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Abstract

Background & Aims: Obesity is a leading healthcare issue contributing to metabolic diseases. There is a great interest in
non-invasive approaches for quantitating abdominal fat in obese animals and humans. In this work, we propose an
automated method to distinguish and quantify subcutaneous and visceral adipose tissues (SAT and VAT) in rodents during
obesity and weight loss interventions. We have also investigated the influence of different magnetic resonance sequences
and sources of variability in quantification of fat depots.

Materials and Methods: High-fat diet fed rodents were utilized for investigating the changes during obesity, exercise, and
calorie restriction interventions (N = 7/cohort). Imaging was performed on a 7T Bruker ClinScan scanner using fast spin echo
(FSE) and Dixon imaging methods to estimate the fat depots. Finally, we quantified the SAT and VAT volumes between the
L1–L5 lumbar vertebrae using the proposed automatic hybrid geodesic region-based curve evolution algorithm.

Results: Significant changes in SAT and VAT volumes (p,0.01) were observed between the pre- and post-intervention
measurements. The SAT and VAT were 44.2269%, 21.0661.35% for control, 217.3363.07%, 215.0961.11% for exercise,
and 18.5662.05%, 23.960.96% for calorie restriction cohorts, respectively. The fat quantification correlation between FSE
(with and without water suppression) sequences and Dixon for SAT and VAT were 0.9709, 0.9803 and 0.9955, 0.9840
respectively. The algorithm significantly reduced the computation time from 100 sec/slice to 25 sec/slice. The pre-
processing, data-derived contour placement and avoidance of strong background–image boundary improved the
convergence accuracy of the proposed algorithm.

Conclusions: We developed a fully automatic segmentation algorithm to quantitate SAT and VAT from abdominal images
of rodents, which can support large cohort studies. We additionally identified the influence of non-algorithmic variables
including cradle disturbance, animal positioning, and MR sequence on the fat quantification. There were no large variations
between FSE and Dixon-based estimation of SAT and VAT.
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Introduction

Obesity is a medical condition contributing to major health

problems including cardiovascular disease, insulin resistance,

glucose intolerance, dyslipidemia, and type II diabetes. The fat

distribution, with higher amount of abdominal adipose tissue, is

associated with metabolic alterations [1]. There are two major

compartments of abdominal fat: subcutaneous adipose tissue

(SAT), which is present between the skin and the abdominal wall,

and visceral adipose tissue (VAT) which surrounds the abdominal

organs.

The link between VAT mass and insulin resistance is well-

understood [2]; what is less clear is whether the VAT causes

insulin resistance since a similar link has been shown between SAT

mass and insulin resistance [3]. There is actually considerable

variability in results regarding the relationship between insulin

sensitivity and regional fat depots in humans. This could be due to

technical issues related to measurement of the visceral fat depot [4]

and/or variability in the relationship between the size of a fat

depot and its lipolytic activity [5].

The above studies have shown that the VAT depot is more

strongly associated with insulin resistance and the risk of

developing type-2 diabetes than the SAT depot. To study these

differences, in a pre-clinical phase, rodent models are widely used

to monitor both the accumulation of fat during obesity and the

mobilization of fat during an anti-obesity intervention [6,7].

Imaging modalities like magnetic resonance spectroscopy (MRS)

provides qualitative information about the composition of fat

depots (visceral and subcutaneous), while computed tomography

(CT) and magnetic resonance imaging (MRI) provides quantitative
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information of the fat volumes [8]. MRI is a non-invasive and non-

ionizing modality making it more suitable for longitudinal and

repeated measures of fat compartments. Additionally, it is versatile

as it allows the visualization of the body organs, their shape, size,

composition, and quantification, which helps in clinical diagnosis

and treatment.

The first necessary step for fat quantification is the identification

and segmentation of fat depots. Segmentation of abdominal MR

images is a challenging task due to the lack of homogeneous

intensity profile, complex shapes, poor edge definition, motion

artifacts, the absence of models that fully capture the possible fat

distribution in each structure and the low signal-to-noise ratio.

