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ABSTRACT

Regulatory 50 untranslated regions (r50UTRs) of
mRNAs such as riboswitches modulate the expres-
sion of genes involved in varied biological pro-
cesses in both bacteria and eukaryotes. New
high-throughput sequencing technologies could
provide powerful tools for discovery of novel
r50UTRs, but the size and complexity of the
datasets generated by these technologies makes it
difficult to differentiate r50UTRs from the multitude
of other types of RNAs detected. Here, we
developed and implemented a bioinformatic
approach to identify putative r50UTRs from within
large datasets of RNAs recently identified by pyro-
sequencing of the Vibrio cholerae small
transcriptome. This screen yielded only �1% of all
non-overlapping RNAs along with 75% of previously
annotated r50UTRs and 69 candidate V. cholerae
r50UTRs. These candidates include several putative
functional homologues of diverse r50UTRs char-
acterized in other species as well as numerous can-
didates upstream of genes involved in pathways not
known to be regulated by r50UTRs, such as fatty acid
oxidation and peptidoglycan catabolism. Two of
these novel r50UTRs were experimentally validated
using a GFP reporter-based approach. Our findings
suggest that the number and diversity of pathways
regulated by r50UTRs has been underestimated and
that deep sequencing-based transcriptomics will be
extremely valuable in the search for novel r50UTRs.

INTRODUCTION

Non-coding RNAs are now known to regulate gene
expression in species from all kingdoms of life.
Regulatory RNAs in bacteria, which have been identified
in diverse species, fall into two main classes: trans-acting

RNAs (sRNAs) and regulatory 50 untranslated regions
(r50UTRs) [reviewed in ref. (1)]. sRNAs are transcribed
independently from their target genes and, in most cases,
hybridize to cognate mRNAs over short regions of imper-
fect complimentarity thereby modulating mRNA stability
and/or availability for translation. In contrast, r50UTRs
are encoded as part of the mRNA and regulate transcrip-
tion elongation, translation initiation, or message stability
by switching between alternative structures in response to
a specific stimulus.

r50UTRs participate in the regulation of a variety of
cellular functions, including the biosynthesis, metabolism,
and transport of amino acids, small metabolites, and
vitamins, the heat- and cold-shock responses, and the
autoregulation of ribosomal protein expression (2–6).
While all r50UTRs mediate regulation of gene expression
after transcription initiation, the mechanisms by which
they act vary considerably. Riboswitches are the most
diverse and well-studied class of r50UTRs. Binding of a
cognate metabolite to a riboswitch alters its conformation
and thereby affects the stability of a transcription termi-
nator or alters the accessibility of the ribosome binding
site (7). A similar mechanism is employed by T-boxes,
r50UTRs identified mainly in Gram-positive species,
whose interaction with uncharged tRNAs leads to
destabilization of a Rho-independent terminator 50 of
aminoacyl-tRNA synthtetase genes as well as genes
involved in amino acid biosynthesis and transport
(8–10). Leader peptides, which have been identified
predominantly in Gram-negative species, also regulate
amino acid biosynthesis operons by modulating transcrip-
tion elongation (4). These r50UTRs encode small ORFs
with clusters of codons for a specific amino acid(s)
followed by a Rho-independent terminator. When the
cellular level of their cognate amino acid(s) is low,
ribosomal stalling at these clusters destabilizes the
adjacent terminator, leading to increased expression of
the downstream operon. r50UTRs can also mediate post-
or co-transcriptional autoregulation of gene expression

*To whom correspondence should be addressed. Tel: +617 714 7315; Fax: 617 525 4660; Email: livny@broadinstitute.org

1504–1514 Nucleic Acids Research, 2010, Vol. 38, No. 5 Published online 7 December 2009
doi:10.1093/nar/gkp1121

� The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



through direct interactions with proteins, a mechanism
common in regulating the expression of ribosomal
proteins and proteins mediating the cold shock response
(3,5). Finally, r50UTRs known as thermosensors undergo
a conformational shift following changes in temperature
that affects transcription or translation of the downstream
gene (6).

r50UTRs are relatively short and usually do not encode
proteins and thus functional homologues of known
r50UTRs are difficult to identify based on primary
sequence conservation. However, since secondary-
structure plays a central role in r50UTR function,
covariance models that identify predicted RNA structure
conservation have proven useful in identifying functional
homologues of characterized r50UTRs. Kingdom-wide
searches using covariance models have lead to the identi-
fication of many putative homologues of known r50UTRs
in diverse species and provided important insights into
the evolution of r50UTRs (11,12). However, several
recent studies using bioinformatic approaches not based
on homology to known r50UTRs have yielded novel
classes of r50UTRs regulating biological pathways not
previously known to be regulated by r50UTRs (13–16).
These observations suggest that current annotations of
r50UTRs represent only a partial catalogue, particularly
for Gram-negative species where fewer r50UTRs are
known.

