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Abstract

Background: Chromatin immunoprecipitation followed by next-generation sequencing is a genome-wide analysis
technique that can be used to detect various epigenetic phenomena such as, transcription factor binding sites and histone
modifications. Histone modification profiles can be either punctate or diffuse which makes it difficult to distinguish regions
of enrichment from background noise. With the discovery of histone marks having a wide variety of enrichment patterns,
there is an urgent need for analysis methods that are robust to various data characteristics and capable of detecting a broad
range of enrichment patterns.

Results: To address these challenges we propose WaveSeq, a novel data-driven method of detecting regions of significant
enrichment in ChIP-Seq data. Our approach utilizes the wavelet transform, is free of distributional assumptions and is robust
to diverse data characteristics such as low signal-to-noise ratios and broad enrichment patterns. Using publicly available
datasets we showed that WaveSeq compares favorably with other published methods, exhibiting high sensitivity and
precision for both punctate and diffuse enrichment regions even in the absence of a control data set. The application of our
algorithm to a complex histone modification data set helped make novel functional discoveries which further underlined its
utility in such an experimental setup.

Conclusions: WaveSeq is a highly sensitive method capable of accurate identification of enriched regions in a broad range
of data sets. WaveSeq can detect both narrow and broad peaks with a high degree of accuracy even in low signal-to-noise
ratio data sets. WaveSeq is also suited for application in complex experimental scenarios, helping make biologically relevant
functional discoveries.
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Background

Chromatin immunoprecipitation followed by massively parallel

sequencing (ChIP-Seq) is a powerful experimental framework that

enables genome-wide detection of epigenetic phenomena such as

histone modifications. Histone modification profiles have diverse

characteristics ranging from sharp well-defined peaks surrounding

transcription start sites of genes to broad diffuse marks on large

genomic regions. This inherent variability makes it difficult to

distinguish regions of true enrichment from background noise.

There have been several attempts at solving the problem of

finding statistically enriched peaks in ChIP-Seq data. One class of

methods focuses on transcription factor ChIP-Seq experiments

and uses various features of the data to predict binding regions.

For instance, FindPeaks [1] adopts a height threshold together

with a simulated random background to find significant peaks,

while MACS [2] uses a local Poisson p-value to detect chromatin

enrichments. Most of these methods have comparable sensitivity in

detecting transcription factor binding sites (TFBSs) and are often

used in conjunction with motif-finding algorithms.

While the success of the above set of methods in finding

transcription factor binding patterns from ChIP-Seq data is

undeniable, histone modification data pose new challenges.

Utilization of local features to detect histone modification peaks

is difficult due to the relative diffuseness of enrichment patterns.

Also, common assumptions of such analyses may not hold in this

case. For instance, TFBSs cover a small proportion of the genome,

but certain histone marks can be present on much larger genomic

fractions. A combination of such factors has led to a relative

paucity of methods to analyze histone modification data. A

commonly used tool, SICER [3], fits a Poisson distribution before

employing kernel density estimation to cluster enriched regions,

while a recent study employed a negative binomial regression

framework and incorporated genomic covariates to improve

ChIP-Seq peak detection [4]. However, with the discovery of an

ever-increasing number of histone marks that encompass a wide

variety of enrichment patterns, there is a continuing need for

improved methods robust to a range of data characteristics.

Wavelets belong to a class of spectral analysis techniques that

can extract meaningful information from data by decomposing it

into its underlying patterns. The versatility of wavelets has seen
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them being used in a wide variety of disciplines ranging from

image processing to medical diagnostics. Recently, we applied this

technique to the analysis of comparative genomics hybridization

data [5], utilizing the wavelet property of global pattern

quantification to find evolutionary relationships between copy-

number profiles in human and bovine populations. However,

wavelets also have excellent spatial resolution and comparing data

sets one can not only find differences in frequencies of global

patterns but also the precise locations of such variations. This

property is highly desirable for genome-wide analyses and is the

primary motivation for this work.

We present WaveSeq, a novel data-driven method of ChIP-Seq

analysis that utilizes the wavelet power spectrum to detect

statistically significant peaks in ChIP-Seq data having punctate

or broad enrichment patterns. WaveSeq employs Monte Carlo

sampling in the wavelet space to predict regions of true enrichment

in ChIP-Seq data. In the absence of a control, a randomized

algorithm constrained by the length distribution of putative peaks

is used to estimate the background read distribution and predict

regions of significant enrichment. The non-parametric modeling

approach ensures that WaveSeq is robust to variations in data

characteristics (e.g. genome coverage) and produces accurate peak

calls for a wide variety of data types.

WaveSeq was applied to ChIP-Seq data of Growth-associated

binding protein (GABP), Neuron restrictive silencing factor

(NRSF) and trimethylations of histone H3 at lysine 4

(H3K4me3), lysine 27 (H3K27me3) and lysine 36 (H3K36me3),

which were chosen to encompass a wide variety of enrichment

patterns and signal-to-noise ratios (SNRs). We demonstrated that

WaveSeq peak calls have high sensitivity and precision for narrow

and broad regions over a range of SNRs even in the absence of

a control data set. We further exhibited the utility of our approach

in a complex experimental setting by analyzing H3K4me3 data

from genetically similar chicken lines that exhibit divergent

responses to a cancer-causing virus. Differentially marked regions

detected by WaveSeq revealed functional differences between the

lines that could contribute to differences in disease prognosis.

Thus, we conclude that WaveSeq is a highly sensitive algorithm

for ChIP-Seq analysis, with applicability for a diverse range of

enrichment patterns.

Results

Wavelets for ChIP-Seq Analysis
The wavelet transform has great utility in data compression and

pattern finding, the latter involving the choice of a suitable

‘mother’ wavelet y to best capture underlying patterns in the data.