Accurate segmentation and quantitation of SAT and VAT are

critical for understanding the effect of the weight-loss interventions

including exercise, diet, and drugs. Earlier segmentation work

includes semi-automated or automated approaches for quantifi-

cation of the fat depots in human [9, 10, 11, 12, and 13] and

animal studies [6,14].

Traditionally, fat segmentation techniques include threshold

based separation of fat regions from the background tissues

[15,16,17], local neighborhood information based threshold

selection method [6], combinational methods [15], fuzzy logic

[18] and active contours [19,20]. Threshold based methods

perform well for images with uniform intensities; however high

field MR images show a large intensity variance which affects the

selection of a suitable threshold. Adaptive [16] and local

information [17] based thresholding methods yield better results

than the conventional methods. A fully automated, three-stage

fuzzy logic analysis was implemented in [13] to quantify total

adipose tissue (TAT), SAT and VAT in morbidly obese humans.

Yang, et al., [14] developed a segmental shape model and fuzzy

logic based approach to assess the quantity and distribution of

abdominal fat in mouse models. The algorithm efficiently handled

the disappearing muscle layer issue. Lankton, et al., [21,22]

proposed a segmentation technique using the hybrid geodesic

region-based [23] curve evolution that combines the benefits of

both geodesic and the region based active contours by forming a

geodesic energy from local regions around the curve. The resulting

flow is more robust to initial curve placement and image noise. It is

capable of finding significant local minima and partitioning the

image under the assumption that the inside and outside points of

the object can be modeled by the mean intensities of the local

regions.

The main objective of this work is to develop an automated

hybrid method using modified geodesic region-based active

contour and fuzzy clustering to distinguish and quantify different

adipose tissues (SAT and VAT) in a large cohort of rodents during

obesity and weight loss interventions. Additionally, we evaluated

the influence of different MR sequences and other sources of

variability on the quantification of fat depots. The flowchart

describing different stages of the algorithm is shown in Figure 1.

The theory and detailed explanation of geodesic curves is

presented in the supplementary material Material Theory S1.

Materials and Methods

In Vivo Measurements
All animal experiments were approved by the institutional

animal care and use committee of the biological resource center,

A*STAR, Singapore. In vivo measurements were performed using

a 7T Bruker ClinScan MRI/MRS scanner (IDEA VB 15).

Twenty-one rats (male, F344, 5 weeks old) were split into three

equal sized cohorts as a control group (CG), an exercise

intervention group (EX) and a calorie restriction group (CR). All

groups were fed with high–fat diet for 13 weeks.

The exercise and calorie restriction interventions were initiated

when the rats were 14 weeks old, for a period of 4 weeks. In the

EX group, the animals were subjected to exercise for 30 minutes,

twice daily on the treadmill at 20 m/min. In the CR group, the

intake of the high-fat diet was reduced by 30%. MR imaging for

all three groups was performed at 14 weeks, prior to the start of the

interventions, and at 18 weeks. Transverse fast spin echo (FSE)

abdominal images (between L1–L5 of the lumbar vertebrae) were

acquired using a volume transmit and receive coil with FOV of

65665 mm2, base resolution of 3206320, TR/TE of 3573/

33 ms, number of averages = 4, intra- and inter- plane resolution

of 0.2031 mm and 1.6 mm respectively. The imaging parameters

were kept identical for the pre- and post-intervention scans.

In addition to the rat cohorts, abdominal images were also

obtained from a cohort of (N = 7) high-fat diet fed mice. The mice

(C57Bl6/J, 18 weeks) were imaged using FSE (with and without

suppression) using a mouse volume transmit/receive coil, FOV of

50638 mm2, base resolution of 1966256, TR/TE of 3938/

42 ms, number of averages = 2, intra- and inter- plane resolution

of 0.195 mm and 1.1 mm respectively. The DIXON images were

acquired with FOV of 29637 mm2, base resolution of 2006256,

TR/TE of 3573/33 ms, number of averages = 2, intra- and inter-

plane resolution of 0.1445 mm and 1 mm respectively, in the

same position of the animal.