High-throughput DNA sequencing technologies have
recently been used to profile bacterial transcriptomes
with unprecedented sensitivity (17–20). These studies
have generated very large datasets that contain a great
diversity of transcripts, including primary transcripts,
processed derivatives, and degradation intermediates of
messenger, structural, catalytic and regulatory RNAs.
These new methodologies hold great potential for discov-
ery of novel regulatory RNAs. However, to date, methods
to distinguish r50UTRs from the large number of other
functional transcripts or from ‘transcriptional noise’
have not been reported. Here, we developed and imple-
mented a bioinformatic approach to mine Vibrio cholerae
cDNA deep sequencing datasets for r50UTR-encoding
loci. The results of this screen validate the sensitivity
and specificity of our approach in distinguishing
r50UTRs from other types of transcripts, including
catalytic, structural and trans-acting regulatory RNAs.
Subsequent analyses of the RNAs identified in our
screen revealed several putative V. cholerae functional
homologues of known r50UTRs that had been missed in
previous annotations, including one that had been
misannotated as an sRNA. We also identified dozens of
candidates for novel r50UTRs, two of which were shown
to regulate expression of their downstream genes.

MATERIALS AND METHODS

Bioinformatic analyses

Alignment of the 454 reads [Supplementary Table S2 in
ref. (17)] to the V. choleraeN16961 genome was conducted
with BLASTN version 2.2.17 from NCBI. For each

read, only the top hit was kept and only if the percent
identity of the alignment was �90. Filtering of the 454
dataset for putative r50UTRs was done using a variety
of filters and parameters; the reported combination of
filters and parameters was chosen as it yielded the
highest ratio of known or putative r50UTRs to candidate
r50UTRs. For step IV in our filtering of the 454 datasets,
reads in different samples were considered to be over-
lapping if both the 50- and 30-ends of one read were
within 40 nucleotides of the corresponding ends of the
other read. Genome sequences and ORF and COG anno-
tations were obtained from NCBI (accession numbers
NC_002505, NC_002506). Gene Ontology (GO) Role
Category designations were obtained from TIGR. Rfam
annotations were based on version 9.1. Transcription ter-
minators were predicted by RNAMotif, TransTerm and
FindTerm as described (21). The Artemis Comparison
Tool release 9 (22) was used to visualize 454 read
abundances superimposed on genome annotations.
Information on the function of Escherichia coli proteins
was obtained from EcoCyc (23).

Construction of GFP reporter strains

50UTRs were amplified using the oligos listed in
Supplementary Table S1 and cloned into the NsiI and
NheI sites of plasmid pXG10 (24). The respective 50-end
of each 50UTR insert was determined based on the 50-end
of the corresponding cDNAs detected by 454. Each
r50UTR inserts included the start codon of its 30 ORF
along with up to 19 additional codons.

GFP reporter assays

Escherichia coli DH5a or V. cholerae NI6961 strains
carrying the indicated plasmids as well as those carrying
a control plasmid [pXG0 (24)] expressing luciferase
instead of GFP were grown overnight in LB+2.5 mg/ml
chloramphenicol (Cm2.5). For the experiments shown in
Figure 3, these overnight cultures were subcultured 1:50 in
96-well plates in M63 medium (0.2% glucose, 1mM
MgSO4, 1 mg/ml B1, Cm2.5) supplemented with 16 L-
amino acids (Sigma Aldrich) (excluding L-leucine,
glycine, L-histidine and L-lysine) each added to a final con-
centration of 20–200 mM. Where indicated L-leucine and
glycine (Sigma Aldrich) were added to a final concentra-
tion of 2.5mM, respectively. For experiments described
in Figure 4, overnight cultures were sub-cultured 1:250
in LB Cm2.5 and grown to OD600� 0.8–1. Aliquots of
these cultures were washed twice with one volume M63
medium and diluted to an OD600 of �0.4 in M6 medium
supplemented with casamino acids (Dibco) to the final
concentrations indicated. Total culture fluorescence was
measured using a Synergy HT Multi-Mode Microplate
Reader (BioTek) with 485/20 nm optical excitation filter,
528/20 nm emission filter and measurement height of
8.0mm. GFP fluorescence was calculated by subtracting
the fluorescence of strains carrying the GFP fusions from
those carrying the luciferase control plasmid. For experi-
ments described in Figure 4, GFP fluorescence was
normalized to OD600.
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RESULTS AND DISCUSSION

Summary of V. cholerae small transcriptome datasets
used in this study

The datasets used in our analyses were obtained by 454
pyrosequencing of DNA libraries complementary to
primary transcripts and transcript fragments (from here
on referred to collectively as transcripts) 14–200
nucleotides in length isolated from four independent
cultures of V. cholerae (17). Of the 681 205 total reads in
these datasets, 362 345 align with 100% identity to the
V. cholerae genome, corresponding to 37 494 non-identical

transcripts and 6208 sets of non-overlapping transcripts.
Transcripts overlapping 17 of 19 (90%) and 20 of 22
(91%) previously annotated or characterized sRNAs and
r50UTRs, respectively, were identified. Initial analysis of
these datasets yielded numerous candidates for novel
sRNAs, several of which were confirmed by northern
analysis (17). The identification of so many hitherto
unannotated putative sRNAs along with the sensitivity
with which previously annotated r50UTRs were identified
suggested to us that there would likely be unannotated
V. cholerae r50UTRs among the transcripts detected by
deep sequencing. However, identifying unknown r50UTRs

Table 1. Candidate r50UTRs sharing conserved genomic context with known families of r50UTRs or with putative RibEx RLEsa

No./
namea

ORF
No.