An example of a mother wavelet is the Morlet wavelet, defined as

the product of a Gaussian envelope and a cosine wave:

y0(t)~p{1=4e{t2=2 cosv0t

where, t is the genomic location and v0 is the non-dimensional

frequency (Figure 1A). The wavelet transform may be either

continuous or discrete – the continuous wavelet transform (CWT)

is highly redundant and resistant to data loss while the discrete

transform is less computationally intensive but more prone to

information loss. The peaks observed in ChIP-Seq data are

relatively smooth, making it better suited to the application of the

CWT.

The CWT consists of the convolution of a translated and scaled

mother wavelet y0(t) to the signal xt at a predefined step-size (d) as
follows:

Wt(s)~
XT{1

t0~0

xt0y � (t0{t)d

s

� �

where, (*) indicates the complex conjugate, s is the wavelet scale

and t’ denotes translation along the genome. The wavelet scale s is

representative of the size of the scaled wavelet and the

mathematical formulation of the transform implies an inverse

relationship, i.e. the higher the scale, the smaller the scaled

wavelet. The wavelet decomposition produces a series of ‘wavelet

coefficients’, real numbers that indicate the correlation between

the mother wavelet and the data, which may be either positive or

negative. This is also a multi-scale decomposition, i.e. the

coefficients at different scales represent the correlation of scaled

versions of the wavelet to the signal. Therefore, smaller localized

patterns are likely to be captured by higher scales of the transform

and vice-versa.

A natural way of quantifying the wavelet decomposition is the

wavelet power spectrum, defined as the square of the wavelet

coefficients, and synonymous with the ‘energy density’. A contour

plot of the wavelet power spectrum for ChIP-Seq data revealed

hot-spots that correlated with peaks (Figures 1B, C). This

suggested that wavelets could be used to detect enrichment

regions in this type of data and inspired us to use this approach for

ChIP-Seq analysis.

WaveSeq Overview
We introduce WaveSeq, a novel method of ChIP-Seq peak

detection that utilizes the wavelet power spectrum (Figure 1D).

Sequence reads are first ‘shifted’ to represent the center of DNA

fragments obtained from the ChIP experiment. The genome is

divided into non-overlapping windows and read counts for each

window calculated. The summary read counts are the primary

input data format used by WaveSeq. Typical analyses can be of

two types: (i) single sample experiment – without control, and (ii)

two-sample experiment – with matched control samples.

For both analyses, we first employ a Monte Carlo sampling

technique for modeling the data [6]. N random samples are drawn

from the ChIP-Seq data and the wavelet power calculated for each

instance. A slice of the power spectrum at a fixed point of each

random sample is used to generate an empirical distribution of

wavelet powers for each scale. This distribution enables us to

obtain a suitable significance threshold which is applied to the

wavelet transform of read count profiles to detect windows having

significant enrichment. Our thresholding procedure is, therefore,

dependent on the wavelet fit to the data at a particular position and

distinct from a simple read-count cutoff.

To further account for broad peaks seen in histone modification

data, our algorithm implements a ‘gap’ parameter, g. We define

a ‘gap’ as a window having a non-significant wavelet power (non-

significant window); for example, if g is set to two, peaks separated

by at most two non-significant windows are aggregated together.

This parameter is necessary for two reasons: (i) chromatin

enrichments, especially broad marks, such as, H3K36me3 and

H3K27me3, can be discontinuous and (ii) wavelets are very

sensitive to boundary events and local fluctuations. A strong

enrichment region interspersed with areas of low read counts

could, therefore, result in multiple peak calls and the gap

parameter of WaveSeq helps to reduce the effect of this scenario.

This parameter is similar in principle to that used in SICER, but

with one major distinction. SICER also imposes an upper limit on

allowable non-significant windows within a significant peak. While

this results in an elegant closed form expression for estimating

ChIP-seq and Wavelets
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statistical significance from the score distribution, in practice, this

results in smaller peak lengths for the same value of g (Figure S1).

One-sample experiment. The estimation of statistical sig-

nificance is crucial to ChIP-Seq analysis approaches to filter the

results of genome-wide studies, particularly in the absence of

a control. For a single-sample experiment, WaveSeq utilizes the

length distribution of putative peaks to estimate the likelihood of

observing a peak with a given number of reads.

A large number of peaks, P, are sampled with replacement from

the length distribution of putative peaks, and their positions on the

genome randomized. The number of reads within each random-

ized peak is counted, generating the empirical distribution, F(R),

for the number of peaks having a given read count R. The

probability of observing a peak with read count r is:

Pr½# reads in a peak~r�~F (r)

P

and the p-value of observing this peak is,

p(r)~
(# peaks with total reads§r)

P
~

1

P

X?
R~r

F(r)

The p-values are subsequently corrected for multiple-testing

using the Benjamini-Hochberg FDR procedure [7].

Most ChIP-Seq experiments produce sparse enrichment regions

covering a small fraction of the genome and therefore, only few of

the randomized peak locations would be likely to overlap

significantly enriched regions. However, this is not always the

case – histone modifications such as, H3K27me3, mark large

regions for silencing and could occupy a significantly greater

genomic fraction. In the latter case, a higher proportion of

randomized peaks would potentially overlap ‘true’ enrichment

regions – but this is a fair reflection of a relatively low SNR data

set where the boundaries between true signal and background are

blurred.

Thus, it is important to note that in predicting areas of true

enrichment in ChIP-Seq data, we do not make any assumptions

Figure 1. WaveSeq utilizes the continuous wavelet power spectrum to detect peaks in ChIP-Seq data. (a) A scaled representation of the
morlet wavelet. (b & c) H3K4me3 data and a contour plot of the associated wavelet power spectrum shows hot spots that correlate with ChIP
enrichments. The ChIP-Seq data represents the 15,756,800–15,758,200 bp region of the mouse chromosome 1 from the MEF H3K4me3 data set. (d) A
schematic of the WaveSeq analysis pipeline. The workflow consists of two major modules: (i) the Monte Carlo background estimation step and (ii)
significance estimation from randomized algorithm using the peak length distribution (one-sample experiment) or an exact binomial test (two-
sample experiment).
doi:10.1371/journal.pone.0045486.g001
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about the read distribution, instead relying on a sampling

technique constrained by the peak length distribution to predict

enriched regions. In addition, the association of statistical

significance of a peak with its read count provides a natural and

interpretable criterion for thresholding genome-wide analyses

where the number of reads mapping to a region is often indicative

of the presence of a true biological signal.