Image processing and analysis
Problem definition. The abdominal muscular wall separates

the two fat compartments - subcutaneous adipose tissue (SAT) and

visceral adipose tissue (VAT) regions. Segmentation and quanti-

fication were performed in two stages; initially, separating SAT

and VAT regions by a geodesic active contour, followed by, fuzzy

clustering and region merging the SAT and VAT regions as shown

in Figure 1. Both SAT and VAT appear hyper-intense on the FSE

based MR images. The abdominal wall separating the two regions

appears iso-intense and the abdominal organs appear hypo to iso-

intense compared to the fat regions on FSE based MR images.

The pre-processing steps included converting DICOM data into

3D image data, intensity normalization, removal of background

and irrelevant features by thresholding, and 2D anisotropic

diffusion filtering [24]. The edge strength was improved using

edge enhancement.

Segmentation of SAT and VAT regions. The initial curve

for the hybrid geodesic region-based curve evolution was derived

from the binary image of each slice, formed by adaptive

thresholding of the pre-processed image (filtered) into foreground

(combined SAT and VAT regions) and background regions. The

edge map of the binary image was used as the initial contour for

the geodesic region-based active contour.

Shrinking and expansion of the contour. The initial

contour of the foreground region was shrunk using a scaling

factor of 0.85 to 0.75, empirically derived based on the size of the

initial binary mask to adapt to the changing shapes and size of the

abdominal slices, and placed it at the center of the slice. This

ensured shrinkage of the hybrid contour into the abdominal area

and avoided contour convergence to the background/image edge

as shown in Figure 2.

The hybrid geodesic contour was allowed to expand for

convergence at the boundary between SAT and VAT regions.

In the expansion stage, the area of the current contour was

continuously evaluated in comparison to the contour of previous

iterations in order to track a steady contour expansion and its

stability. If the difference was negligible or less than a predefined
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threshold (e.g. ,10 pixels) the algorithm was terminated. If the

difference was non-negligible, the algorithm was re-iterated until

satisfactory results were achieved. We also implemented a hard

limit on the number of iterations based on the area difference

between successive iterations.

Fuzzy clustering and region merging. Clustering tech-

niques [25] are unsupervised methods that have been used to

organize/classify data into groups based on the similarities of the

member data items. Clustering algorithms do not rely on

assumptions common to conventional statistical methods, such as

the underlying statistical distribution of data, and therefore are

useful in situations where minimum prior knowledge is available.

As it is very difficult to exactly quantify/model the MR

inhomogeneity, partial volume, noise, receiver coil sensitivity

and its influence on different regions of image (inter- and intra-

slice), we used fuzzy clustering (Fuzzy C- means algorithm – FCM)

for grouping the SAT and VAT voxels. The number of classes for

SAT and VAT was empirically selected as 3 and 5 respectively

after analyzing the intensity variations in the respective regions on

all the slices. The different FCM regions in SAT and VAT were

merged based on the intensity and neighborhood relation

(Figure 3). The voxels of skin and the abdominal wall were

removed from the SAT region to get the final SAT volume

(Figure 3, bottom trace). Results of segmentation were checked

manually for their consistency in several data sets before applying

the algorithm to the cohort study. The proposed algorithm was

developed and implemented in a MATLAB 2008R environment,

running on a Windows 7 environment with dual core CPU X

9650 @ 3 GHz with 2 GB RAM.

