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Abstract

Tumor-infiltrating lymphocytes (TIL) have potential prognostic value in melanoma and have been 

considered for inclusion in the American Joint Committee on Cancer (AJCC) staging criteria. 

However, inter-observer discordance continues to prevent the adoption of TIL into clinical 

practice. Computational image analysis offers a solution to this obstacle, representing a 

methodological approach for reproducibly counting TIL. We sought to evaluate the ability of a 

TIL-quantifying machine learning algorithm to predict survival in primary melanoma. Digitized 

hematoxylin and eosin (H&E) slides from prospectively-enrolled patients in the NYU melanoma 

database were scored for % TIL using machine learning and manually graded by pathologists 

using Clark’s model. We evaluated the association of % TIL with recurrence-free survival (RFS) 

and overall survival (OS) using Cox proportional hazards modeling and concordance indices. 

Discordance between algorithmic and manual TIL quantification was assessed with McNemar’s 

test and visually by an attending dermatopathologist. 453 primary melanoma patients were scored 

using machine learning. Automated % TIL scoring significantly differentiated survival using an 

estimated cutoff of 16.6% TIL (Log Rank P<0.001 for RFS; P=0.002 for OS). % TIL was 

associated with significantly longer RFS (adjusted HR = 0.92 [0.84–1.00] per 10% increase in % 

TIL) and OS (adjusted HR = 0.90 [0.83–0.99] per 10% increase in % TIL). In comparison, a 
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subset of the cohort (n=240) was graded for TIL by melanoma pathologists. However, TIL did not 

associate with RFS between groups (P>0.05) when categorized as brisk, non-brisk, or absent. A 

standardized and automated % TIL scoring algorithm can improve the prognostic impact of TIL. 

Incorporation of quantitative TIL scoring into the AJCC staging criteria should be considered.

INTRODUCTION

Tumor-infiltrating lymphocytes (TIL), a surrogate for the host immune response against 

tumor cells, has been proposed as a predictor of immunotherapy response and long-term 

survival in many cancers, including melanoma [1–8]. Yet, despite its potential, the use of 

TIL as a prognostic biomarker in the American Joint Committee on Cancer (AJCC) staging 

criteria is precluded by the inherently subjective nature of extant grading systems such as 

Clark’s methodology, which leads to poor interrater consistency [9–17]. Thus, despite the 

release of consensus guidelines for TIL scoring and development of immunohistochemistry-

based (IHC) quantification, our group and others have shown that human-reliant assessments 

of TIL on their own do not reliably predict survival in melanoma [11, 18, 19]. The field of 

dermatopathology has therefore explored whether machine learning algorithms can be 

employed as automated, objective, and easily scalable assays for quantifying TIL.

Automated cell segmentation and detection algorithms have recently been investigated as a 

method to standardize TIL scoring in digitized hematoxylin and eosin (H&E) slides [2, 10, 

20–24]. Although the initial training and optimization of computer vision algorithms are 

cumbersome, implementation typically utilizes few resources and can therefore potentially 

decrease healthcare costs and physician workload [25]. Machine learning algorithms also 

derive power from its ability to detect data patterns not discernible to humans, paving the 

way for novel scientific developments [25, 26]. Despite the growing prominence of machine 

learning-based techniques in medical literature, however, there are limited reports of 

successful clinical implementation [25, 27]. Several challenges hindering clinical adoption 

of machine learning algorithms have been identified [25–28], with ubiquitous concerns over 

external validation, contextualization, technical difficulties, and propagation of endemic 

biases. Rigorous testing and refinement is therefore required to ensure accuracy and clinical 

applicability, especially when considering the ethical implications of improper algorithmic 

usage [25].

Recent work showed that the novel neural network-based classifier NN192 is capable of 

generating an automated TIL score from digital H&Es, termed % TIL, that predicts disease-

specific overall survival (DSOS) in melanoma [24]. Our objective in this study was to 

compare the prognostic accuracy of an automated % TIL score using the NN192 algorithm 

to that of Clark’s grading, the pathologist-based standard for TIL assessment. We then 

performed an in-depth pathological analysis of discordant cases between the human- and 

machine-based modalities to facilitate algorithmic refinement. In doing so, our goal was to 

uncover an optimal integration strategy of % TIL into the AJCC staging criteria, bridging the 

“AI chasm” that befalls the majority of machine learning methodologies [28].