Two-sample experiment. If a ChIP-Seq experiment has

matched controls, WaveSeq uses the binomial distribution to

compare read counts between normalized test and control

samples. For each putative peak, reads in the corresponding

region of the control data (C) are counted and compared to the test

sample (T) using a two-sided exact binomial test. A putative peak

can be considered to be a Bernoulli experiment with t= (C + T)

trials wherein the number of reads in the test sample T is the

number of successes. The proportion of successes, p =T/(C+T) and
failures, q=1– p. In this case, the probability of observing at least

T successes in t trials under the null hypothesis, H0: p=0.5, is

given by the expression,

Pr½# of successes in t trials§T �~
Xt

i~T

t

i

� �
pi(1{p)t{i

The p-values for the list of putative peaks are subsequently

corrected for multiple testing as above [7].

Choice of parameters. The key parameters controlling

WaveSeq performance are the choice of mother wavelet, size of

the sample for background estimation, p-value for determining

wavelet power thresholds (pthres) and gap size g. We have tested

several wavelets on ChIP-Seq data and found that the morlet

wavelet is well suited for detecting punctate and broad peaks less

than 10 kb as observed in TFBS, H3K4me3 and H3K36me3 data

while the Mexican hat wavelet appears more suitable for calling

very broad marks (.10 kb) seen in H3K27me3. The choice of

sample size for the Monte Carlo background estimation procedure

can impact sensitivity and running time. However, the effects of

the above factors appear to be minimized at a sample size of 212.

The user has further control over the peak calling behaviour of

WaveSeq with the parameters pthres and g, larger values of both

resulting in greater peaks lengths called by WaveSeq. There is

a subtle effect of adjusting pthres as this effectively lowers the

stringency in determining the wavelet power thresholds for the

peak-calling step. A strong, localized signal can be identified with

a lower value of this parameter (e.g. pthres=0.2), while the detection

of broader peaks may require a looser criterion (e.g. pthres=0.4).

The choice of a suitable gap size is dependent upon multiple

factors including histone mark characteristics and sequencing

depth. The read coverage fractions for different histone marks

appear to saturate with increasing gap sizes (Figure S2). However,

the saturation rate is highly variable between marks - H3K4me3

shows little change with increasing gap sizes, H3K27me3 exhibits

a gradual increase while the pattern for H3K36me3 is in-

termediate between the two, in keeping with the intermediate

characteristics of the mark. The above comparison shows that

a gap size of 0 to 400 bp (0–2 200 bp windows) would be suitable

for the H3K4me3 data set while larger gap sizes may be more

appropriate for the broader histone marks e.g. g=5 for

H3K36me3 and g=10 for H3K27me3. A similar comparison of

read coverage saturation rates can, therefore, help the user choose

a gap size appropriate for a particular data set.

Comparison with other Methods using Published Data
Recent studies have compared the performance of several

published ChIP-Seq peak calling algorithms [8,9]. From the list of

methods tested in the above studies, we chose five commonly used

tools: FindPeaks, MACS and SiSSRs [10], which were developed

primarily for detecting transcription factor binding sites (TF-

methods) along with SICER and RSEG [11] which were

specifically aimed at chromatin enrichment data (CH-methods).

A variety of ChIP-Seq data sets were selected to compare the

performance of WaveSeq with the above methods including

GABP, NRSF [12], H3K4me3, H3K27me3, H3K36me3 [13]

and a synthetic spike-in data set [14].

WaveSeq has high sensitivity. Several GABP and NRSF

binding sites have been validated with qPCR [9] allowing us to

compare the sensitivities of the TF-methods with that of WaveSeq

using the corresponding ChIP-Seq data. The peaks called by each

TF-method were ranked by significance scores output by the

method and tested for overlap with the validated sites. Sub-

sequently, we plotted the peak rank against the fraction of

validated sites detected by each algorithm (Figures 2A, B).

WaveSeq had the highest sensitivity among tested methods for

both data sets. In the case of GABP, WaveSeq had the best

performance closely followed by MACS which had slightly lower

recall. SiSSRs came in third but still significantly outperformed

FindPeaks which had low sensitivity for this data set. On the other

hand, all the methods had similar performance on the NRSF data.

WaveSeq showed marginally higher sensitivity with MACS,

FindPeaks and SiSSRs performing comparably. A further

comparison of peak lengths showed that MACS, FindPeaks and

WaveSeq had similar peak length distributions while a majority of

SiSSRs peaks were very small (Figure S3).

WaveSeq has good precision. It is difficult to evaluate the

specificity of ChIP-Seq peak-calling algorithms due to the

unavailability of adequate ‘true-negative’ binding sites for system-

atic analysis. However, one can estimate the false positive rates

using synthetic data sets which contain simulated binding events.

For this analysis we utilized a published synthetic data set

generated from human input control data that was ‘spiked’ with

simulated reads at fixed locations [14]. We applied WaveSeq and

the TF-methods to this data set and plotted the proportion of

recovered peaks (recall) against the fraction of true positives

(precision) (Figure 2C).

MACS had the best combination of precision (0.724) and recall

(0.799), closely followed by WaveSeq which had slightly better

precision (0.728) but lower recall (0.716). However, FindPeaks had

a very high number of false positives (precision= 0.06) in this test

while SiSSRs failed to detect any peaks.