Figure 1. The overall flowchart describing the different stages and processing steps involved in segmentation and quantification of
subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT).
doi:10.1371/journal.pone.0108979.g001

Figure 2. Different steps involved in deriving the initial
contour for the hybrid geodesic region based curve evolution
method. a) Filtered image, b) binary mask derived from the filtered
image, c) edge map of the binary mask and d) placement of the initial
contour after shrinking.
doi:10.1371/journal.pone.0108979.g002
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Inter- and intra-scan variability
We performed additional scans on control rats (N = 7) to

validate the segmentation and quantification algorithm for its

accuracy, reproducibility, repeatability, influence of animal

positioning on quantification of fat, and effects of water

suppression on quantification, by implementing the following

three scenarios: 1) clone scans, 2) bed – out/in scans and 3) animal

change scans. In the cloned scans, the sequence was repeated

without any change in parameters. In the bed – out/in scans, the

images were acquired after moving the animal bed out of the bore

and placing it back into the magnet without changing the animal’s

position. In the animal change scans, the scans were repeated after

the animal was repositioned in the bed.

Sequence influence. Imaging using fast spin echo (with and

without suppression) and Dixon was performed on obese mice

(N = 7) to evaluate the fat quantification. Dixon-based fat

quantification was considered as the reference for the evaluation

of our results.

Ex vivo Analysis
After the post-intervention imaging, rats were sacrificed by

cardiac puncture. The various fats including subcutaneous, and

gonadal, mesenteric, retroperitoneal and perirenal fat (the sum of

these fat tissues was considered as visceral fat) from the CG, EX

and CR groups were sampled and weighed. After computation of

the SAT and VAT volumes from the abdominal images, fat mass

was estimated by using the adipose tissue density that is defined as

,0.9 g/ml [26].

Statistical Analysis
Imaging and quantification of SAT and VAT were performed

using a double-blinded evaluation. Paired sample T- test analysis

was conducted to understand the significant changes in the SAT

and VAT between pre-and post-intervention. The intraclass

correlation analysis was performed to evaluate the consistency of

the SAT and VAT quantitative measurements [27]. Comparison

of fatpad and MR-based fat quantification was performed to check

the correlation between the two methods. Error analysis, and

correlation analysis (Pearson, Spearman and Kendall- Tau tests)

were performed for both SAT and VAT quantification with clone,

bed-out/in and animal change scans.

Results

Results of intervention
Table 1 shows the results of quantitation of fat for various

cohorts. The EX and CR groups showed weight reduction (P,

0.01) at 18 weeks, compared to the CG group. Figure 4 shows the

pre- and post-intervention changes for SAT (top trace) and VAT

(bottom trace) in grams for different groups evaluated using the

proposed segmentation method. Figure 5 shows the percentage

change in SAT and VAT after the intervention. The EX group

showed decrease in both SAT and VAT; while CR group showed

increase in SAT and decrease in the VAT.

Paired samples T-test between the pre- and post-scans showed

significant changes in both SAT (P,0.001, 0.01 and 0.001 for

control, exercise and calorie restriction cohorts respectively) and

VAT (P,0.001, 0.001 and 0.05 for control, exercise and calorie

restriction cohorts respectively). The intraclass correlation analysis

was used to measure the consistency of SAT and VAT

quantification. We observed a strong correlation and low variance

in the intraclass distribution as shown in Figure S1, indicating high

agreement in results of quantification for all the groups.

Correlation of MR based SAT and VAT quantification with
Fat pad Analysis

Additionally to validate the results of MR based SAT and VAT

quantification, we performed a correlation analysis with respect to

Figure 3. Top trace - VAT segmentation stages – a) VAT region
separated by the active contour b) clustered VAT image and c)
final segmentation results of VAT. Bottom trace - SAT segmenta-
tion stages – a) SAT region separated by the active contour and the
clustered SAT image b) mask of the skin and the abdominal wall and c)
final segmentation results of SAT.
doi:10.1371/journal.pone.0108979.g003

Table 1. Quantification of SAT and VAT in pre-scan, post-scan and percentage of change between pre- and post-scan.