ORF product 30CGC (Rfam)b 30CGC and/or
putative motif (RibEx)b,c

1 VC0326 50S ribosomal protein L10 L10 leader(117) RLE0035(35)
2 VC0570 50S ribosomal protein L13 L13 leader(64) RLE0227(17)

3 VC0647 Polynucleotide phosphorylase/polyadenylase S15(1) RLE0154I(8)
4* VC0705 Chorismate mutase/prephenate dehydratase T-box(11), T-box(1) –
5 VC0875 Prolyl-tRNA synthetase T-box(15) RLE018(5)

6* VC0894 Thiamine biosynthesis protein ThiI SAM-IV(1) RLE0079(7)
7 VC1091 Oligopeptide ABC transporter,

periplasmic oligopeptide-binding protein
T-box(4), SAM(8) RLE0210(6)

8* VC1623 Carboxynorspermidine decarboxylase speF(25), Lysine(17) –
9 VC2030 Ribonuclease E rne5(32) –
10* VC2108 Erythronate-4-phosphate dehydrogenase T-box(3), SAM(1) –
11* VC2334 Hypothetical protein ykoK(3) RLE0310(6)
12 VC2356 Sodium/alanine symporter Glycine(118) –
13 VC2439 Methyl-accepting chemotaxis protein GEMM RNA motif(20), SAM(1) –
14 VC2522 Hypothetical protein yybP-ykoY(9) RLE0334(5)
15 VC2645 Acetylornithine deacetylase TPP(4) –
16 VC2712 Xanthine/uracil permease family protein PyrR(32), Purine(17), TPP(4) –
17 VCA0142 C4-dicarboxylate transport transcriptional

regulatory protein
MOCO RNA motif(1),

GEMM RNA motif(2)
RLE0123(2)

18 VCA0179 NupC family protein Purine(11) –
19 VCA0278 Serine hydroxymethyltransferase Glycine(8) RLE0085(7)
20 VCA0287 Threonyl-tRNA synthetase T-box(60) RLE020(5)
C1* VC2490 2-isopropylmalate synthase T-box(11), Leu leader(28),

ydaO-yuaA(1)
–

21 VC0007 50S ribosomal protein L34 – –
22 VC0218 Ribosomal protein L28 – RLE0348
23 VC0324 50S ribosomal protein L11 – RLE0241, RLE0148(6)
24 VC2597 30S ribosomal protein S10 – RLE0110(25)
25 VC2679 50S ribosomal protein L31 – RLE0089(8)
26 VCA0166 Cold-shock transcriptional

regulator CspA
– RLE0357(6)

27 VCA0184 Cold-shock DNA-binding
domain-containing protein

– RLE0357(6)

28 VCA0933 Cold-shock domain-contain protein – RLE0357(6)
29 VCA0819 Co-chaperonin GroES – RLE0003(75)
30 VCA1075 Hypothetical protein – RLE0037
31 VCA0518 Bifunctional fructose-specific PTS protein – RLE0062(8)
32 VC2431 DNA topoisomerase IV subunit B – RLE0226, SAM
33 VC2738 Phosphoenolpyruvate carboxykinase – RLE0239(5)
34* VC1923 Trigger factor – RLE0241(7)
35* VC1046 3-ketoacyl-CoA thiolase – RLE0244(2)
36 VC1258 DNA gyrase, subunit A – RLE0300(4)
37 VC0633 Outer membrane protein OmpU – RLE0331(5)
38 VC0972 Porin, putative – RLE0331(5)
39 VC1130 DNA-binding protein H-NS – RLE0337(5)

aAsterisk denote candidates containing or directly upstream of a putative transcription terminator.
bThe number in parentheses denotes the number of r50UTR in each family or of RLEs found to share 30CGC with the candidate r50UTR.
cRLEs predicted to be encoded by the candidate are underlined, RLEs with 30CGC are not.
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within these large datasets required an effective way to
distinguish such transcripts from the great number and
diversity of other types of transcripts.