Chou et al. Page 2

Mod Pathol. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MATERIALS AND METHODS

Patient cohorts and tissue preparation

457 patients were included in this retrospective analysis, with a median follow-up time of 

87.2 months (Interquartile range [IQR]: 56.9–118.7). All patients were accrued to the IRB-

approved New York University Interdisciplinary Melanoma Cooperative Group (NYU 

IMCG) protocol from 2002–2017. The IMCG program has prospectively enrolled more than 

4,300 patients since 2002. Developed protocols and Standard Operating Procedure (SOP) 

guide patient biospecimen and clinicopathological data collection, with no identifying 

information used in publications [29]. Patients were included on the basis of available, 

digitized slides at the time of the study, with an enrichment of stage II and III disease, as 

well as for absent and brisk cases. This was done in order to test the generalizability of an 

algorithm that was trained using a different distribution of disease severity and to facilitate 

concordance analyses between the TIL quantification methodologies [24]. An unequivocal 

diagnosis of melanoma in each case was determined by the presence of prominent 

cytological atypia, mitotic activity, a patchy asymmetrical host response/inflammatory 

infiltrate, and an in situ component. BAP1 inactivated tumors were excluded. The reporting 

guidelines for tumor marker prognostic studies (REMARK) were followed in this study 

[30]. Representative tumor areas on 457 formalin-fixed paraffin embedded (FFPE) H&E-

stained slides were demarcated by an attending pathologist for accurate algorithm 

implementation solely within these regions. For validation purposes, two pathologists graded 

a subset of 240 slides out of the 457 using Clark’s model. TIL were graded brisk if they 

were present throughout or infiltrating across the entire base of the vertical growth phase 

(VGP), non-brisk if they were in ≥ 1 foci of the VGP, or absent if none were associated with 

the VGP, as previously described [31].

Digital Image Analysis (DIA)-generated % TIL scores

457 FFPE H&E-stained slides were digitized using an Aperio ScanScope AT2 (Leica 

Biosystems, Wetzlar, Germany) at 20x magnification to generate whole slide images (WSI), 

with a resolution of 0.503 microns per pixel. For accurate segmentation of cells regardless of 

the temporal differences in staining, pixel values in each image were first optimized to 

ensure white balancing and to prevent color oversaturation, while refinement of H&E stain 

estimates was achieved using the “estimated stain vectors” command in the open source 

software QuPath [32]. Cell segmentation, which explicitly labels the pixels of a given cell, 

was then performed on a manually selected region of interest (ROI) using watershed cell 

detection with the following settings: Detection image: hematoxylin OD; requested pixel 

size: 0.5 μm; background radius: 8 μm; median filter radius: 0 μm; sigma: 1.5 μm; minimum 

cell area: 10 μm2; maximum cell area: 400 μm2; threshold 0.1; maximum background 

intensity [24, 32]. All ROIs were chosen within the tumor areas demarcated by attending 

pathologists and were re-verified after digital selection. Only 1 ROI was necessary to 

encompass the entirety of tumors ≤ 1 mm2 in histologic area (Fig. 1). In order to circumvent 

limitations in computational processing, several ROIs were selected and summed to fully 

incorporate tumors that were 1 to 5 mm2. The largest tumors (> 5 mm2) could not be 

completely selected even when using multiple ROIs. A row of up to 10 ROIs, ranging from 

the basal to apical layer of the tumor, was used instead as a representative area. After 
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detection, smoothed object features at 25 and 50 μm radius were applied to aid in the 

classification of cells into tumor cells, TIL, stromal cells, or others (i.e. false detections, 

background). Automated TIL classification and quantification were performed using the 

neural network-based classifier “NN192,” currently available at GitHub (Fig. 2) [24]. The 

NN192 algorithm calculated the percentage of machine defined TIL (% TIL) using the 

formula: (TIL/[TIL + Tumor cells]) × 100. We then compared the concordance between 

Clark’s grading and automated % TIL scoring. Cases graded as absent and scored as high % 

TIL by the algorithm, as well as cases graded brisk and scored as low % TIL, were deemed 

discordant and examined in detail by an IMCG dermatopathologist to determine the reason 

for the discrepancy.