SAT

Pre-scan Post-scan %Change

CG 3.624160.4044 5.159160.4998 44.2269.0

EX 3.985460.6158 3.266260.3903 217.3363.07

CR 4.004060.5172 4.731460.2475 18.5662.05

VAT

Pre-scan Post-scan %Change

CG 24.706460.6810 29.873863.7501 21.0661.35

EX 25.277660.6981 21.480562.9400 215.0961.11

CR 24.773160.7232 23.772162.5496 23.960.96

doi:10.1371/journal.pone.0108979.t001
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tissue based fat pad analysis. The results of analysis are shown in

Figure 6. We observed an overestimation of fat by fat pad analysis.

Both MR and fat pad analysis showed similar trend and changes in

fat percentage for Ex and CR groups with respect to control

group.

Inter- and intra-scan variability analysis
The analysis of SAT and VAT quantification with clone, bed-

out/in and animal change scans are shown in Figure 7. The error

was least in the clone scans and largest with animal repositioning.

This larger margin of error was expected since animal placement

Figure 4. The graphs show the amount of SAT in grams for different groups (top trace) and for VAT (bottom trace) calculated using
the proposed segmentation method.
doi:10.1371/journal.pone.0108979.g004

Figure 5. The percentage change in SAT and VAT between pre- and post-intervention scan for different groups calculated using the
proposed segmentation method.
doi:10.1371/journal.pone.0108979.g005
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and positioning in the bed strongly influences the imaging

outcomes.

MR Sequence influence analysis. We evaluated FSE based

imaging with and without water suppression and Dixon techniques

for quantification of SAT and VAT. Results of Error and

correlation analysis (Pearson, Spearman, and Kendall- Tau tests)

for both SAT and VAT are shown in Figure 8, and Table 2. A

strong correlation was observed between FSE based imaging and

DIXON with respect to quantification of SAT and VAT. The

average difference was about 1.2% for SAT and 3% for VAT

between unsuppressed water based FSE and DIXON. The

correlation coefficients were calculated with respect to Dixon

imaging based quantification. FSE with and without water

suppression had correlation coefficients of 0.9709, 0.9803 and

0.9955, 0.9840 respectively.

Discussion

Quantity of SAT and VAT in the abdomen are important

metabolic measures as they are correlated to insulin resistance and

blood chemistry. In this study, we developed an automatic method

to distinguish and quantify different adipose tissues (SAT and

VAT) of abdomen in a large cohort of rodents to understand the

influence of exercise and calorie restriction on distinct adipose

tissue compartments in rats rendered obese by a high-fat diet.

Additionally, we studied the influence of different MR imaging

sequences and operational variability on the reproducibility and

accuracy of our automatic segmentation algorithm in quantifica-

tion of fat.

Accuracy of segmentation
Our segmentation algorithm benefits from the advantages of

both geodesic and region-based active contour techniques [21,22].

Our approach thus permits correct solutions using the weak

assumptions about global image properties. With our addition of

pre-processing and modifications to the original algorithm (using

the image features from local regions), our method is now more

robust to noise; it automates the generation and placement of the

initial curve and reduces the convergence time of the initial curve

to the abdominal wall.

The consistency and accuracy of the segmentation was more

than 80%. The coefficient of variation (COV) was [0.11, 0.15],

[0.14, 0.1], [0.12, 0.12] for SAT quantification in pre- and post-

intervention for the CG, EX and CR groups respectively. The

VAT quantitation had similar results with values of COV [0.05,

0.08], [0.08, 0.03], [0.1, 0.06] for pre- and post-intervention. The

values of COV and intra-class correlation emphasize that the

quantitation by the proposed segmentation algorithm is more

reproducible.

Despite its advantages, the performance of geodesic energy

based segmentation is strongly dependent on the initial curve

placement. While the proposed algorithm reduces the above

dependence, it is still necessary to initialize the contour nearby the

object to be segmented or risk that the final segmentation results

will converge at an incorrect local minima. There are certain cases

where, due to skin folding or abdominal compression, the

abdominal wall between the SAT and VAT is not characterized

by a separation of image intensities. The algorithm may therefore

fail to localize the abdominal wall and might converge to a local

optimum. The size of the neighborhood can also have a significant

impact on the results. For our study, all of these parameters were

empirically tuned to work optimally for SAT and VAT separation

by checking against different images used in the study.

