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Abstract

A key goal for the perceptual system is to optimally combine information from all the senses that may be available in order
to develop the most accurate and unified picture possible of the outside world. The contemporary theoretical framework of
ideal observer maximum likelihood integration (MLI) has been highly successful in modelling how the human brain
combines information from a variety of different sensory modalities. However, in various recent experiments involving
multisensory stimuli of uncertain correspondence, MLI breaks down as a successful model of sensory combination. Within
the paradigm of direct stimulus estimation, perceptual models which use Bayesian inference to resolve correspondence
have recently been shown to generalize successfully to these cases where MLI fails. This approach has been known variously
as model inference, causal inference or structure inference. In this paper, we examine causal uncertainty in another
important class of multi-sensory perception paradigm – that of oddity detection and demonstrate how a Bayesian ideal
observer also treats oddity detection as a structure inference problem. We validate this approach by showing that it
provides an intuitive and quantitative explanation of an important pair of multi-sensory oddity detection experiments –
involving cues across and within modalities – for which MLI previously failed dramatically, allowing a novel unifying
treatment of within and cross modal multisensory perception. Our successful application of structure inference models to
the new ‘oddity detection’ paradigm, and the resultant unified explanation of across and within modality cases provide
further evidence to suggest that structure inference may be a commonly evolved principle for combining perceptual
information in the brain.
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Introduction

Bayesian ideal observer modelling is an elegant and successful

approach to understanding human perception [1]. One particular

domain in which it has seen much success recently is that of

understanding multisensory integration in human perception [2].

In this context, the ideal observer essentially specifies how the

information from each sense should be optimally weighted in

creating the unified percept of a particular source observed with

multiple cues or modalities. As an intuitive example, consider that

when walking your dog in the park on a clear day, you

automatically and easily locate it visually, without relying much

on the auditory localization of it’s bark – because the optimal

visual weight in this case is much larger. This has proven a good

qualitative explanation of numerous experiments including audio-

visual [3,4], visual-haptic [5,6], texture-stereo [7,8] and texture-

motion [9] pairs among others. The near optimal sensor fusion

observed widely across these different pairs of senses suggests that

this may be a common principle of sensory integration in humans.

However, these models have broken down when, in addition to

uncertain noisy stimuli, the observer is uncertain about the

correspondence of the multisensory observations, i.e., when it is not

clear whether two observations were indeed caused by the same

source of interest or not. Consider another intuitive example.

When your dog has run off while walking in the forest, it may not

be clear whether you should search for it: (i) in the direction it ran

off in (prior information), (ii) in the direction you see moving leaves

(visual information), (iii) in the direction you hear a bark from

(auditory information) or (iv) some particular weighted combina-

tion of (i)–(iii). If you hear a bark from the same direction as you

last saw the dog, and see moving leaves at a completely different

location, you might assume you heard your dog’s bark –

discounting the moving leaves entirely as being due to another

animal – and search in a direction somewhere between where it

was last seen and the bark. Alternately, if the leaves move where

you last saw your dog, but the bark comes from elsewhere, you

might do the opposite – discounting the bark as some other animal

instead. Unlike maximum likelihood integration (MLI), the

Bayesian structure inference approach provides a systematic and

quantitative solution to these kinds of problems.

In cases like the example described, MLI models have failed to

explain the experimental data. Fundamentally, this is because

although MLI models are derived from a probabilistic perspective,

they are not Bayesian about the uncertain correspondence between

the observations. Hence, we also refer to them as mandatory fusion

models because they assume observations correspond. This is in

contrast to structure inference (or causal inference) models which also

infer the causal structure of the multisensory observations.

Very recent work has begun to apply a complete Bayesian

structure inference perspective [10,11] to experiments with such

uncertainty [12,13,14], and have provided a good explanation for

the perceptual process in these cases [15,16]. However, to date, all

existing work on models of structure inference in human

perception has been applied to paradigms involving direct estimation
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of the stimulus. In this paper, we consider a related paradigm in

multi-sensory perception – that of multisensory oddity detection. We

show how multisensory oddity detection is a novel and

interestingly unique paradigm that require careful considerations

during modeling, how structure inference of causal uncertainty

applies in this context, and how it can explain and unify a pair of

experiments ([17]) where MLI previously failed dramatically.

In the remainder of this section, we review standard MLI ideal

observer modelling for sensor fusion, and show – by way of

theoretical argument as well as a concrete experimental example –

why the naive application of mandatory fusion MLI approaches

qualitatively fail to explain human multisensory oddity detection.

Standard Ideal Observer Modelling for Sensor Fusion
In the Bayesian modelling approach to perception, a generative

probabilistic model for the perceptual process is defined. This

describes the way in which signals are generated by a source, and

how they are then observed - including any distorting noise

processes. Predictions made by the results of optimal inference in

this model can then be compared to experimental results.

Standard sensor fusion theory assumes that multisensory

observations xm in modalities m are generated from some source

y in the world, subject to independent noise in the environment

and physical sensor apparatus, e.g., xm*N y,s2
m

� �
. The sensors

may have different variances s2
m. For example, in [5], subjects

make haptic xh and visual xv observations of a bar’s height y, and

must report their best combined estimate ŷyh,v

� �
of the true height.

This is an inference problem which can be represented by the

generative graphical model shown in Fig. 1. Under this particular

noise model, the posterior distribution of the height estimate is a

Gaussian p y xhj ,xv; s2
h,s2

v

� �
~N y; my h,vj ,s2

y h,vj

� �
, with mean and

variance given by eqs. (1–2):

my h,vj ~
s{2

h

s{2
h zs{2

v

xhz
s{2

v

s{2
h zs{2

v

xv, ð1Þ

s2
y h,vj ~

s2
hs2

v

s2
hzs2

v

: ð2Þ

For this Gaussian posterior p y xh,xvjð Þ, the optimal estimate to

make ŷyh,v

� �
under the standard mean square cost function [18] is

the mean of the posterior, which turns out to be the precision

(inverse variance) weighted average of the individual observations

(eq. (1)).

Psychophysics experiments such as [2,5] typically test multisen-

sory perception for optimality by matching to the ideal observer

performance in two ways. Firstly, the variance of the optimal

response s2
y h,vj is less than the variance of the individual

observations s2
h and s2

v (eq. (2)). Therefore, the distribution of a

human’s responses ŷyh,v to a multisensory stimulus should have a

lower variance than their responses ŷyh,ŷyv to the uni-modal stimuli.

Secondly, the multisensory response of the ideal observer is the

precision weighted mean of the uni-modal observations (eq. (1)).

Therefore, experimentally manipulating the variances s2
h,s2

v of the

individual modalities should produce the appropriate changes in

the human perceptual response ŷyh,v. These quantities can be

determined directly in direct estimation experiments (e.g., [12,13])

or indirectly via fitting a psychometric function in 2-alternative

forced choice experiments (e.g., [2,5]).