Statistical Analysis

Continuous and categorical variables are presented as means with standard deviations and as 

frequencies with proportions, respectively. We used Youden’s index to calculate the optimal 

threshold of high versus low % TIL groups for differentiating patient survival outcomes in 

the NYU patient cohort, and compared it to the recommended cutoff (16.6% TIL) generated 

from an independent cohort [24, 33]. Recurrence-free survival (RFS) was calculated as the 

length of time between initial diagnosis and first recurrence or death, while overall survival 

(OS) was defined as time from diagnosis until death from any cause. Kaplan-Meier curves 

were generated and compared by log-rank test between the high and low % TIL groups. We 

used Cox proportional hazards models to assess the correlation between % TIL, as a 

continuous covariate, with RFS and OS outcomes. Multivariable Cox regression was used to 

assess the prognostic significance of % TIL independent of other covariates. % TIL, age, 

gender, and stage were included as candidate covariates. We did not include Breslow 

thickness or ulceration as they are included in AJCC staging criteria. Backward stepwise 

model selection was used to derive the final model with covariates of p-values less than 0.05. 

The concordance index (C-index), which is similar to area under the curve for binary 

outcomes, was used to indicate discriminatory ability to predict RFS and OS, respectively. A 

value of 0.5 indicates that the model has no discriminatory ability, and a value of 1.0 

indicates that the model has perfect discrimination ability. A nonparametric test was used to 

compare C-indices from a Cox regression with stage only to a model with both stage and % 

TIL score [34]. McNemar’s test was used to assess concordance between the TIL 

quantification methodologies, juxtaposing pathologist-based Clark’s grading with that of % 

TIL algorithmic scoring. Concordance was defined as absent-low % TIL (<16.6%) and 

brisk-high % TIL (≥16.6%). 32 slides deemed as non-brisk were excluded from the 

concordance analysis as they could not be directly compared to either the high or low % TIL 

cohorts, leading to a total of 208 out of 240 cases. All tests were two-sided and the level of 

significance was set at P<0.05. All data were analyzed using R version 3.6.2 (https://www.r-

project.org/).

RESULTS

Patient characteristics

453 out of 457 digitized H&E slides were successfully analyzed for % TIL by the NN192 

algorithm. The remaining 4 slides were unable to be analyzed for % TIL due to high 
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concentrations of melanin in the tumor image. A summary of clinicopathological features 

for the 453 patients with primary melanoma included in this study is shown in Table 1. Of 

the 453 primary melanoma patients scored using automated TIL assessment, 17.9% (n=81) 

were stage I, 42.4% (n=192) were stage II, and 39.7% (n=180) stage III. The stage 

distribution of our cohort differs from that seen in the study by Acs et al., in which the 

proportion of stage III patients was 19.8% (59/76) at its highest [24]. The threshold of % 

TIL most robust at separating patient survival in our cohort was identified at 16.24% TIL by 

Youden’s Index. This is similar to and provides external data validation for the 

recommended 16.6% TIL threshold generated by Acs et al., with only a 6-patient difference 

between the two cutoffs [24]. Therefore, 16.6% TIL is the threshold used in the rest of the 

paper. 201 (44.4%) patients were classified as low % TIL, with the remaining 252 (55.6%) 

classified as high % TIL. The distribution of sex, age, sentinel lymph node status, and 

frequency of adjuvant therapy between the low (<16.6) and high (≥16.6) % TIL patients is 

comparable. However, high % TIL patients had thinner melanomas than low % TIL patients 

(3.2 vs 4.7 mm, P<0.001), as well as a lower frequency of ulceration (48.4 vs 58.2%, 

P=0.038). High % TIL patients were also more skewed towards stage I compared to low % 

TIL patients (24.6 vs 9.5%, P<0.001). As expected, the majority of high and low % TIL 

patients were graded by pathologists as brisk and absent, respectively (58.4% and 60.5%). 

Median follow-up time was 91.3 months for high % TIL patients and 80.0 months for the 

low % TIL patients.

% TIL thresholds significantly improve prediction of survival outcomes compared to 
Clark’s grading

Assessment of TIL using semi-quantitative Clark’s grading (absent, non-brisk, brisk) did not 

significantly differentiate RFS (Log rank P=0.110; Fig. 3a). Brisk-graded melanoma patients 

had improved OS compared to absent and non-brisk patients (Log rank P=0.03). However, 

no differences in OS were observed between absent and non-brisk patients (Fig. 3b). In 

contrast, the automated 16.6% TIL threshold significantly differentiated patient survival 

outcomes. High % TIL patients had a more favorable prognosis, with significantly longer 

RFS (Log rank P< 0.001) and OS (Log rank P=0.002) compared to patients categorized as 

low % TIL (Fig. 3c–d). Median RFS and OS for high % TIL patients was consequently 

longer at 155.0 and 155.0 months, versus 48.0 and 89.0 months, when compared to the low 

% TIL cohort.

