animals killed by
cervical dislocation and from rabbits killed by air embolism. BM was flushed from the
tibia and femur bones with 3� penicillin/streptomycin in phosphate-buffered saline
(PBS). Unpurified cells were cultured without disturbance for 24 h, then washed to
remove non-adherent cells, and supplied with fresh DMEM complete medium
supplemented with bFGF (5 ng/ml), with medium renewal every 3 days.

PBMCs from human, monkey, and pig were purified from fresh whole blood using
ficoll density gradient centrifugation.

Mouse, rat, hamster, and rabbit Spls were obtained using EZ-Sep mouse density
gradient centrifugation.

PCR reaction. The mRNA expression of specific cell surface markers was
detected by reverse transcription-polymerase chain using specific primers. The
primer sequences used for GAPDH, b-actin, CD105, CD73, CD29, CD44, and
CD45 are listed (Table 2). Briefly, total RNA was extracted by RNAprep
Pure Cell/Bacteria Kit (Tiangen Biotech, Beijing, China). First-strand cDNA
synthesis was performed by 1st cDNA Synthesis Kit (Tiangen Biotech). PCR was
amplified by Takara rTaq (TaKaRa Biotech, Dalian, China). Target gene size
was judged by 100-bp DNA ladder on agarose gel electrophoresis (TaKaRa
Biotech).

Table 2 Primers for MSCs marker detection by PCR

Primer Forward primer (50–30) Reverse primer (50–30) Primer Forward primer (50–30) Reverse primer (50–30)

Human GAPDH GAAGGTGAAGGTCGGAGT GAAGATGGTGATGGGATTTC Mouse CD29 TGGTCAGCAACGCATATCT TTGTCCATCATTGGGTAAAAC
Human CD105 ACGCTCCCTCTGGCTGTTG GCCCTTCGAGACCTGGCTAG Mouse CD44 CGTCCAACACCTCCCACTAT AGCCGCTGCTGACATCGT
Human CD73 CAGCGAGGACTCCAGCAAG TATCCAACGATTCCCACAACT Mouse CD45 GTTTTCGCTACATGACTGCACA AGGTTGTCCAACTGACATCTTTC
Human CD29 GCATCCCTGAAAGTCCCAAG CACTGTCCGCAGACGCACT Rat GAPDH GCAAGTTCAACGGCACAG CGCCAGTAGACTCCACGACA
Human CD44 GTGATGGCACCCGCTATG ACTGTCTTCGTCTGGGATGG Rat CD105 CGGTTGTGATCTACAGCGTG CCCGAGTCTCAGTGCCATTT
Human CD45 AACAACCACTCTGAGCCCTTCT CCCCTGGTGGCACATCTAATA Rat CD73 GCAGCCATCAAAGCAGACAT AGCGGAGCCATTCAGGTAGA
Monkey GAPDH ACTTCAACAGCGACACCCACTC CCCTGTTGCTGTAGCCAAATTC Rat CD29 GCCAACCAAGTGACATAGAGA TCAATAGGGTAGTCTTCAGCC
Monkey CD105 GTGGCATGGAAGTGACGG TTGGGACGCAGGGCTAT Rat CD44 TGGCACAGCAGCAGATC CTGCACAGATAGCGTTGG
Monkey CD73 CAGCGAGGACTCCAGCAAG ATGGCATCGTAGCGTAGGG Rat CD45 AACAACCGACGATGGACTGG GCCGTGAGTGTGGTGAGGTC
Monkey CD29 GCACCAGCCCATTTAGC GCCACCAAGTTTCCCATC Rabbit GAPDH TTTGTGATGGGCGTGAACC CCCTCCACAATGCCGAAGT
Monkey CD44 TCGCTACAGCATCTCTCGGAC CATACTGGGAGGTGTTGGACG Rabbit CD105 GCCAGCGTTGCGTCCTT TGTTCTTCGGCGGGGTG
Monkey CD45 GGATCTCAGCAAACGGGAATA AGCTTTTCTGTGGCACCAAGT Rabbit CD73 CTCCTTTCCTCTCAAATCCAG GTCCACGCCCTTCACTTTC
Pig GAPDH AAGGTCGGAGTGAACGGATTT CATTTGATGTTGGCGGGAT Rabbit CD29 AGAATGTCACCAACCGTAGCA CACAAAGGAGCCAAACCCA
Pig CD105 AGTGCGACCTACAGCCTGTG GCCAAGTGGAGTGGGATTTC Rabbit CD44 GGATGGCACCCGCTACA GGAGACCCACTGCTCACG
Pig CD73 TGTTGGTAATGAAGTCGTGG GGAGGTGACTATGAATGGGTA Rabbit CD45 TACTCTGCCTCCCGTTG GCTGAGTGTCTGCGTGTC
Pig CD29 GATGAATGAAATGAGGAGGAT CCAGCAAAGTGAAACCCA Hamster b-actin CCCATCTATGAGGGCTACGC CAGGAAGGAAGGCTGGAAAA
Pig CD44 CCACCTTCCGACTACTACGC ATTGCCTGGGTTGTGCTTG Hamster CD105 ACCGCACAGTGACCGTAAATG AAGGATGCTACAATGCTGGCG
Pig CD45 AACAAGGTGGATGTCTATGGCTA AGAAGGTTCACTGGGTGGGTC Hamster CD73 ATCGTGGTGGGAGGACA GCTGTTCAGAAGAATGGGAT
Mouse GAPDH TTCAATGGCACAGTCAAGGC TCACCCCATTTGATGTTAGCG Hamster CD29 CTACTCCATGAAAGATGATCTGG GCAAAGTGAAACCCAGCAT
Mouse CD105 TTGAATGGCAACCACGAGC GAGCCTGACGGGAAACTGAT Hamster CD44 GGCGACTAGATTCCTCGGT GTATCGTAGTGGGAGGTGTTG
Mouse CD73 GGCTGCTTCTCGCACTGA CTGGTACTGGTCTCCGGC Hamster CD45 GTTACGTTGACATCCTTCCCTAT GAAAGCATTAACCCTCCTTCG