Oddity Detection
In the direct estimation scenarios, subjects try to make a

continuous estimate of a particular unknown quantity y, such as height

of the bar or spatial stimulus location based on noisy observations

xm, such as visual and haptic heights or auditory and visual

locations, respectively. In contrast, in the oddity detection paradigm,

subjects observe i~1 . . . N separate stimuli xm,i*N yi,smð Þ and

must make a discrete estimation o of the ‘‘odd’’ stimulus yo from

amongst the N§3 options yif gN
i~1. Depending on the experi-

mental paradigm, the odd stimulus may be detectable because it is,

for example, larger or smaller than the other stimuli.

Multisensory oddity detection is a particularly interesting problem

to study for various reasons. Notably, it provides novel paradigms

for manipulating the oddity. Specifically, a particular stimulus

might be the same as the others when averaged over its modalities

of perception (as required by mandatory fusion MLI), while each

individual stimulus modality could simultaneously be radically

discrepant. Such stimuli would be known as perceptual metamers,

meaning that although they would be physically distinct, they

would be perceptually indistinguishable under this theory of cue

combination. This provides a new and interesting test of Bayesian

perception, because if the nervous system was to necessarily fuse

the modalities first and use the fused estimates to detect oddity,

then it would not be able to detect such metamers. If on the other

hand, the nervous system made an inference about the structure of

the observations, it could detect such stimuli on the basis of

structure (correspondence) oddity. In the following section, we

formalize this inference paradigm and look in detail at a pair of

experiments that tested oddity detection and found MLI

mandatory fusion models unsatisfactory in explaining the data

completely.

Human Multisensory Oddity Detection Performance
Hillis et al. [17] studied multisensory oddity detection in

humans using N = 3 options in two conditions: visual-haptic cues

for size (across-modal cues) and texture-disparity cues for slant

(within-modal cues). For ease of comparison, we describe this

experiment in some detail, and will formalize the oddity detection

problem and our solution to it in the context of this experiment. It

should be noted that our approach can trivially be generalized to

other conditions, such as more modalities of observation and

selecting amongst N§3 options.

Three stimuli are presented in two modalities v and h (Fig. 2).

(To lighten the discussion, we will refer generally to the visual-

haptic (v-h) modalities when discussing concepts which apply to

Figure 1. Standard sensor fusion model. Bar size y is inferred on
the basis of haptic and visual observations xh and xv [17].
doi:10.1371/journal.pone.0004205.g001

Multisensory Bayesian Oddity

PLoS ONE | www.plosone.org 2 January 2009 | Volume 4 | Issue 1 | e4205



both the visual-haptic and texture-disparity experiments.) Two of

the stimuli are instances of a fixed standard stimulus ys and one is

an instance of the (potentially odd) probe stimulus yo. The

standard stimuli are always concordant, meaning that there is no

experimental manipulation across modalities; so ys~yh,s~yv,s.

The probe stimulus yo is experimentally manipulated across a

wide range of values so that the visual and haptic sources,

yv,o and yh,o, may or may not be similar to each other or to the

standard ys. The subject’s task is to detect which of the three

stimuli is the probe. If all the stimuli are concordant and the probe

is set the same as the standard ys~yo, then we expect no better

than random (33%) success rate (Fig. 2a). If all the stimuli are

concordant and the probe discrepancy is set very high compared

to the standard, then we expect close to 100% success rate (Fig. 2b).

However, if the probe stimulus is experimentally manipulated to

be discordant so that yh,o=yv,o, then the success rate expected will

depend on precisely how the subjects combine their observations

of yh,o and yv,o (Fig. 2c). The two dimensional distribution of

detection success/error rate as a function of controlled probe

values yh,o,yv,o can be measured and used to test different theories

of cue combination.

For a single modality, e.g. h, the error rate distribution for

detection of the probe yh,o can be modelled as a one dimensional

Gaussian bump centered around the standard yh,s. (If yh,s~yh,o

then detection of the odd stimulus will be at chance level, if

yh,o&yv,o then detection of the odd stimulus will be reliable, etc.)

The shape of the two dimensional performance surface for multi-

modal probe stimulus detection p success yh,o,yv,ojð Þ can be

modelled as a two dimensional bump centered at ys,ysð Þ.
Performance thresholds (the equipotentials where

p success yh,o,yv,ojð Þ~66%) are computed from the performance

surfaces predicted by theory and those of the experimental data.

The cue combination theories are evaluated by the match of their

predicted thresholds to the empirical thresholds.

Basic Cue Combination Theories
To parameterize models for testing, the observation precisions

first need to be determined. Following standard practice for MLI

modelling, Hillis et al. [17] measure the variances of the uni-modal

error distributions and then, use these to predict the multi-modal

error distribution under mandatory fusion cue combination theory

(refer eqs. (1) and (2)). (In the Results section, we will discuss why

this naive approach is not quite correct for this experiment.) On

this basis, Hillis et al. identify a set of four basic theories (Fig. 3) for

how the brain might perform the multisensory oddity detection

task, each with distinct predictions about the nature of the

threshold of probe detection around the standard stimulus (Fig. 3,

blue dot):

1. The probe stimulus might be detected based on one

observation modality i only, ignoring the other entirely. This

predicts a band, of width determined by the uni-modal

variance s2
i , within which the probe is too similar to the

standard to be reliably detected. The band would be

perpendicular to the axis of cue i and centered around the

standard stimulus ysð Þ (Fig. 3a, red lines).

2. The probe stimulus might be detected based on one cue and

then the other, in a cascaded sequence. This predicts a

rectangle about the standard ys within which the probe is too

similar to the standard to be reliably detected. The dimensions

of the rectangle are given by the intersection of the two bands

from the first option (Fig. 3a, red square).

3. It might compute a single fused estimate ŷyo based on the two

observations xh,o,xv,o (eqs. (1) and (2)) and then, discriminate

purely based on this estimate. In this case, although both cues

are now being used, some combinations of cues would produce

a metameric probe, i.e., physically distinct but perceptually

indistinguishable. Specifically, if we parameterise the probe

stimuli as yh,o~yh,szDyh,o,yv,o~yv,szDyv,o, then along the

line where Dyh,o~{
s2

v

s2
h

Dyv,o, the fused estimate is the same as

the standard ŷyh,o~ys and the probe would be undetectable.