Filtering the datasets for r50UTRs

We took several steps to filter our 454 datasets for tran-
scripts derived from r50UTRs. First, we discarded all tran-
scripts that did not overlap putative 50UTRs, defined as
regions 100 bp upstream of annotated start codons and
not overlapping other annotated genes. This filter led to
a large reduction in the numbers of total transcripts and
known sRNAs but to only a small decrease in the number
of previously annotated r50UTRs (Figure 1, filter I).
However, we found that nearly half of previously
annotated trans-acting regulatory, structural, and catalytic
RNAs and nearly 20% of all unique transcripts detected
overlapped putative 50UTRs. Indeed, transcripts
overlapping the 50UTRs of 1048 (27%) V. cholerae
ORFs were identified. Most of these 50UTR transcripts
are likely the result of aborted transcription or incomplete
mRNA degradation and do not represent r50UTRs.
Transcripts produced by r50UTR-mediated regulation
usually do not extend into the coding region of the
mRNA. Thus, we next removed all transcripts over-
lapping annotated ORFs. This step also led to a significant

decrease in the number of total transcripts but to only a
modest reduction in the numbers of known r50UTRs
(Figure 1, filter II). In an effort to enrich our datasets
for r50UTRs relative to sRNAs, we next eliminated all
transcripts shorter than 100 nucleotides. This was based
on previous observations that transcripts associated with

Table 2. Candidate for novel r50UTR lacking conserved genomic context with Rfam r50UTRs or RibEx RLEs

Name ORF ORF product Gene Ontology (GO) role category

40 VC2656 Fumarate reductase flavoprotein subunit Anaerobic respiration
41 VCA0013 Maltodextrin phosphorylase Carbohydrate metabolism
42 VC2188 Flagellin Ciliary or flagellar motility
43 VC2678 Primosome assembly protein PriA DNA replication, synthesis of RNA primer
44 VC1442 Cytochrome c oxidase, subunit CcoN Electron transport
45 VC2295 Na(+ )-translocating NADH-quinone

reductase subunit A
Electron transport

46* VC2701 Thiol:disulfide interchange protein precursor Electron transport, protein thiol-disulfide exchange,
cytochrome complex assembly

47 VCA1067 Aldehyde dehydrogenase Fermentation
48 VC0374 Glucose-6-phosphate isomerase Glycolysis
49 VCA0843 Glyceraldehyde-3-phosphate dehydrogenase Glycolysis
50 VC0986 Adenylate kinase Nucleobase, nucleoside and nucleotide interconversion
51 VCA0623 Transaldolase B Pentose-phosphate shunt
52 VCA0870 D-alanyl-D-alanine endopeptidase Peptidoglycan biosynthetic
53 VC2421 N-acetyl-anhydromuranmyl-L-alanine amidase Peptidoglycan metabolism
54 VC0322 Preprotein translocase subunit SecE Protein secretion
55 VC2748 Nitrogen regulation protein NR(II) Regulation of nitrogen utilization
56* VC1796 Middle operon regulator-related protein Regulation of transcription, DNA-dependent
57 VC1901 Sodium/proton antiporter Sodium ion transport, hydrogen transport
58 VC0347 RNA-binding protein Hfq Targeting of mRNA for destruction, involved

in RNA interference
59 VC0038 Hypothetical protein –
60 VC0381 Hypothetical protein –
61 VC1576 Hypothetical protein –
62 VC1613 Hypothetical protein –
63 VC1891 Hypothetical protein –
64 VC2002 Hypothetical protein –
65 VC2264 Hypothetical protein –
66 VC2647 Hypothetical protein –
67 VCA0327 Hypothetical protein –
68 VCA0363 Hypothetical protein –
69 VCA0743 Hypothetical protein –

Asterisk denotes candidates containing or directly upstream of a putative transcription terminator.

Figure 1. Results of in silico mining of V. cholerae cDNA datasets for
r50UTRs. The values shown correspond to the percentage of all tran-
scripts in the 454 datasets remaining after addition of each filter.
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characterized r50UTRs are almost always longer than 100
nucleotides, whereas a number of known sRNAs are <100
nucleotides in length. Finally, from the set of transcripts
fulfilling the above criteria, we filtered out those that did
not overlap another transcript in at least one of the three
other independent samples (Figure 1, filter IV), since we
reasoned that transcripts detected in only one of the four
independent samples were less likely to correspond to real
r50UTRs.
As shown in Figure 1, application of filters I–IV

removed the vast majority of the total transcripts and
of the sRNAs in the dataset but left behind most of the
annotated r50UTRs. Specifically, 96% of the total unique
transcripts and 82% of the annotated sRNAs were
eliminated, whereas only 25% of the annotated r50UTRs
were removed. The three sRNAs that remained included
C1, msr and 6S RNA. C1 is an uncharacterized small
intergenic transcript that was discovered by our group in
a bioinformatic screen and annotated as a putative sRNA
(25). As described below, C1 actually corresponds to an
r50UTR rather than to an sRNA. msr is a non-coding
RNA gene found in Retron elements in diverse bacteria
whose biological function is poorly understood (26,27). 6S
RNA has been well characterized in E. coli where it acts
as trans-acting regulatory RNA; however, unlike the vast
majority of other characterized sRNAs, 6S does not target
mRNAs but rather interacts with and modulates the
activity of RNA polymerase (28). Thus, none of the
sRNAs remaining in our filtered dataset corresponds to
a canonical mRNA-targeting V. cholerae sRNA such as
RyhB, Qrr1-4, VrrA, or MicX. Taken together, these
observation suggest that our approach was effective in
sensitively and specifically distinguishing known
r50UTRs from other transcripts, including other regula-
tory or catalytic non-coding RNAs.
The above analysis yielded transcripts corresponding