WaveSeq performs well even without a control data

set. The data from a matched input control sample is

considered to improve the power of a ChIP-Seq experiment by

reducing systematic biases [15]. However, matching input controls

are often not available and negative controls such as IgG that bind

in a non-specific manner, can give rise to additional sources of

error. Moreover, it is not clear if the use of input alone can offset

the effect of various confounding factors such as mappability and

G/C content. Therefore, it is important to assess the performance

of ChIP-Seq peak callers in the absence of a matched control.

We compared the sensitivity of TF-methods and WaveSeq using

the GABP and NRSF data sets as above, but without the use of

control data (Figures 2D, E). WaveSeq again had high sensitivity

for both data sets, almost identical to FindPeaks which performed

much better on these data sets without control. SiSSRs and MACS

had mixed results; the former had similar performance to

FindPeaks and WaveSeq for the NRSF data set, but lower

ChIP-seq and Wavelets

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e45486



sensitivity for the GABP data, while the situation was reversed for

MACS. Thus, WaveSeq was shown to have high accuracy for

punctate peaks and was the only method that performed

consistently well for the tested data sets.

WaveSeq improves detection of broad histone

modification peaks. A lack of adequate validated sites for

histone modification data makes it difficult to assess the

performance of analysis methods on these data sets. However,

we can argue that if multiple methods of analysis based on

different detection algorithms predicted significant enrichment in

a particular region, it was more likely that a true region of

enrichment existed in that region. Indeed, studies have shown that

a smaller number of peaks generated by certain methods were

largely contained within larger peak lists called by other methods,

indicating a common set of peaks detected by most algorithms [9].

With the above intuition we ran the CH-methods on the MEF

histone modification data sets. We included MACS in the latter as

it has been used for broad peak calling [16], even though it was

originally developed for the analysis of transcription factor ChIP-

Seq data. The top peaks (15000 for H3K4me3 and 20000 for

H3K36me3 and H3K27me3) called by each of the above

programs were compared and regions detected by at least two

peak-callers were defined as putative ‘true positives’. When

calculating putative true positive peaks, we did not enforce any

restrictions on the overlap, i.e. if there was even a single bp overlap

between two peak calls, these regions were merged together

(union) into a putative positive peak. This is because peak-calling

algorithms will sometimes call only a part of a putative histone

modification enrichment as a peak, and merging adjacent peak-

calls is likely to produce a better reflection of enrichment patterns.

The above procedure yielded 8592, 7522 and 5463 peaks for

the H3K4me3, H3K36me3 and H3K27me3 data sets, respec-

tively. These peaks were compared with the peak lists from all

methods (SICER, RSEG, MACS and WaveSeq) and relative

performance was assessed by comparing the fraction of recovered

peaks against peak ranks (Figures 3A–C). For punctate H3K4me3

data, all methods apart from RSEG performed well, with near-

identical recall rates. WaveSeq had the best sensitivity on the

H3K36me3 and H3K27me3 data sets with SICER coming in

second. MACS showed lower recall rates for these two data sets

while RSEG detected the top peaks with good accuracy but was

unable to detect any peaks in chromosomes 10–19. A further

analysis of precision (Figure 3D) showed that WaveSeq had the

highest performance in all three data sets.

Pair-wise comparisons between peaks detected by WaveSeq and

those called by SICER and MACS showed a high degree of

overlap (98–100%) across all the data sets. In the case of RSEG

the overlap was lower (20–68%) but closer examination revealed

that a majority of regions not called by WaveSeq, particularly in

the H3K4me3 and H3K36me3 data sets, had low average read

Figure 2. WaveSeq has high sensitivity and precision for punctate data sets. (a & b) Plots of peak ranks against the fraction of validated
sites detected by WaveSeq, FindPeaks, MACS and SiSSRs for the (a) GABP and (b) NRSF data sets. WaveSeq has the highest sensitivity for the GABP
data set closely followed by MACS, while all methods performed comparably for the NRSF data. (c) A plot of the fraction of true positives (Precision)
against the fraction of recovered peaks (recall) for the synthetic spike-in data set shows MACS has the best combination of the two, closely followed
by WaveSeq. FindPeaks calls a large number of false positives while SiSSRs fails to detect any peaks. (d & e) Sensitivity plots for the (d) GABP and (e)
NRSF data sets shows that WaveSeq has high sensitivity for these data sets even in the absence of control. FindPeaks performs much better on these
data sets without control and has almost identical sensitivity as WaveSeq. SiSSRs has mixed results with low sensitivity for GABP and high for NRSF
while the reverse is true of MACS.
doi:10.1371/journal.pone.0045486.g002
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counts and were possibly false positives (Figure S4). WaveSeq also

called larger peaks on average compared to SICER, particularly in

the H3K27me3 and H3K4me3 data sets (Figure S1). However,

RSEG detected very broad regions in both H3K27me3 and

H3K4me3 data. Since this algorithm was developed with the

express purpose of detecting dispersed chromatin domains, the

above behaviour is expected, although very long peaks in punctate

ChIP-Seq data may not be desirable. Also, somewhat surprisingly,

WaveSeq and SICER had greater average peak lengths compared

to RSEG for the H3K36me3 data. MACS, on the other hand,

detected very small peaks in all the data sets, proving its general

unsuitability for broad histone marks.

Thus, WaveSeq once again showed the highest sensitivity of all

tested methods across a variety of histone modification data sets.

While there was little to choose between the different algorithms

for the punctate high SNR H3K4me3 data, WaveSeq out-

performed the other tested methods in the analysis of broad

enrichment regions characteristic of broad marks such as

H3K27me3 and H3K36me3.