The band of non-detection is therefore along the cues-

discordant diagonal ((Fig. 3b), green band). The orientation

and width of this band are determined by the ratio

s2
v

�
s2

h and s2
y h,vj , respectively. Performance along the cues-

concordant diagonal is, however, improved compared to the

single cue estimation cases (compare quadrants 1 and 3 in

Fig. 3a,b) because the combined variance is less than the

Figure 2. Schematic of visual-haptic height oddity detection experimental task from [17]. Subjects must choose the odd probe stimulus
based on haptic (textured bars) and visual (plain bars) observation modalities. a) Probe stimulus is the same as the standard stimuli: detection at
chance level. b) Probe stimulus bigger than standard: detection is reliable. c) Haptic and visual probe modalities are discordant: detection rate will
depend on cue combination strategy.
doi:10.1371/journal.pone.0004205.g002
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individual variances s2
y h,vj vs2

h and s2
y h,vj vs2

v

� �
. This is the

standard mandatory fusion MLI theory.

4. It might perform combined and single cue detection in

sequence, giving a prediction which is the intersection of the

second and third options (Fig. 3c, yellow area).

Human Performance
Two variants of the experiment were performed, one for size

discrimination across visual and haptic modalities (standard:

ys~55 mm), and one for slant discrimination using texture and

stereo disparity cues within vision (standard: ys~0 deg). Com-

paring the threshold predictions (lines) to the results observed by

Hillis et al. [17] for two sample subjects (data points) in Fig. 4,

there are several points to note: i) In the cues concordant

quadrants (1&3), the multi-modal performance is increased

compared to the uni-modal performance, as predicted by the

fusion theories (magenta points and green lines are inside the red

lines in quadrants 1&3). This suggests that some cue combination

is taking place, and that the first two basic theories (1, 2) of

independent, uni-modal, detection are insufficient. ii) Particularly

in the intra-modal case (Fig. 4b), the observed experimental

performance is significantly worse in the cues discordant quadrants

(2&4) than predicted by any of the basic theories (1, 2, and 4)

which allow detection based on individual cues (magenta points

are outside of the red lines in Fig. 4(b), quadrants 2&4). In both

experiments, the last basic theory (4) of sequential combined and

single cue detection also fails, as performance is worse than it

predicts (magenta points outside the inner bounding box of lines in

Fig. 4, quadrants 2&4).

Since the poor performance in the cues discordant quadrants

2&4 was noted to be less prominent in the inter-modal case

(Fig. 4a), Hillis et al. concluded that mandatory fusion applied

within (Fig. 4b) but not between (Fig. 4a) the senses [17]. However,

Figure 3. Oddity detection predictions of the naive cue combination models. (a) Detection based on individual cues only. (b) Detection
based on a single fused estimate ŷyo . (c) Detection based on both individual cues and a single fused estimate. Shaded areas indicate regions below
threshold probability of correct detection. The standard stimulus ys is indicated by a blue dot in the centre of each plot. Tv and Th indicate uni-modal
visual and haptic thresholds respectively. Coloured lines indicate multi-modal detection rate contours.
doi:10.1371/journal.pone.0004205.g003

Figure 4. Oddity detection predictions and experimental results. Experimental data for two sample subjects from [17]. (a) Visual-haptic
experiment. (b) Texture-disparity experiment. Red lines: Observed uni-modal discrimination thresholds. Green lines: Discrimination threshold
predictions assuming mandatory fusion. Magenta points: Discrimination threshold observed experimentally.
doi:10.1371/journal.pone.0004205.g004

Multisensory Bayesian Oddity
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even in the intra-modal case, the region of non-detection defined

by the magenta points is only extended slightly away from the

centre along the cues-discordant diagonal, whereas the mandatory

fusion theory predicts that it should extend along an infinite

metameric band. The strongest conclusion that can be drawn is

therefore that intra-modal perception shows a stronger tendency

toward fusion than inter-modal perception.

None of the basic theories proposed (1,2,3,4) explain the

qualitative shape of the data well - good performance in the cues

concordant quadrants 1&2 as well as a limited region of poor

performance in the cues discordant quadrants 2&4. In particular,

the classical theory of ideal observer maximum likelihood

combination which Hillis et al. concluded applied in the within-

modal case retains a strong qualitative discrepancy with the

experimental results (Fig. 4b, green lines and points). In the next

sections, we will show how a corrected formalism of the oddity

detection problem and structure inference can together explain

this data quantitatively and intuitively without the large discrep-

ancy entailed by maximum likelihood, mandatory fusion combi-

nation.

Modelling Oddity Detection
We now introduce the two novel contributions required to

model multisensory oddity detection and interpret the results in

[17]. Firstly, we will introduce a model selection framework to

represent the oddity problem and the explicit inference of the odd

stimulus. This is in contrast to the approach of Hillis et al. as

described previously, which focused on inference of the latent

stimulus and only dealt implicitly with actual identification of the

odd stimulus. The explicit representation of oddity is necessary,

but as we shall see, it is insufficient to completely understand this

multisensory oddity detection problem. We will then introduce the

second key step, which is to represent the structure uncertainty in

the probe distribution.

Formalizing Optimal Oddity Detection
Ideal observer theories of cue combination in human multisen-

sory perception have been tested extensively in the form of simple

sensor fusion models [2,5,6,9,19]. Since these experiments are

describable by a simple factored Gaussian parametric form (Fig. 1),

the optimal computations to use for inference were those described

by eqs. (1) and (2).

However, the perceptual task of oddity detection is not actually

properly described by the standard factored Gaussian parametric

form. This is because the task posed - ‘‘Is stimulus 1, 2 or 3 the odd one

out?’’ - is actually no longer simply an estimation of a combined

stimulus ŷyh,v. Such an estimation is involved in solving the task, but

ultimately the task effectively asks subjects to make a probabilistic

model selection [20,21] between three models. (Note that this

problem can also be understood as finding the most likely

assignment of points in a clustering task. Specifically, consider

mixture of Gaussian clustering of three two-dimensional points

into two clusters with unknown means.) To understand the model

selection interpretation intuitively, consider the following reason-

ing process: I have experienced three noisy multisensory observations. I do not

know the true values of these three stimuli, but I know they come from two

categories, standard and probe. Is it more plausible that: 1. Multisensory

stimuli two and three come from one category, and stimulus one comes from

another? Or: 2. Stimuli one and three come from one category, and stimulus two

comes from a different category? Or: 3. Stimuli one and two come from one

category, and stimulus three comes from another?

With this in mind, to take a Bayesian ideal observer point of

view on this experiment, we clearly need a more sophisticated

model selection approach than the simple factored sensory fusion

approach of Fig. 1. This should integrate over the distribution of unknown

stimulus values ys and yo (since subjects are not directly asked about

these) in determining the most plausible model (assignment of

oddity).