SAT and VAT changes
We observed a reduction in body weight in rats that underwent

exercise and calorie restriction compared to the control group. As

expected, the increase in VAT and SAT was highest in the CG

group fed with a high-fat diet and not subjected to any anti-obesity

intervention. The calorie restriction group showed an increase in

SAT (18%) and decrease in VAT (23.9%), with the SAT gain

unevenly distributed with larger deposits in the L1-L2 region.

Conversely, the exercise group showed decrease in both SAT

(217%) and VAT (215%). Interestingly, we observed an opposite

distribution of fats from the previous scenario, with a higher

reduction of SAT and VAT in the lower abdominal region. These

findings are in line with existing literature that exercise and calorie

restriction can modulate the fat composition in VAT and SAT

differently [28–30]. Human studies [30,31] have shown that

Figure 6. Comparitive plots of MR and fat pad based quantification of SAT and VAT for Ex and CR groups with respect to control
group. The graphs indicate the percentage change in SAT and VAT in Ex and CR groups by both the methods.
doi:10.1371/journal.pone.0108979.g006
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subjects with exercise intervention for 3–4 days a week compared

to 1–2 days lost more subcutaneous fat.

In addition, we have compared the MRI based quantification of

SAT and VAT in L1–L5 with the fat-pad analysis. Similar trend

was observed in both fat-pad and MRI based analysis for the

percentage change of fat in EX and CR cohorts when compared

with the CG. We found overestimation of SAT and VAT by fat-

pad analysis when compared to MRI based quantification

(Figure 6). Though fat-pad analysis is more useful for estimating

fat in different organs it is very difficult to accurately extract the

SAT and VAT from L1–L5 regions due to the mobility of fat. This

might lead to contributions from the neighboring regions in turn

resulting in overestimation of fat.

Variability Analysis
Different MR sequences and operational variability influence

the reproducibility and accuracy of any segmentation algorithm.

Results of image segmentation and quantification also depend on

the quality of image acquisition. Amongst other variables, drift in

magnetic field, noise, errors in cradle positioning, animal

respiration, body movements, and animal positioning may

influence the quality of image acquisition.

The variability in quantification, as expected, was minimal in

the cloned MR sequence where the animal position is not

disturbed. We observed about 1% variation in SAT and about

2.8% in VAT quantification with the bed -out/in procedure,

where the histogram of the volume data showed a shift in intensity

values of the voxels. This could be due to variation in the

adjustment of magnetic field homogeneity with room temperature

Figure 7. Changes in SAT and VAT in clone, bed-out and bed-in and animal change scans.
doi:10.1371/journal.pone.0108979.g007

Figure 8. Error analysis comparing the results of quantification of SAT and VAT based on FSE (with and without water suppression)
and DIXON sequences.
doi:10.1371/journal.pone.0108979.g008
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shims. Larger errors in both SAT and VAT values were observed

when the animal was removed and re-positioned in the cradle.

These errors may be due to change in position/angle of the

animal, magnetic field homogeneity and other physiological noise

characteristics.

Quantification based on FSE and Dixon
We observed a high correlation in the SAT and VAT

quantification based on FSE-based imaging and Dixon-based

sequences as shown in Table 2. The SAT quantification based on

FSE with and without water suppression was higher by about 1%

and 4% respectively when compared to the Dixon-based

quantification. This was due to inclusion of the abdominal wall

region along with the SAT and may be due to elevated intensity

levels of the voxels (due to partial volume) near the SAT region.

On the other hand, the VAT quantification using FSE with and

without water suppression underestimated by about 0.8% and

1.5% respectively when compared to the Dixon-based method.