Analysis of Complex Histone Modification Data
The bursa of Fabricius is a specialized immune organ that is the

site of haematopoiesis and B cell development in chickens. This

tissue is one of the first targets of Marek’s disease virus (MDV),

Figure 3. WaveSeq improves detection of histone modification peaks. (a, b & c) Plots of peak ranks against the fraction of putative ‘true
positive’ sites detected by WaveSeq, SICER, RSEG and MACS for the (a) H3K4me3, (b) H3K36me3 and (c) H3K27me3 data sets. All methods apart from
RSEG perform comparably on the punctate H3K4me3 data. However, WaveSeq outperforms the other methods on the broader peaks of H3K36me3
and H3K27me3. SICER comes in second while MACS has low sensitivity for diffuse data. RSEG has good sensitivity for the strongest peaks but suffers
from low recall, failing to detect any peaks in chromosomes 10–19. (d) A plot of the fraction of true positives (precision) from the top 10000 peaks
detected by the above four methods in the MEF histone modification data sets shows that WaveSeq has the best performance, closely followed by
SICER. MACS performs well only on the H3K4me3 data while RSEG has low precision for all the three data sets.
doi:10.1371/journal.pone.0045486.g003

ChIP-seq and Wavelets
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a herpesvirus that induces T-cell lymphomas in susceptible birds.

Genetically similar lines of chickens that show differential re-

sistance to Marek’s disease (MD) have been developed and studied

for decades, but the exact causes of the divergent response have

not been found, although it is believed that epigenetic factors play

an important role in determining the level of resistance of an

individual. This is an interesting epigenetic model for human

cancers as individuals having high genetic similarity exhibit

natural resistance to a cancer-causing agent. Moreover, this is

a complex ChIP-Seq experiment representing studies in non-

traditional systems that are becoming more prevalent with the

plummeting costs of sequencing. To demonstrate the utility of

WaveSeq in such an experimental scenario we used it to analyze

H3K4me3 profiles in matched infected and control birds from

inbred chicken lines having diverse responses to MD.

WaveSeq detects differential H3K4me3 marks induced by

virus infection. We generated H3K4me3 ChIP-Seq data from

inbred chicken lines – line 63 is highly resistant while line 72 is

highly susceptible to MD – in matched infected and control

groups. In the subsequent discussion, we refer to the resistant line

63 and susceptible line 72 as R and S groups, respectively. We first

analyzed the infected group with the non-infected group as

control. The samples were then swapped to account for significant

peaks in the control that were absent in the infected group. This is

in contrast to traditional ChIP-Seq experiments where peaks

detected in an input control represent false positives and are

removed from subsequent analyses. Statistical significance for

differentially marked regions (DMRs) was defined at a false

discovery rate of 5% (FDR ,0.05). DMRs were compared across

the control-swapped comparisons and merged into a single non-

redundant list.

WaveSeq detected a comparable number of peaks in the two

groups, with 25050 and 27169 peaks in the R and S groups,

respectively. The resistant line did not show any differential

H3K4me3 marks at the predefined significance level. In contrast,

there were 310 H3K4me3 DMRs in the susceptible line, all but

five of which were more enriched in infected individuals. This

confirmed the presence of dramatic differences in the epigenetic

effects of MDV on the two lines, with a predominantly activating

effect of the virus infection.

Increased B cell activation in susceptible birds as a result

of MD. To investigate the functional implications of observed

epigenetic differences, we searched for overlaps between

H3K4me3 DMRs and gene promoters and were able to map

241 regions to 310 Ensembl genes (Table S1). Functional

annotation of these genes with DAVID [17,18] revealed significant

enrichment of various immune-related functions, such as,

hemopoeisis, positive regulation of lymphocyte activation, re-

sponse to DNA damage stimulus and regulation of apoptosis

(Table 1). Thus, there appeared to be a significant activation of the

immune system in infected birds of the S group, consistent with the

observed response at the early cytolytic stage of the disease in

susceptible birds. Moreover, 81 of these genes (26.6%;

p= 5.861027) had reported expression in bursa (Table S2).

Several genes having H3K4me3 DMRs were involved in the

PANTHER [19] B-cell signalling pathway (p = 1.361023) such as

LYN, SYK, GRB2, PTPRC, RAC2 and BLNK, indicative of increased

B cell activation in the infected S group. The signalling molecules

CD45, Lyn and Syk, gene products of PTPRC, LYN and SYK,

respectively, are major players in the early stages of B cell antigen

receptor signalling. These genes work together with BLNK and

GRB2 to activate B cells via the NF-kB mediated pathway while

BLNK and RAC2 may also activate B cells via the ERK, p38 or jun

signalling cascades. H3K4me3 levels on all these genes were

unchanged in the R group but were significantly higher in the

infected S group after MDV infection (Figures 4, S5). Three of

these genes – LYN, SYK and RAC2– had reported expression in

bursal cells [20] which suggests that the tissue-specific activation of

these genes in the bursa might lead to increased B cell activation in

susceptible birds.

MDV primarily targets B cells during early stages of the disease

as these cells provide the first line of defence via the host humoral

immune response. B cells surround the invading virus particles and

have increased rates of infection and atrophy. The infection of B

cells, in turn, induces the activation of CD4+ T cells which

consequently become more vulnerable to virus infection [21]. The

increase in B cell activation indicated by elevated levels of

H3K4me3 on key genes involved in the pathway suggests the

presence of an increased number of activated B cells in susceptible

birds and a possible increase in the number of activated CD4+ T

lymphocytes. The larger population of cells vulnerable to infection

by MDV at the early cytolytic stage of the disease in susceptible

birds, could, therefore, result in increased levels of infection and

higher mortality in the latter stages of the disease.

Discussion

The analysis of ChIP-Seq data poses several challenges

including a diverse array of enrichment patterns, the lack of true

biological controls and confounding factors such as sequencing

depth, mappability and G/C content. In the presence of these

sources of bias, it is important to have methods of analysis robust

to various data characteristics that also preserve prediction

accuracy. In response to these issues, we have developed a novel

data-driven ChIP-Seq analysis algorithm named WaveSeq which

is capable of detecting both punctate and diffuse enrichment

regions and is free of distributional assumptions. WaveSeq utilizes

non-parametric modeling of ChIP-Seq data using Monte Carlo

sampling and a randomized algorithm to accurately estimate the

empirical distribution of reads in the absence of a control.