A generative model Bayesian network formalisation of the

oddity detection task for the three multisensory observations

xh,i,xv,if g3
i~1 is shown in Fig. 5, where the task is to determine

which observation is the odd probe. The graph on the right

indicates that the probe visual-haptic observations are related via

their common parent, the latent probe stimulus of value yo. The

graph on the left indicates that the four observations composing

the other two standard stimuli are all related to the standard

stimulus value ys. The three different instantiations of this model

are given by the different probe hypotheses o = 1, 2, 3 which

separate the standard and probe stimuli into different clusters. For

compactness, we represent this clustering in terms of the set

difference operator ‘\’. For example, o = 3 would mean that stimuli

{1,2,3}\3 = {1,2} are drawn from the standard ys, and therefore

observations xh,1,xv,1,xh,2,xv,2f g (Fig. 5, left) should be similar to

each other – and potentially dissimilar to odd probe observations

xh,3,xv,3f g (Fig. 5, right), which were generated independently

from yo. With uniform prior belief about which stimulus o is the

odd probe, the ideal Bayesian observer would compute the

evidence p xh,i,xv,if g3
i~1 o,hj

� �
for each of the three models o as,

p xh,i,xv,if gi~1,2,3

���o,h
� �

~

ð
p xh,i,xv,if gi[ 1,2,3f g\o,ys o,hj
� �

dys

ð
p xh,o,xv,o,yo o,hjð Þdyo,

~ps xh,i,xv,if gi[ 1,2,3f g\o o,hj
� �

po xh,o,xv,o o,hjð Þ,

ð3Þ

and report the model with the highest likelihood

ôo~arg maxo p xh,i,xv,if g3
i~1 o,hj

� �
. Eq. (3) has two factors

ps and po, representing the model’s explanation of the standard

and odd observations respectively after integrating over the

unknown true stimuli values ys and yo. Here, h summarises all

the fixed model parameters, e.g., the observation variances

s2
h and s2

v . In the event that all distributions involved are

Gaussian, eq. (3) is simple to evaluate (see Methods for the

detailed parametric form and derivation).

Figure 5. Graphical model for oddity detection by model
selection. Three possible models, indexed by o, corresponding to each
possible assignment of oddity. To compute the stimulus most likely to
be odd, compute the evidence for each model p xx,i,xv,if gi~1,2,3 oj

� �
.

Standard and probe stimulus values ys,yo are not directly requested of
the subjects, and are only computed indirectly in the process of
evaluating the model likelihoods.
doi:10.1371/journal.pone.0004205.g005

Multisensory Bayesian Oddity
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This model (Fig. 5, eq. (3)) predicts probe detection only outside

of the cues-discordant diagonal (Fig. 6a,b, lines), which is still

qualitatively similar to the simple factored fusion model (Fig. 3b)

and still does not match the data (Fig. 6a,b, points).

Some intuition about how this works can be gained by

considering the form of the entire normalised data distribution

p xh,i,xv,if g3
i~1 o,hj

� �
for each model o [20], which in this case

factorizes into a standard and probe component (eq. (3)). For

example, the model o = 3, predicts that the probability mass of the

distribution of observations xh,1,xv,1,xh,2,xv,2f g should lie around

a four dimensional line through the standard stimuli (where

xh,1~xv,1~xh,2~xv,2) while the distribution of probe observations

xh,3,xv,3f g should lie around the line where xh,3~xv,3 in two-

dimensional space. Assuming, for example, that the true model is

o = 3, then observations at the point indicated by the diamond in

Fig. 6a will be correctly classified: The correct model o = 3 will

have high likelihood as the first four observations will be very

similar and lie within the standard probability mass and the two

probe observations will be similar to each other and lie within the

probe probability mass. An incorrect model, e.g., o = 1, will have

low likelihood because the observation xh,2,xv,2,xh,3,xv,3f g are not

at all similar, and so do not lie within the standard probability

mass.

Consider instead the point indicated by the cross in Fig. 6a.

Here, under the hypothesis that o = 3, while the standard

observations do lie within the standard probability mass, the

discordant probe observations do not lie within the probe

probability mass (which was around the line where xh,3~xv,3),

so this hypothesis is unlikely. However, the other hypotheses are

also unlikely. For example, consider the alternative o = 1, then

although xh,3,xv,3f g does lie within the probe mass, the remaining

observations xh,2,xv,2,xh,3,xv,3f g have discordant components and

now no longer lie within the standard mass. Therefore no one

model is clearly the most probable and detection is unreliable.

Structure Inference
All of the models discussed so far (Figs. 1 and 5) have assumed a

fixed structure. Recent multisensory perception experiments

[12,13,14,17,22], have, however, presented subjects with what is

essentially a variable causal structure with respect to the observation

correspondence. It is therefore unsurprising that the simple fixed

structure ideal observer models have failed to explain the results.

The group of Schirillo, for example, investigated audio-visual

spatial localization in humans [12,13]. Subjects were presented

with stimuli from a range of audio and visual stimulus positions; so

some were concordant and others were not. They were asked to

point out where they thought the audio stimulus came from and

whether they thought the visual stimulus co-occurred with the

audio stimulus. When the audio and visual stimuli were similar, a

unified percept was reported and the reported position was

approximately the weighted average of the stimulus as we might

expect from maximum likelihood integration [15,16]. When the

stimuli were very discrepant, they were reported to be non-unified,

and the position report showed no or negative interaction. The

extra uncertainty here is whether the multisensory stimuli did

indeed come from the same source or not. This is equivalent to

posing uncertain causal structure in the probabilistic model for the

ideal observer. We introduced the approach needed to solve this

type of problem in multisensory perception as structure inference [11].

Kording et al. [15] carried out a detailed analysis of these

experiments [12,13] and showed how the structure inference

approach was necessary to explain the results, but termed the

procedure causal inference.

Modelling Structure Inference in Oddity Detection
Returning to the oddity experiment of interest, the region of the

probe stimulus space not explained by current models is that in

which multisensory probe observations are manipulated such that

they have implausibly large cross-modal discrepancy. In doing so,

they have introduced variability that the models so far (Figs. 1 and

5) cannot represent, so of course they do not predict the data well

(Figs. 3 and 6).

The subjects could detect the probe on the discordant-cues axis

(on which neither of the models so far can detect the probe) if they

can infer this change in structure – a potential explanation for the

exact source of discrepancy identified earlier between the observed

results and our model so far. Indeed in their post experimental

analysis, Hillis et al. [17] noted that, ‘‘Sometimes [the subjects] used a

difference in perceived size, but frequently they noticed the conflict between the

visually and haptically specified sizes and used the perceived conflict to make

Figure 6. Oddity detection predictions of model selection approach. Oddity detection performance (grey-scale) as a function of probe value
for the model selection approach (Fig. 5). Compare the 66% contours (lines) with human performance (dots). Model still predicts an infinite region of
non-detection along the cues-discordant diagonal. (a) Across modality visual-haptic experiment. (b) Within modality texture-disparity experiment.
Illustrative points correctly (diamond) and incorrectly (cross) classified by model (see text for details).
doi:10.1371/journal.pone.0004205.g006
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the oddity discrimination.’’ Although unlike [12,13], Hillis et al. did

not systematically ask subjects for their perception of multisensory

unity or not for each stimulus, this comment strongly suggests that

the subjects in [17] did infer and use the information about the

unusual structure in their task (as they have in other related

experiments [12,13,15]). Next, we formalize how to model the

structure uncertainty in oddity detection.