% TIL is an independent prognostic variable and improves the prognostic capability of 
AJCC 8th Edition staging

When analyzed as a continuous covariate by Cox regression, % TIL score was associated 

with better RFS (unadjusted HR = 0.85 [95% CI: 0.78–0.92] per 10% increase in % TIL, 

P<0.001) and OS (unadjusted HR=0.86 [0.79–0.94] per 10% increase in % TIL, P=0.001) in 

univariate analyses. In the selected multivariable Cox regression models, only % TIL and 

stage remained significant. % TIL remained a significant prognostic factor for better survival 

outcomes in multivariate Cox proportional hazards models adjusting for stage (adjusted HR 

= 0.92 [0.84–1.00] per 10% increase in % TIL, P=0.05 for RFS; adjusted HR = 0.90 [0.83–

0.99] per 10% increase in % TIL, P=0.026 for OS). Compared to a Cox regression with 

stage only, the addition of % TIL significantly increased prognostic discrimination ability 
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for both RFS (C-index improved from 0.68 to 0.70, P=0.02) and OS (C-index improved 

from 0.62 to 0.64, P=0.01).

Discordance between Clark’s TIL grading and % TIL scoring

The overall discordance rate between Clark’s grading and automated % TIL scoring is 

31.7% (66/208; P=0.002 from McNemar’s test assessing concordance of the two systems; 

Fig. 4). 32 out of 240 slides were non-brisk and excluded from the analysis. We examined 

the differences in survival outcomes of the discordant cases. Absent-graded, high % TIL 

patients (discordant) showed better RFS (Log rank P=0.004) and OS (Log rank P=0.095) 

than absent-graded, low % TIL patients (concordant; Sup. Fig. 1). In contrast, there were no 

differences in RFS (Log rank P=0.840) or OS (Log rank P=0.590) between low % TIL 

(discordant) and high % TIL (concordant) brisk-graded patients. We further investigated the 

reasons for discordance seen in the 46 absent-graded, high % TIL-scored tumors through 

detailed pathologic assessment (Fig. 4). Overcalling of inflammatory cells by the NN192 

algorithm accounted for 50% (23/46) of the discordance, with most of these cases secondary 

to the categorization of tumor cells as TIL (Fig. 5a). Undercalling of tumor cells by the 

algorithm was a subsequent cause for discordance in 19.6% (9/46) slides, which was 

predominantly due to the classification of tumor cells as stromal cells or due to pigmentation 

(Fig. 5b–c). Slides containing small, thin melanomas (≤1 mm) with a limited invasive 

component led to a high % TIL designation in 15.2% (7/46) of absent-graded cases, despite 

having few absolute TIL (Fig. 5d). The remaining 15.2% (7/46) of discordant slides were re-

graded as non-brisk after a second review.

DISCUSSION

The utility of TIL as a prognostic biomarker is equivocal due to its subjective grading 

system and ensuing inter-observer variability [17, 36, 37]. We have previously shown, for 

instance, that both Clark’s grading and IHC-based TIL quantitation were unable to 

significantly differentiate survival, particularly between non-brisk and absent-graded 

melanoma patients [11]. Machine learning modalities hold promise for alleviating this 

variability and can facilitate the inclusion of TIL into prognostic criteria, such as AJCC 

staging [2, 10, 17, 24, 36]. Notably, Acs et al. developed a TIL-quantifying neural network 

capable of predicting DSOS in melanoma with a % TIL threshold of 16.6%. In this study, 

we first sought to evaluate the clinical significance of % TIL using the NN192 algorithm 

within an independent cohort, particularly in the context of current methodologies. We found 

a consistent % TIL threshold using our cohort (Fig. 3; 16.24 vs 16.6% TIL), despite a higher 

staged study population, and showed improved survival differentiation when compared to 

Clark’s grading [24]. Furthermore, we confirmed the validity of % TIL as an independent 

prognostic marker when adjusting for stage, which accounts for the significant differences in 

thickness and ulceration seen between the high and low % TIL groups in univariate analyses. 

Our work validating % TIL thereby facilitates a major step towards clinical application 

unseen by most machine learning modalities [25].

Secondly, we aimed to enhance the accuracy of the algorithm and to generate a digital 

pathology workflow for optimal clinical integration. A major obstacle surrounding clinical 
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application of machine learning algorithms revolves around the notion that it is a “black 

box” in which clinicians are not privy to the various factors considered by the algorithm 

[38]. This is of particular importance considering that melanoma is a notoriously 

morphologically heterogeneous tumor that exhibits diverse cytomorphologic and 

architectural patterns, therefore posing a great technical challenge not only for 

dermatopathologists, but for image analysis-based machine learning methodologies [20, 39]. 