to 15 characterized or putative r50UTRs previously
annotated in the Rfam database. Rfam is a collection of
multiple sequence alignments, consensus secondary struc-
tures, and covariance models (CMs) representing families
of non-coding RNAs. New members of these families are
identified by Rfam based on predicted secondary-structure
conservation using sensitive BLAST filters in combination
with CMs (12). We were initially surprised that previously
annotated putative V. cholerae TPP riboswitches and a
putative r50UTR of ribosomal protein S15 were identified
in our screen. Based on characterization of their
homologues in other species, these r50UTRs are thought
to act through sequestration of ribosome binding sites
(29,30). Thus, these putative r50UTRs, unlike r50UTRs
that regulate expression through transcription termina-
tion, were not expected to produce discrete short tran-
scripts. However, it has been shown that r50UTRs that
do not employ Rho-independent transcriptional termina-
tion elicit formation of stem loop structures at specific
locations in the 50UTR. We therefore postulate that even
in the absence of a strong termination signal, these
structured elements act as sites for transcription termina-
tion, RNA processing, and/or boundaries for RNA
degradation to reproducibly yield short transcripts

terminating within the 50UTR that are detectable by
high-throughput sequencing.

Five previously annotated r50UTRs were eliminated by
our filtering. Three were eliminated because their corre-
sponding transcripts overlapped ORFs while the other
two were lost because their transcript terminated
>100 bp upstream of the annotated start codon of their
respective 30ORFs. Two of the r50UTRs removed by our
filtering, LR-PK1 and mini-ykkC, are putative structured
motifs identified in computational screens that have yet to
be experimentally validated and thus may not correspond
to functional r50UTRs. However, one of the r50UTRs
missed has been experimentally characterized and the
other two belong to well-characterized families of
r50UTRs and thus also likely correspond to bona fide
r50UTRs. It is therefore likely that a significant number
of unannotated r50UTRs are also missing from our list of
candidate r50UTRs.

Identification of candidate V. cholerae functional
homologues of previously characterized or predicted
r50UTR based on conserved genomic context

In addition to transcripts overlapping previously
characterized or putative regRNAs, we identified tran-
scripts corresponding to 69 r50UTRs that were not
identified in Rfam (from here on referred to as candidate
r50UTRs). Since r50UTRs are co-transcribed with their
target mRNAs, we reasoned that comparing the respective
genomic location of candidate and known r50UTRs
vis-à-vis their 30 genes might enable us to identify func-
tional homologues of known r50UTRs missed in previous
annotations. Thus, we compared the Clusters of
Orthologous Groups (COG) designations of genes down-
stream of all loci we identified to those of genes down-
stream of known or putative r50UTRs in Rfam. We also
conducted similar comparisons with genes downstream
of putative Riboswitch-like elements (RLEs) found in
the RibEx database (13). Unlike Rfam, RibEx identifies
putative r50UTRs based on conserved primary sequence
upstream of orthologous groups of genes in multiple
genera and has been used to identify several hundred
putative RLE families in addition to those annotated
in Rfam.

All genes 30 of previously annotated V. cholerae
r50UTRs shared COG designations with genes 30 of
numerous Rfam r50UTRs in other species. We also
found many candidate r50UTRs that share 30 conserved
genomic context (30CGC) with known or putative
r50UTRs annotated in the Rfam database and/or with
putative RLEs in RibEx (Table 1). In some cases, candi-
dates shared 30CGC with only a few annotated Rfam
r50UTRs and/or with seemingly functionally unrelated
families of r50UTRs, suggesting that the apparent conser-
vation in genomic context might be coincidental and
unlikely to reflect a functional or evolutionary relationship
between the candidate and previously characterized
r50UTRs. However, 12 candidates (bold in Table 1) were
found to share 30CGC with more than 10 known or
putative Rfam r50UTRs in the same family, strongly sug-
gesting they correspond to bona fide but previously
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unannotated V. cholerae r50UTRs. We were surprised
to find that C1 shared 30CGC with numerous r50UTRs
in Rfam. For C1 and 14 candidate r50UTRs in Table 1
(italicized) there is additional experimental and/or
bioinformatic evidence suggesting they correspond to
bona fide r50UTR. Seven of these candidates are discussed
in more detail below.

(i) C1—The gene 30 of C1, 2-isopropylmalate synthase,
is annotated as the first gene in a putative leucine
biosynthesis operon homologous to the leuABCD
operon found in E. coli and many other
Enterobacteriacea. In E. coli, this operon is regulated
by the leader peptide LeuL (31). As shown in Figure
2A, we found that the C1 transcript overlaps a short
open reading frame of 20 residues that encodes two
clusters of three leucine-encoding codons.
Importantly, half of these are CUA codons, which
represent only 8% of all annotated leucine codons in
V. cholerae. This over-representation of rare codons
is a hallmark of characterized leader peptides and is
important for their function (32). Consistent with
other leader peptides, the short ORF encoded by
C1 is followed by a Rho-independent terminator,
which presumably mediates transcription termina-
tion in the absence of ribosome stalling. These
observations suggest that C1 was misannotated as
an sRNA; instead, it likely corresponds to the
V. cholerae LeuL leader peptide.