Our model selection interpretation of the oddity detection

problem (Fig. 5), can easily be updated to take into account the

potential dis-association of the two probe stimulus modalities as

shown in Fig. 7. Note that the original simple factored model

(Fig. 1) cannot be updated in this way. Here, the Bernoulli

association variable C has been introduced to represent the

uncertain structure: whether the multisensory probe observa-

tions have a common source or not. This unavoidably

introduces the free parameter pc in the prior for C, i.e.,

p Cð Þ~pc 1{pcð Þ 1{cð Þ
. If we were certain a-priori of common

causation pc~1ð Þ, we then have the special case of the model

from Fig. 5. If 0vpcv1, then while computing the evidence for

each model p xh,i,xv,if g3
i~1 o,hj

� �
, we integrate over the causal

structure C (i.e., whether we are feeling and seeing the same

thing or not). The exact value of pc used will depend on the

particular combination of senses or cues being used and the

particular context and task (and it may vary between people, as

do s2
v , s2

h etc). Under the hypotheses of common causal

structure C = 1, we assume that the two observations xh,o,xv,o

were produced from a single latent variable ys, while under the

alternate hypothesis C = 0, we assume separate sources

yh,o and yv,o were responsible for each. To evaluate the

likelihood of each stimulus being the odd probe o, the ideal

Bayesian observer would compute and compare the model

likelihoods p xh,i,xv,if g3
i~1 o,hj

� �
as follows:

p xh,i,xv,if g3
i~1 o,hj

� �

~
X

C

ð
p xh,i,xv,if g3

i~1ys,yo,yh,o,yv,o,C o,hj
� �

dysdyodyh,odyv,o:
ð4Þ

Compared to eq. (3), we now also account for uncertainty in

whether we are, for e.g., feeling or seeing the same thing. This is

again simple to compute if all the stimulus distributions are

Gaussian, requiring only numerical integration of the binary

causal structure variable, C. The specific parametric solution

used is derived in the Methods section.

Results

To evaluate our multisensory oddity detection model, we

compute the success rate distribution produced by our model

when detecting the probe, ôo~arg maxo p xh,i,xv,if g3
i~1 o,hj

� �
, as a

function of the probe values yv,o and yh,o. We can then compare

the 66% performance thresholds of the model’s success rate

distribution pm ôocorrect ys,yh,o,yv,ojð Þ against the human success rate

distribution pe ôocorrect ys,yh,o,yv,ojð Þ as measured in [17] (Fig. 4,

dots). See Methods for details.

Bayesian Multisensory Oddity Detection Results
Detection Threshold Contours. Figs. 8a and b illustrate the

across and within modality results respectively for the two sample

subjects from Fig. 4. The experimental data (dots) are shown along

with the global performance of the model across the whole input

space (grey-scale background, with white indicating 100% success)

and the 66% performance contour (blue lines). The human

experimental measurements broadly define a region of non-

detection centered about the standard stimuli and slanted along

the cues discordant line and stretched slightly outside the bounds

of the inner uni-modal threshold rectangle. The extent of the non-

detection region along this line is increased somewhat in the within

modality case as compared to the across modality case [17].

As discussed in the Introduction, none of the simple models –

single cue based estimation (Fig. 3a, red lines), mandatory fusion

(Fig. 3b, green lines) or combination thereof – explain these

particular observations. Moreover, the classical maximum likeli-

hood mandatory fusion theory makes the qualitative error of

predicting infinite bands of indiscriminability (Fig. 3, green lines).

Figure 7. Graphical model for oddity detection via structure inference. Three possible assignments of oddity correspond to three possible
models indexed by o = 1,2,3. The uncertainty about common causal structure of the probe stimulus is now represented by C, which is computed in
the process of evaluating the likelihood of each model o.
doi:10.1371/journal.pone.0004205.g007
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In contrast, our Bayesian model provides an accurate quantitative

fit to the data (Fig. 8, blue lines).

To quantify this, we followed [17] in computing the distance

from the standard to each experimental threshold point and the

closest predicted threshold along the vector to that point (Fig. 8,

points and lines). We could then compare the root mean square

error (RMSE) between the experimental threshold distance and

the threshold distance predicted by the various models. The

qualitative discrepancy between the data and the solely uni-modal

or solely mandatory fusion models is clearly highlighted by this

measure: Since for many experimental data points there are no

predicted thresholds on that vector, these models have infinite

error. The two remaining simple models were based on

sequentially testing each uni-modal cue independently (Fig. 8a,

red rectangle) and sequentially testing the fused estimate followed

by each uni-modal cue independently (Fig. 8c, yellow region). We

therefore compared our Bayesian model against the sequential

uni-modal and sequential fusion models, which had RMSE of

0.8 mm, 0.9 mm and 1.1 mm respectively in the across-modality

experiment and RMSE of 2.6deg, 3.9deg and 5.0deg respectively

in the within-modality experiment. Our Bayesian ideal observer

model therefore provides the best quantitative match to the data as

well as the only explanation of the data’s specific qualitative form:

good performance in quadrants 1&3 as well as a limited region of

poor performance in quadrants 2&4.

To produce these contours, we coarsely fit the prior probability

of fusion pc to the data, so as to minimise the contour error,

determining pc~0:935 and pc~0:99 for the across and within

modality cases respectively. These values are larger than the

pc~0:28 obtained for the related model in [15]. This is

understandable, because [15] integrated audio and visual stimuli

from distinct locations, which in general should be less correlated

than in our case, where stimuli were perceived at the same spatial

location. Note also that, as observed, we might expect a stronger

prior for fusion within vision, since visual cues at the same retinal

location are very likely to be due to the same object, whereas

seeing and manipulating different objects simultaneously some-

times occurs.

To gain some intuition into these results, we can again consider

the normalised distribution of the data (eq. (4)) under each model

here as compared to the fixed structure case discussed in the

Introduction, eq. (3). Now, after marginalising over C, the

probability mass in the probe part of this distribution is a mixture,

spread both around xh,o~xv,o as before (C = 1) and also more

uniformly over the space (C = 0). Therefore, multisensory obser-

vations involving sufficiently discordant points are relatively

plausible under the probe distribution, allowing points in quadrant

2&4 to be correctly classified; which was not possible in the

example described in the Introduction.