This was due to exclusion of low intensity voxels near the

abdominal organs. Though overall agreement in segmentation is

high between the FSE and Dixon MRI sequences, the choice of

sequence can influence the quantification of SAT and VAT due to

changes in the MR properties. The FSE imaging techniques

cannot purely separate the fat tissues as compared to Dixon

imaging. In all cases, the success of segmentation depends on the

quality of the initially acquired images.

The water and fat have a strong dependence on spin-lattice

relaxation T1, spin-spin relaxation T2, and diffusion characteris-

tics. Depending on the imaging sequence and field strength, image

acquisition parameters can influence the image contrast between

water and fat. Image contrast can also be affected by magneti-

zation transfer effects, J-modulation effects, production of

stimulated echoes and direct saturation effects, and due to

differential attenuation of spatial frequencies. Multi-echo based

MRI sequences for producing T2-weighted images have been

utilized for fat quantitation [32]. The use of multiple refocusing

pulses generates subtle effects (ghosting) that are not seen in

conventional single echo based imaging. Water images will

necessarily be T2 weighted whereas fat images will have an

intensity, which depends on factors including J modulation.

Chemical shift saturation techniques (e.g. water suppression) can

also have drawbacks due to magnetic field and RF field

inhomogeneity, and thus are suboptimal when imaging over large

field of view, off-isocenter locations, or near interfaces between soft

tissue and body cavities. The Dixon approaches do not suffer from

these chemical shift saturation drawbacks, as they provide uniform

separation of fat and water. It has indeed been shown that the

multi-point Dixon approaches can result in a more robust

separation of water and fat even with strong B0 inhomogeneity

[33].

Conclusions
We have developed an automated segmentation algorithm for

estimation of SAT and VAT in rodents including both rats and

mice. Our automated image analysis and segmentation technique

will be very valuable for the analysis of large cohorts with different

obesity and anti-obesity interventions due to greatly (4x) reduced

image analysis time, improved accuracy, and elimination of

operator variability errors. We have furthermore shown that the

choice of MRI sequence, animal positioning and cradle distur-

bance influence fat quantification. These quantification errors are

minimized when image acquisition is free from artifacts, noise, and

magnetic drift. Finally, the difference between the FSE (with and

without water suppression) and Dixon based quantification did not

show large variation for estimation of VAT and SAT in rodents.

Supporting Information

Figure S1 The intra-class distribution of SAT and VAT
during pre- and post-intervention scan for different
groups calculated by the proposed segmentation meth-
od.

(TIF)

Material Theory S1 Theory of geodesic region based
curve evolution.

(DOCX)

Table 2. Correlation analysis of SAT, VAT quantification using FSE (with and without water suppression), and DIXON imaging
sequences.

SAT VAT

Variable Y FSE_Water_ Supp FSE_Water_ Unsupp FSE_Water_ Supp FSE_Water_ Unsupp

Variable X Dixon Dixon Dixon Dixon

Sample size 7 7 7 7

Correlation coefficient r 0.9709 0.9803 0.9955 0.9840

Significance level P = 0.0003 P = 0.0001 P,0.0001 P = 0.0001

95% Confidence interval for r 0.8103 to 0.9958 0.8681 to 0.9972 0.9688 to 0.9994 0.8920 to 0.9977

Spearman’s coeff of rank
correlation (rho)

0.964 0.964 1.000 1.000

Significance level P = 0.0005 P = 0.0005 P,0.0001 P,0.0001

95% Confidence Interval for rho 0.771 to 0.995 0.771 to 0.995 1.000 to 1.000 1.000 to 1.000

Kendall’s Tau 0.905 0.905 1.000 1.000

Significance level P = 0.0069 P = 0.0069 P = 0.0027 P = 0.0027

95% Confidence Interval for Tau 0.556 to 1.000 0.556 to 1.000 1.000 to 1.000 1.000 to 1.000

doi:10.1371/journal.pone.0108979.t002
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