To efficiently identify algorithmic inaccuracies in cell classification, we isolated the cases 

where TIL quantification was discrepant between the human- and machine-based 

methodologies. Our results indicate that absent-graded slides (46.9%) were more 

discordantly assessed by the algorithm than brisk-graded patients (18.2%; P=0.002; Fig. 4). 

We believe that the higher discordance rate seen in the absent patients is due to the lower 

absolute TIL count, making the % TIL calculation more susceptible to any changes in cell 

classification. Therefore, we propose that an absolute quantification of TIL be incorporated 

in future outputs of the algorithm to provide contextualization of the final % TIL 

measurement.

In the context of our findings, we then performed a focused pathologic assessment of absent-

graded, high % TIL cases. Most of the discordant cases were due to overcalling of TIL in 

nevoid melanomas, a rare melanoma variant [40]. As nevoid melanomas have smaller nuclei 

than conventional melanomas, which can simulate the appearance of inflammatory cells, the 

algorithmic misclassifications are understandable (Fig. 5a) [41]. Spindle cell melanomas, 

another rare variant, similarly led to the misidentification of tumor cells by the algorithm. As 

its name suggests, these melanomas have nuclear features that can resemble those of stromal 

fibroblasts, resulting in the misclassification of tumor cells as stromal cells instead (Fig. 5b) 

[42]. It should be noted, however, that these unique and rare morphologies only account for 

6 to 10% of all cases, highlighting the utility of the algorithm for the majority of melanomas. 

Furthermore, 15.2% of the discordant absent cases were deemed to have the potential of 

being graded as non-brisk, highlighting the inter-observer variability inherent to human 

assessment and the functionality of this algorithm in standardizing pathologic assessment 

[40, 42]. For a minor subset of small, thin melanomas, the limited dermal invasive 

component present led to a disproportionately high percentage of TIL to tumor cells (Fig. 

5d). This finding suggests that the usage of this algorithm may need to be further explored in 

focused studies on thin melanomas (≤1 mm2). Pigmentation also interfered with the 

identification of tumor cells, leading to the inability to analyze some cases.

Of note, we examined the impact of discordance on survival and found that the absent-

graded, high % TIL discordant patients had better RFS than those who were concordant 

(Log Rank P=0.004; Sup. Fig. 1a). This result suggests that % TIL scoring may be superior 

at differentiating survival outcomes for absent-graded patients. This superiority may be 

secondary to the ability of machine learning-based methodologies to perceive data patterns 

not readily visible to humans, intimating that the benefit of this algorithm is not solely 

bound to the accurate calling of individual cells. However, the low discordance rate within 

the brisk-graded samples prevented us from making definitive conclusions about this 

subpopulation and this topic should be further studied in the future.
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Other limitations and technical challenges must also be acknowledged in this study. A % 

TIL threshold does not universally discriminate survival outcomes within stages (Sup. Fig. 

2). For stage II and III, patients with high % TIL trended towards better survival than 

patients with low % TIL, although it was not significant due to sample size constraints upon 

division of our cohort. Survival outcomes for stage I patients with high % TIL, on the other 

hand, did not differ from those with low % TIL. Furthermore, fewer stage I patients were 

categorized as low % TIL (19/81) compared to stage II (93/192) and stage III (89/180) 

patients. These results suggest a less discriminative power for % TIL in stage I patients. 

Detailed guided training was also required to calibrate the digital image analysis software 

(QuPath) before usage to prevent inaccurate cell segmentation and classification. Lastly, 

computational limitations prevented the analysis of high-resolution digitized images of the 

largest tumors (>5 mm2) in a singular ROI [20]. Interobserver discordance in ROI selection 

for these cases may lead to variation in % TIL calculation.