With the aid of a variety of public data sets we were able to

demonstrate that WaveSeq has high accuracy and performs

favourably in comparison with several published methods of

analysis in detecting punctate and diffuse enrichment regions

(Figure S6). WaveSeq also performed with comparable accuracy in

the absence of control data. Previous studies have observed that

the background signal of ChIP-Seq data is non-random [15] and

the ability to distinguish regions of true signal from background

could be potentially improved if this non-randomness is accounted

for. The improved detection capacity exhibited by WaveSeq in the

absence of a control data set suggests that the non-parametric

modeling approach is successful in capturing the data character-

istics leading to higher prediction accuracy.

The rapid advance of epigenetics and the advent of cost-

effective next-generation sequencing technologies have led to

complex experimental designs being employed to investigate

various topics such as the epigenetics of disease response.

WaveSeq is capable of being used in such an experimental

setting and helps make relevant biological discoveries. We

illustrate this by using our algorithm to analyze a complex

H3K4me3 data set to investigate the differences in the

epigenetic effects of MDV infection in inbred chicken lines

having divergent responses to MD. WaveSeq detects the

presence of H3K4me3 DMRs on key genes involved in the B

cell activation pathway suggesting the presence of increased

numbers of activated B cells in infected individuals of the

susceptible line. B cells are the primary targets of MDV at the

early cytolytic stage of the disease and infection of these cells by

ChIP-seq and Wavelets
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the virus leads to activation of CD4+ T cells which are more

vulnerable to infection than naive T cells. Consequently, an

increase in the number of MDV-infected cells at this stage of

the disease could translate to an increased viral load and a worse

prognosis in susceptible birds at the latter stages of infection.

Thus, epigenetic differences between the two lines could have

a major impact on disease progression indicating that epigenetic

marks play an important role in regulating disease response.

The absence of distributional assumptions in WaveSeq makes it

potentially applicable to other forms of next-generation sequenc-

ing data. The detection of the genomic locations of nucleosomes is

one such area of current interest. A nucleosome positioning

experiment typically consists of the sequencing of DNA fragments

associated with mono-nucleosomes across the whole genome. The

data consists of broad diffuse regions with peaks that repeat

approximately every 147 bp, the length of DNA associated with

single nucleosomes. Regions of active transcription have lower

nucleosome enrichment while high nucleosome density is associ-

ated with silent heterochromatin. Thus, differences in nucleosome

density between samples could be predictive of transcriptional

differences. Sequencing data having such underlying patterns

could be highly suited to the wavelet transform framework

employed by WaveSeq.

One of the primary drawbacks of WaveSeq is the relatively high

number of peak calls for low SNR data such as H3K27me3 which

is an unfortunate side-effect of the sensitivity of the algorithm.

However, since peak calls are ranked by FDR, a more stringent

criterion can be used to circumvent this issue. Moreover, increased

sequencing depth significantly improves discriminative power and

is highly recommended particularly for data having diffuse

enrichments.

Table 1. Functional annotation of genes having H3K4me3 DMRs.

Gene Ontology Term Count p-value FDR (%)

GO:0002520: Immune system development 15 1.9161028 3.0261025

GO:0030097: Hemopoiesis 14 2.1661028 3.4161025

GO:0048534: Hemopoietic or lymphoid organ development 14 8.7661028 1.3861024

GO:0045580: Regulation of T cell differentiation 7 8.6061027 0.001359

GO:0002521: Leukocyte differentiation 10 1.1161026 0.001747

GO:0045582: Positive regulation of T cell differentiation 6 1.2361026 0.001951

GO:0045321: Leukocyte activation 11 1.7061026 0.002693

GO:0045619: Regulation of lymphocyte differentiation 7 2.3961026 0.003781

GO:0002684: Positive regulation of immune system process 10 2.7361026 0.004309

GO:0045621: Positive regulation of lymphocyte differentiation 6 3.3361026 0.005262

GO:0046649: Lymphocyte activation 10 4.7061026 0.007428

GO:0050870: Positive regulation of T cell activation 8 5.5361026 0.008734

GO:0001775: Cell activation 11 6.1761026 0.009752

GO:0051251: Positive regulation of lymphocyte activation 8 8.0861026 0.012774

GO:0002696: Positive regulation of leukocyte activation 8 1.1661025 0.018257

GO:0050867: Positive regulation of cell activation 8 1.6261025 0.025558

GO:0050863: Regulation of T cell activation 8 1.6261025 0.025558

GO:0030098: Lymphocyte differentiation 8 1.9061025 0.030027

GO:0051249: Regulation of lymphocyte activation 8 2.5961025 0.040908

GO:0030217: T cell differentiation 7 2.7661025 0.04356

GO:0002694: Regulation of leukocyte activation 8 4.0061025 0.063158

GO:0045058: T cell selection 5 6.6561025 0.105094

GO:0050865: Regulation of cell activation 8 6.8061025 0.107401

GO:0002252: Immune effector process 6 1.3861024 0.218176

GO:0033077: T cell differentiation in the thymus 5 2.3061024 0.362727

GO:0042110: T cell activation 7 2.4361024 0.38295

GO:0042981: Regulation of apoptosis 14 2.4761024 0.389793

GO:0043067: Regulation of programmed cell death 14 2.9861024 0.469488

GO:0010941: Regulation of cell death 14 3.1261024 0.491456

GO:0033554: Cellular response to stress 12 4.0061024 0.629557

GO:0045061: Thymic T cell selection 4 4.0661024 0.639966

The top functional categories (FDR ,1%) enriched among genes having H3K4me3 DMRs from DAVID shows a large number of immune-related functions. Count refers
to the number of genes in the gene list annotated with the given GO ID. P-values were obtained from a modified Fisher exact test performed by DAVID which tests the
enrichment of the corresponding functional category in the given gene list against the population (chicken genome). FDR correction was performed using the
Benjamini-Hochberg procedure [7].
doi:10.1371/journal.pone.0045486.t001
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Conclusions
ChIP-Seq experiments having a wide variety of enrichment

patterns and a lack of true biological controls pose significant

challenges for analysis and interpretation. WaveSeq is a highly

sensitive, data-driven method capable of detecting significantly

enriched regions in data having diverse characteristics. WaveSeq

can detect both punctate and diffuse regions with a high degree of

accuracy even in low SNR data sets. Moreover, it performs with

comparable accuracy in the absence of control data. WaveSeq is

suited for application in complex experimental scenarios, helping

make biologically relevant functional discoveries and compares

favourably with existing methods of analysis over a broad variety

of data types.