Perception of Fusion. To understand clearly how the

Bayesian model works, we can also consider its marginal

inference for the fusion (common multisensory source) of the

probe pm C ys,yh,o,yv,ojð Þ, shown in Fig. 8c,d. This corresponds to

the human answer to the question ‘‘Do you think your visual and haptic

observations are caused by the same object, or have they become discordant?’’

This question was unfortunately not asked systematically in [17],

but the subjects’ self-reporting of a detection of discordant cues is

in line with the strategy that falls out of inference with our model.

Along the cues concordant line, the model has sensibly inferred

fusion (Fig. 8c,d, quadrants 1&3). In these regions, the model can

Figure 8. Oddity detection predictions of structure inference approach. (a,b) Oddity detection rate predictions for an ideal Bayesian
observer (grey-scale background) using a variable structure model (Fig. 7); Oddity detection contours of the model (blue lines) and human (magenta
points) are overlaid with the model prediction from [17] (green lines); Chance = 33%. (c,d) Fusion report rates for ideal observer using variable
structure model. Chance = 50%. Across modality conditions are reported in (a,c) and within modality conditions are reported in (b,d).
doi:10.1371/journal.pone.0004205.g008
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effectively detect the probe (Fig. 8a,b, quadrants 1&3), and the

fused probe estimate ŷyo is different to the standard probe estimate

ŷys.

Considering instead trials moving away from the standard along

the cues discordant line, the model eventually infers fission

(Fig. 8c,d, quadrants 2&4). The model infers the probe stimuli

correctly in these regions (Fig. 8a,b, quadrants 2&4) where the

mandatory fusion models cannot (Fig. 8a,b, quadrants 2&4, green

lines) because the probe and standard estimates would be the same

ŷyo~ŷys. The strength of discrepancy between the cues required

before the fission is inferred depends on the variance of the

observations s2
h and s2

v

� �
and the strength of the fusion prior pc,

which will vary depending on the particular task and combination

of modalities. Data for a total of nine conditions (five across and

four within modality) were reported in [17]. The resultant fits of

our model to the remaining experiments along with the

comparative error analysis (RMSE) to the other models are

detailed in the Supporting Information, Text S1 and Fig. S1.

Predictions. The internal workings of the Bayesian model

developed here provide new directly testable predictions about

human behaviour in this task. If the participants were also asked

for their percept of fusion/fission as well as their oddity estimate

(e.g., as in the audio-visual experiments [12,13]), then the model

makes some specific and surprising predictions for oddity detection

rate as a function of whether a given trial was also perceived as

fused or not. These are illustrated in Fig. 9.

N Although overall performance for detecting probes away from

the standard was good (Fig. 8a,b, all quadrants), for those trials

where fusion was specifically reported, the discrimination will

be more reliable off the cues-discordant axis (Fig. 9a,b).

Explicitly, see the increased extent of the detection threshold

contour along the cues discordant axis in Fig. 9a,b compared

to Fig. 8a,b.

N More strikingly, for those trials where fission was reported, the

discrimination will only be reliable off the cues-concordant axis

(Fig. 9c,d). This is the opposite effect to that of trials overall

(Fig. 8a,b) and fused trials (Fig. 9a,b). To gain some intuition

about this, consider that for a cues-concordant trial to have

been inferred as fission, there must have been unusually large

noise separating the observations xh,i and xv,i composing the

particular multi-modal stimulus i which was inferred to be the

probe. However, this event would be just as unlikely to happen

to a pair of the true standard observations (causing wrong

probe identification) as it would be for the pair of true probe

observations. Hence, probe detection under these circum-

stances would be unreliable.

Discussion

Summary
In this paper we have developed a Bayesian ideal observer

model for multisensory oddity detection and tested it by re-

examining the experiments of Hillis, Ernst, Banks & Landy [17].

In [17], the standard maximum likelihood integration ideal

observer approach failed with drastic qualitative discrepancy

compared to human performance; however, this was due to simple

maximum likelihood fusion being an inappropriate model rather

than the failure of ideal observer modelling. The more complete

Bayesian ideal observer model developed here provides an

accurate quantitative explanation of the data with only one free

parameter pc, which represents a clearly interpretable quantity:

Figure 9. New predictions by the ideal Bayesian observer using the variable structure model. (a,b) Detection rate for trials where fusion
was reported (Chance = 33%). (c,d) Detection rate for trials where fission was reported (Chance = 33%). Across-modality condition in (a,c), within
modality condition in (b,d). Blue lines indicate contours of detection threshold (66%).
doi:10.1371/journal.pone.0004205.g009
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prior probability of common causation. Optimization intuitively

sets it to be greater in the within modality case than the across-

modality case.

Two novel steps were required to correctly model the

multisensory oddity detection problem. The first was the

understanding of the problem as a model selection task related

to clustering. The unknown bar size or surface slant is of key

consequence for the oddity detection, but not directly reported

and should therefore be modelled, but integrated over by a

Bayesian observer. Our interpretation of the problem is also

satisfying in that all the variables in the model represent concrete

physical quantities (e.g., haptically observed bar height xh,i for

each object i, unknown discrete index o of the odd object). This is

unlike the analysis in [17] which attempted to model the detection

rate contours directly without inference or notion of which

particular object o was odd: a quantity which the brain is clearly

computing since it is the goal of the task. Moreover, within the

field of perceptual modelling, we are interested in possible

computational mechanisms behind the inference of quantities of

interest – in this case ‘oddity’; we have provided an explicit

mechanism that may underlie this capability.

The second novel step required was the use of a model with

variable structure to appropriately reflect the subject’s uncertainty

in the causal structure C of their observations due to the

experimental manipulation. This structure inference approach

[11] has recently been used to understand other similarly

perplexing experimental results in human audio-visual multisen-

sory perception [12,13,14,15,22].

In summary, the standard maximum likelihood integration

approach to sensor fusion has dramatically failed to explain the

experimental data in [17]. This data can now be understood as

result of the perceptual system behaving as a Bayesian ideal

observer, computing the most likely probabilistic model for noisy

data under uncertain causal structure. This theory provides an

accurate and intuitive explanation of the data and, via the

parameter pc, unifies the within and across-modal scenarios.

Related Research
The framework proposed may seem more complicated than the

simple factored cue combination approach (Fig. 1). However, this

is necessary and appropriate, because the actual experimental task

of oddity detection under causal structure uncertainty is more

complicated than the simpler task of stimulus estimation by cue

combination. Our approach is parsimonious in that, within the

research theme of investigating the extent to which human

perception is Bayesian optimal [23,24], models should use the

same generative process as the perceptual experiment. By

modelling the three sets of stimuli, including the selection of a

probe stimulus and potential disassociation within that stimulus,

we have done just this – and provided the best explanation of the

data. Finally, despite any apparent complexity, the new model

introduces only one new free parameter.