With all results considered, we believe that the survival predictions for cases deemed as low 

% TIL by the NN192 algorithm appear to be trustworthy, while pathologist supervision and 

further training will likely be required for the high % TIL cases (Fig. 6). By incorporating 

human supervision into the workflow, this can increase reliability and efficiency of TIL 

quantification, while also accounting for sensitivity towards rare variants of melanoma. This 

approach, termed “human-in-the-loop AI,” integrates the best of human intelligence and 

machine learning algorithms to collectively outperform either modality individually, a 

finding reported in prior machine learning studies in the fields of radiology and pathology 

[43–46]. We believe that our work will help bring the NN192 algorithm closer to clinical 

application by facilitating the incorporation of % TIL into the AJCC staging criteria. This is 

of particular significance considering the few examples of peer-reviewed and externally 

validated machine learning algorithms in use today [28, 47]. The next step following 

additional training, based on our observations, will be to validate this algorithm 

prospectively in order to further optimize its clinical applications and improve melanoma 

prognostication for our patients.
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Fig. 1. Digital selection of regions of interest (ROIs) in QuPath relies on the size of the tumor.
(a) Melanoma tumors that are ≤1 mm2 in histologic area can be assessed using a single fully 

encompassing ROI. (b) Larger tumors (>1 mm2) require the selection and averaging of 

multiple, smaller ROIs for cell segmentation and % TIL quantification due to computational 

limitations.
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Fig. 2. The NN192 classifier assists in the visualization and quantification of multiple cell types.
(a-b) Two representative melanoma cases are shown, with the 20x H&E digitized slide on 

the left and the same image with the NN192 classifier overlay applied on the right. 

Classification of cells are as follows: red denotes tumor cells, purple indicates TIL, green is 

stroma, and yellow signifies other components, such as false detections or background.
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Fig. 3. A 16.6% TIL threshold more significantly differentiates patient survival than Clark’s TIL 
grades.
(a) When using Clark’s grades, Kaplan-Meier curves of RFS do not significantly separate. 

(b) Brisk-graded patients perform significantly better in terms of OS; however, non-brisk 

and absent patients are unable to be significantly differentiated. (c-d) When applying a 

threshold of 16.6% TIL, patients above the threshold have significantly better RFS and OS 

than those below.
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Fig. 4. Juxtaposing Clark’s TIL grades with their respective % TIL scores reveals discordant 
samples.
46.9% (46/98) of absent-graded slides are scored as high % TIL (blue box), while 18.2% 

(20/110) of brisk-graded images are categorized as low % TIL (red box).
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Fig. 5. The discordance seen in absent-graded slides is mainly due to misclassification of cells by 
the NN192 algorithm.
Representative cases are shown, with the 20x H&E digitized slide on the left and the same 

image with the NN192 classifier overlay applied on the right. Classification of cells are as 

follows: red denotes tumor cells, purple indicates TIL, green is stroma, and yellow signifies 

other components, such as false detections or background. (a) Tumor cells are labeled as 

“TIL” in this example of a nevoid melanoma. (b) Most tumor cells are labeled as “stromal” 

or “other” cells in this digitized image of a spindle cell melanoma. (c) Coarse pigmentation 
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in macrophages can be interpreted as tumor cells, interfering with TIL counting by the 

algorithm, while (d) thin melanomas with a limited invasive component can impact the % 

TIL calculation. Notice the relative abundance of inflammatory cells and the scarcity of 

tumor cells, leading to the increased % TIL calculation.
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Fig. 6. A digital workflow for the optimal clinical usage of the NN192 algorithm.
Digitized H&E slides should first be analyzed by the NN192 classifier in order to increase 

efficiency and reliability of TIL quantification. Following categorization as either high or 

low % TIL, high % TIL slides should be evaluated in detail by pathologists.
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Table 1.

Clinicopathologic characteristics of 453 primary melanoma patients separated into high and low % TIL 

cohortsa

 Low % TIL (n=201) High % TIL (n=252) P-value

Male sex (%) 121 (60.2) 146 (57.9) 0.627

Age (Mean ± SD) 62.7 ± 16.3 60.8 ± 16.9 0.228

Thickness (Mean mm ± SD) 4.7 ± 4.6 3.2 ± 3.3 <0.001

Ulceration present (%) 117 (58.2) 122 (48.4) 0.038

SLN biopsy performed (%) 178 (88.6) 184 (73.3) <0.001

Positive SLN status (%) 77 (38.5) 83 (32.9) 0.219

AJCC 8th Edition staging (%) <0.001

 I 19 (9.5) 62 (24.6)

 II 93 (46.3) 99 (39.3)

 III 89 (44.3) 91 (36.1)

Clark’s grade <0.001

 Absent 52 (60.5) 46 (29.9)

 Non-brisk 14 (16.3) 18 (11.7)

 Brisk 20 (23.3) 90 (58.4)

Adjuvant therapy received (%) 69 (34.3) 71 (28.2) 0.159

Follow-up (Months, median [IQR]) 80.0 [54.5 – 112.9] 91.3 [58.9 – 119.6]

a
Using a threshold of 16.6% TIL
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