Materials and Methods

H3K4me3 Data from Chicken Bursa
Two specific-pathogen-free inbred lines of White Leghorn

chickens either resistant (63) or susceptible (72) to MD were

hatched, reared and maintained in the Avian Disease and

Oncology Laboratory (ADOL, Michigan, USDA). The chickens

were injected intra-abdominally with a partially attenuated very

virulent plus strain of MDV (648A passage 40) at 5 days after

hatch with a viral dosage of 500 plaque-forming units (PFU).

Chickens were terminated at 5dpi to collect bursa tissues. All

procedures followed the standard animal ethics and use guidelines

of ADOL.

ChIP was carried out using bursa from MDV infected and

controls birds. About 30 mg bursa samples were collected from

three individuals, cut into small pieces (1 mm3) and digested with

MNase to obtain mononucleosomes. PNK and Klenow enzymes

(NBE, Ipswich, MA, USA) were used to repair the ChIP DNA

ends pulled down by the antibody. A 39 adenine was added using

Taq polymerase and Illumina adaptors ligated to the repaired

ends. Seventeen cycles of PCR was performed on ChIP DNA

using the adaptor primers and fragments with a length of about

190 bp (mononucleosome + adaptors) were isolated from agarose

gel. Subsequently, cluster generation and sequencing using the

purified DNA was performed on the Illumina Genome Analyzer

IIx following manufacturer protocols. Sequence reads of length

25 bp were aligned to the May 2006 version of the chicken

genome (galGal3) using bowtie version 0.12.7 [22]. Default

alignment policies of bowtie were enforced. The antibodies used

and the total number of reads obtained for each sample are listed

in Table S3.

Published Datasets used in this Study
We used five ChIP-Seq data sets for benchmarking purposes

[12,13]. The GABP and NRSF (monoclonal) ChIP-Seq data sets

were produced from the human Jurkat cell line while a negative

control data set was obtained by reverse crosslinking extracted

DNA without the subsequent immunoprecipitation step (RX-

NoIP). The H3K4me3, H3K27me3 and H3K36me3 data sets

were obtained from murine embryonic fibroblast (MEF) cells. We

also utilized a previously published synthetic spike-in data set for

testing precision and recall [14]. For two-sample ChIP-Seq

analyses of GABP and NRSF, we used the RX-NoIP data set as

control. The spike-in data consisted of a human input control data

set which was randomly divided into three subsets; reads

corresponding to the spikes were added to one of the subsets

which constituted the test sample while a second subset (without

the spike-in reads) served as the control. For the MEF histone

modification data no control data sets were used to assess

algorithm performance in the absence of control.

Analysis Parameters
All downloaded data consisted of aligned sequence reads which

were converted to the BED format. Redundancies were removed

before subsequent analysis. Sequence reads were shifted by 95 bp

from the 59 end to represent the center of the DNA fragments

obtained from the nucleosome and the linker DNA (< 190 bp).

Summary read counts were calculated using non-overlapping

windows of 200 bp for visualization and normalized to per million

mapped reads in each sample.

Systematic tuning of the WaveSeq peak-calling algorithm was

carried out. We used the morlet wavelet for GABP, NRSF,

H3K4me3 and H3K36me3 data and the Mexican hat wavelet for

the H3K27me3 data. The morlet wavelet showed better energy

density within a smaller band of scales and outperformed other

tested wavelets in detecting smaller peaks. The Mexican hat

wavelet, on the other hand, had a more uniform energy

distribution and was better suited to the analysis of broad, diffuse

Figure 4. Differentially marked regions detected by WaveSeq suggest increased B cell activation in susceptible chickens. Several
genes involved in the B cell activation such as LYN (a), SYK (b) and RAC2 (c) show increased levels of H3K4me3 in infected birds from the S group as
shown by the arrowheads. In contrast, there are no significant changes in the R group. This suggests the presence of increased numbers of activated
B cells in susceptible birds that may lead to increased viral loads in latter stages of MD. *** = p,0.001; * = p,0.05. S.inf = infected S group,
S.ctl = control S group, R.inf = infected R group, R.ctl = control R group.
doi:10.1371/journal.pone.0045486.g004
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data e.g. H3K27me3. For the Monte Carlo threshold estimation

step, we chose N=5000 and a sample length of 212 for optimal

accuracy and speed. The sampling was performed chromosome-

by-chromosome. The p-value for determining significant enrich-

ments (pthres) in the GABP, NRSF and H3K4me3 data was chosen

to be 0.2 while pthres=0.4 worked better with broader peaks

(H3K36me3 and H3K27me3). For estimating FDR in one-sample

analyses, we used P=106. We set g=0 for the GABP and NRSF

data sets while for the MEF H3K4me3 data g was chosen to be 2

(400 bp). For the broader peaks of H3K36me3, significant

enrichments within 1 kb of each other were aggregated together

(g=5), while in the case of H3K27me3 this distance was increased

to 2 kb (g=10). All analyses were performed on a 2.66 GHz dual

core desktop computer running Windows Vista with 3 GB of

RAM, a licensed copy of Matlab v7.4 (R2007a) with the Wavelet

Toolbox and R version 2.13.0 [23].