(ii) Candidate No. 4: vc0705 is a homologue of the
gene encoding the E. coli PheA which is subject
to co-transcriptional regulation through a leader
peptide (33). Indeed, as shown in Figure 2B,
candidate No. 4 possesses all the features of a
phenylalanine-regulated leader peptide, as it
encodes a 45 bp open reading frame that contains a
cluster of six phenylalanine residues directly
upstream of a putative Rho-independent terminator.

(iii) Candidate No. 9: The E. coli RNase E has been
shown to reduce the stability of its own transcript
through its interactions with the rne 50UTR (34).

Putative homologues of this RNase E regulated
motif have been identified by Rfam in several
genera of Gamma-proteobacteria including
Salmonella and Yersinia sp.

(iv) Candidates No. 20: In E. coli, binding of the threonyl-
tRNA to the 50UTR of its own mRNA has been
shown to prevent initiation of translation (35).

(v) Candidates No. 3: Expression of E. coli polynucleo-
tide phosphorylase (Pnp) is post-transcriptionally
auto-regulated through degradation of a double-
stranded structure in the pnp mRNA leader (36–38).

(vi) Candidate No. 1: In E. coli, L10 binds the 50UTR
of its own transcript to modulate its translation
(39).

(vii) Candidate No. 16: In silico annotations for both
purine and PyrR-dependent r50UTRs suggest they
are found almost exclusively in Gram-positive
species, with only five of the 357 purine or PyrR
r50UTRs in the Rfam database predicted in Gram-
negative strains. However, variants of purine-
sensing riboswitches have recently been discovered
in Mesoplasma florum that share conserved struc-
ture with sequences upstream of putative xanthine/
uracil permease genes in Vibrio sp. (40).

Interestingly, only one of the seven putative r50UTR
homologues described above correspond to putative
riboswitches, suggesting covariance models may be more
effective in identifying functional homologues of known
riboswitches compared to those of other types of
r50UTRs. This may reflect the fact that the function of
riboswitches dictates a relatively higher level of structure
conservation. Specifically, the secondary structures of
riboswitches are constrained both at the expression
platform and aptamer region, the latter needing to
maintain a very specific conformation to preserve ligand
specificity. In contrast, the only structural constraint on
leader peptide function is in their terminator/anti-
terminator region. Similarly, auto-regulatory r50UTRs
need only to maintain structures that modulate RBS
accessibility and/or affect transcript stability in response

MTMRFSLLLGLLLIVEPSRG+ leuA
+1

+146

+210

MTPHFLYFFDFFFLQ# pheA
+1

+144

+161

A

B

Figure 2. Features of putative V. cholerae (A) LeuL and (B) PheL leader peptides. The two numbers in bold denote the relative positions of the
50- and 30-ends of each transcript based on the 454 data. The third number indicates the relative position of the downstream ORF as annotated by
NCBI. Cognate clusters of codons for each leader peptide are shown in red. The ‘+’ and ‘#’ symbols denote stop codons.
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to protein binding. However, while covariance
models such as those used by Rfam may be effective in
identifying well-conserved functional homologues of
known riboswitches, transcriptome mining may be
more effective in identifying significantly diverged
variants of known riboswitch families, such as functional
homologues of the purine-sensing riboswitches in
Mesoplasma florum.
In addition to the seven loci described above, we found

a number of candidate r50UTRs that do not share 30CGC
with r50UTR families annotated in Rfam but whose
genomic context strongly suggests they are r50UTRs none-
theless (candidates 21–28 in Table 1). Five of these candi-
dates are upstream of genes encoding ribosomal proteins.
These observations are consistent with several studies
showing that post-transcriptional or co-transcriptional

auto-regulation are common mechanisms for modulating
the expression of ribosomal proteins (41). Indeed, tran-
scription of the V. cholerae S10 operon has been shown
to be regulated by an attenuator in the 50UTR (42). We
also identified candidate loci upstream of genes encoding
putative V. cholerae homologues of the E. coli cold-shock
proteins CspA and CspE. In E. coli, several genes involved
in the cold-shock response, including cspA and cspE, are
subject to auto-regulation mediated by structural changes
in their 50UTRs (5). Finally, candidate no. 29 was
identified 50 of the gene encoding the protein chaperone
GroES; a putative ‘fourU’ thermosensor has been
identified in the 50UTR of GroES in Salmonella sp. (43).
Taken together, our findings suggest that our mining was
effective in identifying previously unannotated functional
homologues of characterized 50UTRs.

Figure 3. Expression of GFP fused to indicated 50UTRs. Escherichia coli strains carrying the indicated fusions were grown in defined media lacking
both glycine and L-leucine (blue diamonds) or supplemented with either glycine (red squares) or L-leucine (green triangles). Results from a repre-
sentative experiment are shown.
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Identification of candidate r50UTR that do not share
conserved genomic context with known or putative
r50UTRs

Of the 69 previously unannotated putative r50UTRs we
identified in our screen, a total of 30 do not share
30CGC with known families of r50UTRs (Table 2). These
candidate r50UTRs were found upstream of genes
implicated in a variety of cellular processes and of 12
ORFs encoding hypothetical proteins. Multiple candi-
dates were identified upstream of genes implicated in
glycolysis, electron transport and peptidoglycan biosyn-
thesis/metabolism, suggesting these may represent
members of novel r50UTRs families that, like other
families of r50UTRs such as TPP riboswitches, are respon-
sible for regulating different steps in the same pathway
or process.