Further studies have investigated stereo-texture fusion [7,8] for

slant perception and visual-haptic fusion [6] for size perception in

greater detail, using simpler 2-alternative forced choice paradigms.

These have provided further support for the near Bayesian

optimality of human multisensory fusion, but only within the

domain of small discrepancies where mandatory fusion applies.

Returning to the 3-alternative oddity task, a simple maximum

likelihood estimator for uni-modal oddity is the ‘‘triangle rule’’

([25]). This measures the distances between all three point

combinations, discards the two points with minimum distance

between them, and nominates the third point as odd. However,

this does not provide an acceptable alternative model of the

multisensory oddity detection scenario studied here as it does not

attempt to address the uncertain correspondence between

multisensory observations. Specifically, if the multisensory obser-

vations were considered to be fused first (eq. (1)), metameric

discordant probe observations would still occur – and these cannot

be detected by this rule, again producing an infinite band of non-

detectability (Fig. 4, green lines). In contrast, if the rule were

applied directly to the multisensory observations in two dimen-

sions, there would be no room for fusion effects, and detection

would be good throughout, in contrast to the tendency toward

fusion illustrated by the human data (Fig. 4, magenta dots).

The theory and practice for modelling uncertain causal

structure in inference tasks has a more extensive history in other

fields. In artificial intelligence, the theory goes back to Bayesian

multinets [26], and is applied today, for example, in building

artificial intelligence systems to explicitly understand correlations

in multi-party conversations [11]. In radar tracking, this problem

is known as data association [27]. Its solutions are used to sort out

multiple radar detections, with uncertain causal relation to

multiple aeroplanes, into a consistent and accurate estimate of

the aircraft locations.

A variety of recent studies have investigated the limits of

multisensory cue combination, and have reported ‘‘robust’’ combi-

nation, i.e., fusion when the cues are similar and fission when the cues

are dissimilar [7,12–14,22,28–30]. Structure inference models of the

type introduced in this paper (and the equivalent models for other

experimental paradigms [15]) can in general explain such robust

combination results [11]. Some authors have tried to understand

robust combination by simply defining a correlated joint prior

p yh,yvð Þ over the multisensory sources like yh and yv. In [29–31],

this is Gaussian in their difference, reflecting a prior belief that visual

and haptic stimuli in the environment are likely to be similar. This

prior, however, is insufficient, as it cannot explain complete

segregation (complete non-interaction of the observations) observed

in many experiments since the jointly Gaussian prior precludes this.

Alternately, [28] proposes a joint prior with the special form of a

Gaussian-uniform sum to reflect the fact that the observations in the

environment are frequently very correlated but sometimes completely

unrelated. This is related to our model in that if we chose not to

explicitly represent structure C, and simplified our generative model

as
P

C p yh,o,yv,o C,hjð Þp C hjð Þ, then the joint probability of the

visual and haptic stimuli would have qualitatively a Gaussian-uniform

sum form. Inference of the probe stimulus values yv,o,yh,o in this case

would tend to be fused if the observations xh,o, xv,o were similar,

and be independent if the observations were dissimilar. However,

this would be unsatisfactory in our case as the model would be

unable to represent all the regimes of the experiment. Moreover, the

model would then not explicitly represent the structure C, which

subjects do infer explicitly as reported in [17] and other related

experiments [12,13]. Another reason for the perceptual system to

explicitly represent and infer causal structure is that it may be of

intrinsic interest. For example, in an audio-visual context, explicit

knowledge of structure corresponds to knowledge of ‘‘who said

what’’ in a conversation (for example, see [11]).

A related issue in theoretical modelling of perception is those

scenarios in which we expect the prior distribution over an individual

stimulus source to be a mixture. For example, Knill [32] considers

the case of apparent visual ellipses which may have come from the

set of true ellipses or the set of slanted circles. Combined with stereo

cues for slant, estimation of ellipse slant also involves non-linear cue

combination because of this mixture. However, this is not the same

problem as we address in this paper: the correspondence of the

multisensory observations or causal model structure in that case is

assumed known (Fig. 1), unlike the case studied here (Fig. 7).
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One question for future research, which we do not consider

here, is that of ancillary cues and their impact on model

parameters. Ancillary cues are frequently considered in their role

of providing information about the reliability of the main cues for

weighted averaging [2]. They could also affect the parameters of

the structure inference procedure. As an example, the strength of

the fusion prior pc might decrease with the spatial discrepancy of

the visual and haptic cues [33].

How might the perceptual system’s neural architecture perform

the computations proposed in this paper to solve the oddity

detection problem? Work on probabilistic population coding

describes how neural populations could represent and compute

with probability distributions such as those used here [34,35]. For

the computations involved in multisensory integration, we need to

compute products of probability distributions; indeed, population

codes represent-able by neurons with Poisson firing statistics would

be particularly well suited for rapid computation of such

operations [36]. Further experimental work is needed to confirm

whether any of these proposed population coding models are

actually implemented by biological neural networks.

Conclusions
In this paper, we have derived a Bayesian model for

multisensory oddity detection which exploits structure inference

[11,15,16]. With this model, we are able to understand the results

of experiments on human multisensory oddity detection [17]

which the classical maximum likelihood integration theory, and

other simpler theories for cue combination, fails to model with

drastic qualitative discrepancy. Moreover, the structure inference

approach unifies the existing discrepant results for across and

within-modality scenarios – and makes new testable predictions for

further experiments.

In addition to the audio-visual domain and direct estimation

paradigm investigated by related work [15,16], we have now

provided evidence that structure inference occurs in combining

visual-haptic as well as texture-disparity observations, and does so

in a completely different oddity detection paradigm. The

commonality of this collection of results – across and within

different types of modalities, and across different experimental

paradigms – begins to suggest that structure inference may actually

be a commonly evolved principle for combining perceptual

information in the brain.

Methods

Setting Model Parameters
Our model contained four parameters: The noise level of each

modality (for e.g., s2
h, s2

v ), the prior belief about the distribution of

bar heights (y), and the prior probability of fusion pcð Þ. The standard

approach for sensory integration modelling (e.g., refer [2,5]) is to

determine the variances in each modality independently in uni-

modal experiments, thereby eliminating them as free parameters. In

our case, this involves simulating the uni-modal experiments and

matching the outcome to the uni-modal experimental results (Fig. 4,

red lines). Specifically, we take the model of eq. (4), Fig. 7 and

consider only one modality at a time (without using the extra

structure variable as this is only relevant for multi-modal

observations). For any given setting of s2
i , we can simulate the

whole uni-modal experiment and measure the 66% performance

threshold. So, we simply perform a one dimensional search to find

the value of s2
i which produces the threshold most closely matching

the uni-modal experimental data (Fig. 4, red lines).