Four methods were chosen for benchmarking: MACS [2]

version 1.3.7.1, FindPeaks [1] version 4.0.15, SiSSRs [10] version

1.4, SICER [3] version 1.1 and RSEG [11]. The method

parameters used in our analyses are described in Text S1.

Gene Annotation and Functional Analysis of DMRs
RefSeq and Ensembl gene annotations for the chicken genome

(galGal3) were downloaded from the UCSC genome browser [24].

Gene promoters were searched for overlaps with DMRs and all

gene names were converted to their Ensembl Ids using the biomart

data retrieval system from Ensembl [25,26]. This unified list of

gene Ids was then analyzed for functional annotation enrichment

with DAVID [17,18]. Default parameters were used for DAVID

analyses.

Software Implementation
Data pre-processing, Monte Carlo estimation of wavelet

coefficient thresholds and peak-calling modules of WaveSeq were

implemented in Matlab. FDR estimation in the presence and

absence of control was performed in R. We are currently working

on a unified R implementation of the software for public release.

WaveSeq can be run on a standard desktop computer with at least

3 GB of RAM and a 2 GHz processor. The software can be used

on any species with a sequenced genome. WaveSeq has been

tested on Windows and MAC OSX and is currently available for

these operating systems from the authors on request.

Supporting Information

Figure S1 Peak length distributions of tested methods
when applied to histone modification data. A comparison

of peak length distributions for the top 15000 peaks called from the

(a) H3K4me3, (b) H3K36me3 and (c) H3K27me3 data. (a) SICER

and MACS have similar peak lengths in the H3K4me3 data,

followed by WaveSeq. RSEG peak lengths are almost uniformly

distributed between 0 and 20 kb. (b) MACS and RSEG called

relatively short peaks for H3K36me3 while SICER and WaveSeq

detected greater peak lengths. (c) WaveSeq called the longest peaks

when applied to H3K27me3 data followed by SICER and RSEG.

(PDF)

Figure S2 The effect of increasing gap sizes on read
coverage of top peaks. The fraction of reads covered by the

top N peaks saturates at larger gap sizes. This saturation is almost

immediate for H3K4me3, intermediate for H3K36me3 and more

gradual for H3K27me3. In the case of H3K4me3, N= 20000,

while for H3K36me3 and H3K27me3, N= 40000. The window

size is 200 bp.

(PDF)

Figure S3 WaveSeq has comparable peak lengths to
MACS and FindPeaks in punctate data sets. A comparison

of peak length densities of the top 20000 peaks for the (a) GABP

and (b) NRSF data sets showed comparable peak lengths called by

WaveSeq, MACS and FindPeaks. However, SiSSRs consistently

calls very small peaks.

(PDF)

Figure S4 RSEG peaks not detected by WaveSeq have
low average read counts and are possibly false positives.
Average read counts within RSEG peaks (a, b & c) and peak

length distributions (d, e & f) in the H3K4me3 (a & d), H3K36me3

(b & e) and H3K27me3 (c & f) data. The solid lines correspond to

all peaks called by RSEG (All Peaks) and the dashed lines

represent those peaks that are not detected by WaveSeq (No

overlaps). These plots show that WaveSeq detects a majority of

large RSEG peaks in the H3K27me3 and H3K36me3 data.

However, most of the H3K4me3 peaks detected by RSEG are

very large and appear to be false positives. The average read

counts plotted were output by the program.

(PDF)

Figure S5 Differentially marked regions detected by
WaveSeq suggest increased B cell activation. Several genes
involved in the B cell activation such as PTPRC (a), BLNK (b) and

GRB2 (c) exhibited increased levels of H3K4me3 in infected birds

from the S group as shown by the arrowheads. However, there

were no significant changes in the R group. ** = p,0.01;

* = p,0.05. S.inf = infected S group, S.ctl = control S group,

R.inf = infected R group, R.ctl = control R group.

(PDF)

Figure S6 WaveSeq detects a broad variety of enrich-
ment regions with high accuracy. Examples of WaveSeq

peak calls on MEF histone modification data. (a) WaveSeq detects

H3K4me3 and H3K36me3 marks on the housekeeping gene Polm

located on chromosome 11 and (b) a broad peak of H3K27me3 on

the developmental transcription factor Cdx4 which is silenced in

differentiated cell populations.

(PDF)

Table S1 List of H3K4me3 DMRs and overlapping
genes. The chromosome, start and end columns refer to the

significant DMRs detected by WaveSeq. The columns S.inf and

S.ctl contain the normalized reads (per million) mapped to the

DMRs in the infected and control samples of the S group,

respectively. P-values are calculated by WaveSeq using an exact

binomial test and fold change = (S.inf+1)/(S.ctl+1). The columns

RefSeq_ID and Ensembl_ID contain RefSeq and Ensembl genes

that overlap the corresponding DMRs.

(XLSX)

Table S2 Genes overlapping H3K4me3 DMRs with
reported expression in bursa. A significant proportion of

genes having H3K4me3 DMRs had reported expression in bursa.

The annotation was obtained by DAVID from the UniProt

database (UP_Tissue). P-values were calculated using a modified

Fisher exact test performed by DAVID which tests the enrichment

of the corresponding functional category in the given gene list

against the population (chicken genome). FDR correction was

performed using the Benjamini-Hochberg procedure [7].

(XLSX)

Table S3 Sequencing results showing the antibody used
and raw, mapped and non-redundant read numbers for
each sample. The reads obtained from the chicken bursa

H3K4me3 ChIP-Seq experiment. Mapped % and non-redundant
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% are the ratios of mapped and non-redundant reads to raw reads

expressed as a percentage. S.inf = infected S group, S.ctl = control

S group, R.inf = infected R group, R.ctl = control R group.

(XLSX)

Text S1 Supplementary methods. Parameters used for

published algorithms and data access information.

(PDF)
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