Using a GFP reporter approach to measure
r50UTR-mediated regulation

To experimentally test and begin to characterize a few of
the candidate r50UTRs identified in our screen, we
adapted an approach that was developed by Urban
et al. (24) to study sRNA-mediated regulation of
mRNAs in trans. Urban and colleagues constructed a
plasmid into which 50UTRs of interest can be introduced
directly downstream of a constitutive promoter to create
translational fusions with a gene encoding GFP. The flu-
orescence generated from GFP is used as a means to gauge
GFP expression from different fusions; a control fusion of
GFP to the E. coli LacZ 50UTR serves as a negative
control for these assays. Since the identical constitutive
promoter is present in all fusions, these constructs can
be used to measure regulation of gene expression that is
not mediated by changes in transcription initiation.

To test the efficacy of this approach for measuring
r50UTR-mediated regulation, we compared expression of
GFP fused to two characterized r50UTRs, E. coli LeuL
and the V. cholerae Glycine riboswitch, to that of GFP
fused to the E. coli LacZ 50UTR. As shown in Figure 3,
when cultures were grown in minimal media supplemented
with 16 amino acids excluding leucine and glycine, expres-
sion of all three fusions increased significantly. In the
control (LacZ) fusion, GFP expression was similar when
this medium was supplemented with either glycine or
leucine (Figure 3). In contrast, expression of GFP fused
to the V. cholerae Glycine riboswitch was almost
completely repressed when glycine was added to the
media; inhibition of GFP expression by glycine appears
to be fairly specific, since addition of leucine did not
repress GFP expression (Figure 3). Amino acid specificity
was also observed with GFP expression from the LeuL
fusion. However, in this case, expression was markedly
decreased when leucine was added; the addition of
glycine did not inhibit expression (Figure 3). Taken
together, these observations suggest that monitoring
GFP expression with this reporter system is a useful tech-
nique for investigating r50UTR-mediated regulation.
Finally, similar to the LeuL fusion, expression of a
C1-GFP fusion was also repressed by leucine but not

glycine, providing strong support for the bioinformatic
evidence implicating C1 as the V. cholerae LeuL.
In the case of LeuL, our results with the GFP fusion are

consistent with previous studies showing that the LeuL
leader down-regulates expression of the leuABCD
operon in response to leucine (31,32). However, the
glycine-mediated repression of GFP expression by the
V. cholerae Glycine riboswitch was surprising as Mandal
et al. (44) found that glycine had the opposite effect on
expression of a reporter gene fused to the B. subtilis
Glycine riboswitch. Interestingly, even though the
B. subtilis and V. cholerae Glycine riboswitches share sig-
nificant structure conservation (44), they are encoded 50 of
unrelated genes, the former upstream of gcvT, an
aminomethyltransferase that mediates conversion of
glycine to serine, and the latter upstream of vc1422,
a putative sodium/alanine symporter. VC1422 is a
homologue of E. coli CycA, an APC family transporter
of glycine, serine and alanine (45), as well as several other
gene products annotated as glycine symporters in both
Gram-positive and Gram-negative species. Our findings
suggest that even though the aptamer regions of the
V. cholerae and B. subtilis Glycine riboswitches share sig-
nificant structural conservation that has maintained their
specificity for glycine, the two riboswitches elicit opposite
regulatory responses on their respective 30 genes. The
V. cholerae Glycine riboswitch appears to have evolved
to up-regulate glycine uptake in the absence of glycine,
whereas the B. subtilis Glycine riboswitch has evolved to
up-regulate glycine catabolism when glycine is abundant.
The mechanisms that account for how these similar
riboswitches elicit opposite effects on the expression of
their respective 30 genes warrants further investigation.

Two candidates for novel r50UTRs down-regulate
expression of their downstream gene in response to
increased amino acid concentration