Figure 6 iNOS-based phylogenetic tree. The iNOS-coding region of amino-acid
sequences of different species were used for evolutionary relationship alignment by
neighbor-joining method. Numbers at nodes indicate the bootstrap support values.
Domestic pig: Sus scrofa domesticus; bovine: Bos taurus; horse: Equus caballus;
domestic dog: Canis lupus; rhesus macaques: Macaca mulatta; human: Homo
sapiens; chimpanzee: Pan troglodytes; New Zealand rabbits: Oryctolagus
cuniculus; Syrian hamsters: Mesocricetus auratus; BALB/c, C57BL/6 mice: Mus
musculus; Sprague–Dawley rats: Rattus norvegicus
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Adipogenesis and osteogenesis. Adipocyte differentiation was achieved
by culturing BM-MSCs to 90% confluence in adipocyte differentiation medium
consisting of 0.5 mM 3-isobutyl-1-methylxanthine, 60 mM indomethacin, 10 nM
dexamethasone,10mg/ml insulin, and 2% FBS in DMEM complete medium,
for 1–2 weeks, with medium renewal every 3 days. Oil red O staining solution was
used to reveal lipid accumulations.

For osteoblast differentiation, BM-MSCs at 100% confluence were maintained in
osteoblast differentiation medium (10 nM dexamethasone, 100mM L-ascorbic acids,
10 mM b-glycerophosphate I, and 2% FBS in DMEM complete medium ) for 3–4 weeks.
Resulting calcium deposition was stained using 2% Alizarin Red S solution.

Proliferation assay. The proliferation of Spls or PBMCs was detected using
CFSE staining and flow cytometry. Freshly isolated Spls or PBMCs (o2� 107

cells) in 1 ml of PBS containing 0.1% bovine serum albumin were stained with
5mM CFSE for 10 min in a 37 1C water bath, with vortexing every 2 min. The
reaction was stopped by adding 0.5 ml cold FBS. After 5 min, cells were washed
with 5% FBS in PBS. Cells were then cocultured with MSCs at an MSC-to-Spl
(or PBMC) ratio of 1 : 10. After 4 days, cells were collected and the remaining
cell-associated CFSE fluorescence was analyzed by flow cytometry.

NO detection. The supernatant of MSCs and activated Spls/PBMCs
cocultures was collected and stored at � 20 1C. NO concentration was assessed
by determining the NO3

� and NO2
� levels using Griess reagent (modified;

Sigma-Aldrich). NaNO2 served as a standard.
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