For a Bayesian model, we are unavoidably required to specify

some prior belief about the latent stimulus sizes y, and it is

mathematically convenient for these to also use a Gaussian

parametric form p yð Þ~N y; my,s2
y

� �
. We use the same distribu-

tion for all the latent y. We assume subjects have correctly

estimated the true mean my of the latent distributions, which is

the standard stimulus: 55 mm in the intra-modal experiment and

0 deg in the inter-modal experiment. The variance s2
y of the

subjects’ prior belief is slightly harder to determine. We use an

uninformative prior for all subjects for each experiment

s2
y~20 mm and s2

y~20 deg
� �

to ensure that the whole state

space investigated by the experiment was plausible under the

prior distribution. Subsequent detailed analysis showed that,

unlike for s2
h, s2

v , the results are highly insensitive to the specific

value of s2
y.

Finally, we expect the prior probability of fusion pc to be

dependent on the individual subject and the modality pair in

question. We coarsely fit pc for each subject and experimental

condition to minimise the mean square error between the

predicted and experimental contours.

Simulating Perceptual Noise
Human subjects’ decisions in this task are noisy because they are

estimating oddity based on the noisy perceived samples

xh,i,xv,if g3
i~1 of the experimentally controlled stimuli

ys,yv,o,yh,of g. To correctly model this task, it is therefore

insufficient to simply control xh,i,xv,if g3
i~1 and compute the

model’s response pm o xh,i,xv,if g3
i~1

���� �
, since it is the human’s

response to the experimentally controlled stimuli pe o ys,yh,o,yv,ojð Þ
that is reported in experiments. To produce comparable results for

the model pm o ys,yh,o,yv,ojð Þ, we simulate the noisy perceptual

process as well as oddity estimation, integrating over the actual

noisy observations xh,i,xv,if g3
i~1 as follows:

p o ys,yh,o,yv,o,hjð Þ

~

ð
p o xh,i,xv,if g3

i~1,h
���� �

p xh,o yh,ojð Þp xv,o yv,ojð Þdxh,odxv,o

: P
j~ 1,2,3f g\o

p xv,j ysj
� �

p xh,j ysj
� �

dxh,jdxv,j

We approximate this by sampling 50,000 noisy observations

xh,i,xv,if g3
i~1 for every probe condition ys,yv,o,yh,of g and

averaging over the response of the model to each sample. The

importance of correctly simulating the noise processes in

psychophysics models was recently discussed in the analysis of a

related experiment [15]. The measured pe ôocorrect ys,yh,o,yv,ojð Þ for

human subjects can now be correctly and directly compared to the

success rate of the model pm ôocorrect ys,yh,o,yv,ojð Þ.

Optimal Oddity Inference with Variable Structure
Derivation

We assume all the observations are distributed normally given

the source xh,i*N y,s2
h

� �
and xv,i*N y,s2

v

� �
, and that the

subject’s prior belief about the source locations is represented by

ys*N ms,s
2
y

� �
and yo*N ms,s

2
y

� �
. Conditioned on the causal

structure C[ c,cf g as well as the model (oddity) o~ 1,2,3f g, the

likelihood of oddity factors into standard psð Þ and odd poð Þ
components, each of which is determined by an integral of

Gaussian products. Each component represents the ultimate

likelihood of each observation x given the noisy perceptual

process p x yjð Þ and prior uncertainty about the stimulus p yð Þ.
Writing for brevity in terms of precisions ri~s{2

i rather than

variances s2
i , and assuming that ms~0, the model likelihood
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p xh,i,xv,if g3
i~1 o,hj

� �
can be written as follows:

p xh,i,xv,if g3
i~1 o,hj

� �

~
X

C

ð
p xh,i,xv,if g3

i~1ys,yo,yh,o,yv,o,C o,hj
� �

dysdyodyh,odyv,o,

~ps xh,i,xv,if gi[ 1,2,3f g\o o,hj
� �

po xh,o,xv,o o,hjð Þ,

ps xh,i,xv,if gi[ 1,2,3f g\o o,hj
� �

~

ð
P

i[ 1,2,3f g\o
P

j~h,v
N xj,i o,hj
� �

N ys hjð Þdys,

po xh,o,xv,o o,hjð Þ~
ð

p xh,o,xv,o,yo o,c,hjð Þp c hjð Þdyoz

ð
p xh,o,xv,o,yh,o,yv,o o,c,hjð Þp c hjð Þdyh,odyv,o,

po xh,o,xv,o,yo o,c,hjð Þ~N xh,o yo,c,hjð ÞN xv,o yo,c,hjð ÞN yo c,hjð Þ,

po xh,o,xv,o,yv,o,yh,o o,c,hjð Þ

~N xh,o yh,o,c,hjð ÞN xv,o yv,o,c,hjð ÞN yh,o c,hjð ÞN yv,o c,hjð Þ:

To illustrate a concrete example, to compute the likelihood of

hypothesis that the stimuli number three is odd, the three required

terms are:

ps xh,i,xv,if gi[ 1,2,3f g\o o~3,hj
� �

!

exp{
1

2

xh,1zxh,2ð Þrhz xv,1zxv,2ð Þrv

2rhz2rvzry

� �
 

z x2
h,1zx2

h,2

� �
rhz x2

v,1zx2
v,2

� �
rv

�

po xh,o,xv,o o~3,c,hjð Þ!

exp{
1

2 rhzrvzry

� �

{2xh,3xv,3rhrvzx2
v,3rv rhzry

� �
zx2

h,3rh rvzry

� �� �

ro xh,o,xv,o o~3,c,hjð Þ

~N xh,3; 0, r{1
h zr{1

y

� �{1
� �

N xv,3; 0, r{1
v zr{1

y

� �{1
� �

:

For the special case of known correspondence considered in Eq. (3)

and Fig. 5, the above equations are simply conditioned on C~c,

i.e., pc~1.

Supporting Information

Text S1 Supporting Information for ‘‘Multisensory Oddity

Detection as Bayesian Inference’’

Found at: doi:10.1371/journal.pone.0004205.s001 (0.06 MB

DOC)

Figure S1 Complete oddity detection predictions of structure

inference approach. Oddity detection rate threshold contours for

the Bayesian model (blue lines), mandatory fusion model (green

lines) and uni-modal model (red lines) are shown along with

human thresholds (magenta points). (a–d) Visual-haptic condition.

(e–h) Texture-disparity condition. Chance = 33%. Contour root

mean squared error is given for; Eb : Bayesian model, Emf :

sequential fused estimate and uni-modal model, Eum : sequential

uni-modal model.

Found at: doi:10.1371/journal.pone.0004205.s002 (2.18 MB TIF)
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