In the experiments described above, the cognate signals
for the r50UTRs of interest were known based on
previous studies. However, for the candidate r50UTRs
that do not share 30CGC with well-characterized classes
of r50UTRs, a priori determination of these signals is dif-
ficult. Since many r50UTRs are known to be regulated by
amino acids, we constructed fusions of GFP with several
candidate r50UTRs and measured their expression in
minimal media supplemented with either 1 or 0.1%
casamino acids (CAA). As shown in Figure 4, a construct
carrying the E. coli LacZ 50UTR produced more GFP in
the presence of 1% casamino acids (CAA) than in 0.1%
CAA, presumably due to an increase in translation effi-
ciency. In contrast, fusions of GFP with E. coli or
V. cholerae LeuL or the V. cholerae Glycine riboswitch
exhibited less GFP expression in high CAA. Similar
patterns of GFP expression (higher in 0.1% than 1%
CAA) were also observed when two candidate r50UTRs
were fused to GFP (Figure 4, ppbG and thiI). One of these
candidates is upstream of vca0870 encoding the
V. cholerae homologue of penicillin-binding protein 7
(pbpG), a protein involved in peptidoglycan metabolism
(46). The other candidate is upstream of a gene annotated
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as thiI. ThiI has been implicated in thiamine biosynthesis
and tRNA modification; in Salmonella typhimurium, ThiI
is the only component of the thiamine biosynthesis
pathway whose expression is not regulated by TPP
riboswitches (47). These observations suggest that the
pbpG and thiI UTRs mediate co- or post-transcriptional
repression of their respective downstream genes when
amino acid concentrations increase. However, it is not
clear from these data whether the pbpG and thiI UTRs
influence on gene expression is triggered by their direct
interaction with amino acids or through the participation
of other factor(s). As shown in Figure 4, both of these
candidate r50UTRs exhibited more GFP expression in
0.1% than 1% CAA in V. cholerae as well as in E. coli.
Thus, if additional factors are required for the regulatory
effects of these V. cholerae UTRs, these factors appear to
be conserved in E. coli. The relative expression of GFP
from the reporter construct carrying the 50UTR of candi-
date No. 12 in low and high CAA was similar to the
control LacZ construct (Figure 4), suggesting that this
candidate r50UTR is not sensitive to changes in amino
acid concentration; alternatively this candidate may not
correspond to a r50UTR.
As shown in Table 1, the thiI r50UTR shares conserved

30CGC with one SAM-IV riboswitch and with the
RLE0079 motif. The latter motif was identified upstream
of thiI homologues in seven Gram-negative species (13).
We identified a canonical Rho-independent terminator
near the 30 end of the thiI 50UTR, suggesting that the
regulatory effects of this UTR on thiI expression may be
achieved through a terminator/antiterminator switch.
Indeed, in Northern analyses, the abundance of a small
transcript overlapping the thiI 50UTR was markedly

increased in high versus low CAA (data not shown).
Putative Rho-independent terminators were also identified
within 100 bps of the thiI start codon in several E. coli
strains, Shewanella sp., Streptococcus sp. and Vibrio sp.
(21), suggesting that the thiI homologues in these strains
may be regulated by a similar mechanism.

The pbpG r50UTR lacks 30CGC with any known or
putative r50UTRs. Thus, it is not clear if this motif is
conserved in other species. Since no terminator was pre-
dicted in the pbpG 50UTR, the mechanism by which this
r50UTR mediates regulation of its downstream message is
not clear.

CONCLUSIONS

Taken together our findings suggest that transcriptome
profiles acquired through new deep sequencing techniques
will be a rich source of information about r50UTRs. We
developed a simple set of filters to mine the V. cholerae
small transcriptome acquired by pyrosequencing of cDNA
libraries. Our approach appears to be effective, as we
identified most of the previously annotated, though in
most cases not experimentally verified, r50UTRs but rela-
tively few of the total transcripts or trans-acting regula-
tory RNAs found in the original datasets. We also
identified numerous candidate r50UTRs not annotated in
previous computational screens that share conserved
genomic context with known r50UTRs. Finally, we
identified candidate r50UTRs upstream of several classes
of genes whose expression has not been previously
shown to be subject to regulation by r50UTRs. Thus,
our findings highlight the utility of mining deep-
sequencing transcriptome data as a complementary

Figure 4. Effect of increased amino acid concentration on the expression of GFP fused to known or candidate r50UTRs. Results from representative
experiments in E. coli and V. cholerae are shown.
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approach to computational screens for identifying
r50UTRs. Overall, our observations suggest that the
distribution of known classes of r50UTRs and the diversity
of functions regulated by r50UTRs are much greater
than what has been suggested by previous in silico
genomics-based annotations.

Although conservation-based computational
approaches such as Rfam are invaluable for identification
of r50UTRs, their reliance on homology to known
r50UTRs is an inherent limitation which preclude the iden-
tification of new classes of r50UTRs. Also, since these
approaches often rely on seed alignments of r50UTRs
from closely related species, identification of functional
homologues of known r50UTRs in species that are
highly diverged from those represented in the seed is
often not possible. Thus, using high-throughput
transcriptomics to identify novel r50UTRs and/or func-
tional homologues of known r50UTRs in less well-studied
bacterial species and then integrating these loci into
kingdom-wide bioinformatic screens could significantly
improve annotations for r50UTRs, particularly outside
well-studied genera.

Several recent studies have revealed that the diversity
of ligands and environmental cues that elicit r50UTR-
mediated regulation is greater than previously thought.
Thus, as more families of r50UTRs are identified using a
variety of approaches, the task of identifying each of their
specific cognate signals will become increasingly daunting.
The GFP reporter approach we have implemented for
validating r50UTR-mediated regulation here should be
useful in addressing this challenge, providing an efficient
way to screen a large number of candidate r50UTRs in a
wide variety of conditions.
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