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ABSTRACT 18 

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), 19 

contribute to important phenotypes in many organisms. CNVs are readily identified using conventional 20 

approaches when present in a large fraction of the cell population. However, CNVs that are present in 21 

only a few genomes across a population are often overlooked but important; if beneficial under specific 22 

conditions, a de novo CNV that arises in a single genome can expand during selection to create a larger 23 

population of cells with novel characteristics. While the reach of single cell methods to study de novo 24 

CNVs is increasing, we continue to lack information about CNV dynamics in rapidly evolving microbial 25 

populations. Here, we investigated de novo CNVs in the genome of the Plasmodium parasite that causes 26 

human malaria. The highly AT-rich P. falciparum genome readily accumulates CNVs that facilitate rapid 27 

adaptation to new drugs and host environments. We employed a low-input genomics approach 28 

optimized for this unique genome as well as specialized computational tools to evaluate the de novo 29 

CNV rate both before and after the application of stress. We observed a significant increase in genome-30 

wide de novo CNVs following treatment with a replication inhibitor. These stress-induced de novo CNVs 31 

encompassed genes that contribute to various cellular pathways and tended to be altered in clinical 32 

parasite genomes. This snapshot of CNV dynamics emphasizes the connection between replication 33 

stress, DNA repair, and CNV generation in this important microbial pathogen. 34 

 35 

INTRODUCTION 36 

Changes in the copy number of large genomic regions, termed copy number variations (CNVs), are a 37 

source of phenotypic diversity for many organisms (as reviewed in [1-3]). The structure of CNVs and 38 

their formation is complex; they can involve a few base pairs or whole genes, encompass many 39 

structural forms (e.g. tandem arrays, inversions, translocations), and be generated by a range of DNA 40 

repair pathways (e.g. recombination and end-joining pathways). CNVs are especially important for 41 

rapidly evolving microbes such as bacteria, yeast, and viruses by contributing to antimicrobial resistance, 42 

nutrient acquisition, and pathogenesis [4-6]. CNVs also contribute to cancer growth and progression ([7-43 

10] and reviewed in [11, 12]). Further, we are beginning to appreciate CNVs as drivers of other human 44 

disorders and disease susceptibility including blood, metabolic, neurological, and infectious diseases [13-45 

21].  46 

Increased access to genome sequencing has facilitated the identification of these important genomic 47 

rearrangements, especially following selection. CNVs that are identified using standard “bulk” analysis 48 

approaches (e.g.. read coverage methods) are present in a large fraction of the cell population (>50% 49 

[2]). However, those in a minority of genomes, or even a few genomes, are “averaged” away during 50 

analysis steps. This artifact limits our ability to assess how CNVs arise and contribute to the genomic 51 

diversity of individual cells within a population. Such diversity is important; if beneficial under specific 52 

conditions, a CNV that arises in a single genome can expand during selection into a larger population of 53 

cells with novel characteristics [22, 23]. This rapid expansion is exemplified when minor bacterial 54 

populations with higher gene copy numbers confer “heteroresistance” during clinical antibiotic selection 55 

[24, 25, 26 ]. In another example, higher levels of intra-tumor heterogeneity in gene copy number 56 

predict a poorer cancer prognosis [27-29]. 57 
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In order to observe a genome’s evolutionary potential in the absence of selection, we require 58 

approaches specifically designed to detect CNVs that are not present in a predecessor “parental” 59 

genome. Due to their rare and novel nature, these events are commonly termed “de novo” CNVs [3, 30-60 

34]. Early experimental progress detecting de novo CNVs involved cloning individual cells, which takes 61 

time, is prone to contamination, and prevents detection of detrimental CNVs [30-32]. Misalignment of 62 

short-reads to reference genomes (i.e. discordant or split reads) can also indicate the presence of de 63 

novo CNVs, but false positives are common if matched normal samples are not available (reviewed in 64 

[35]).  65 

Recent methods that isolate single cells have been successful at assessing de novo CNVs during 66 

experimental evolution, disease progression, and tissue development (as reviewed in [35-39]). De novo 67 

CNVs have been tracked in evolving yeast genomes using flow cytometry to quantify fluorescent 68 

reporters integrated into a specific selectable locus [33]. This approach is sensitive but provides a limited 69 

view of CNV dynamics by focusing on a single or few specific loci. Single cell transcriptomics, which infers 70 

gene copy number using mRNA abundance, can identify large structural changes across genomes from 71 

heterogeneous tumor samples [40-43]. This approach averages relative expression over Mb-sized 72 

genomic regions and thus, is not applicable to identify smaller de novo CNVs. Single cell genomics, 73 

where individual genomes or nuclei are isolated and amplified to a level that can be sequenced, has 74 

been used to directly quantify de novo CNV rates in brain tissue and cancer cells [27, 44-49]. A recent 75 

approach, termed direct library preparation, is free from amplification steps, thus limiting genome 76 

skewing; however, this method is less accessible due to the requirement for specialized cell dispensers 77 

(microfluidics or piezoelectric) and has not been tested with CNVs smaller than 500kb [50]. While the 78 

reach of single cell methods is expanding, we continue to lack information about de novo CNVs in 79 

microbes and their dynamics in evolving populations. 80 

The Plasmodium parasite that causes malaria readily accumulates kb-sized CNVs in its genome [51-54]. 81 

CNVs impact the survival of malaria, allowing this parasite to evade clinical detection [55], expand 82 

beneficial gene families [56], invade new host cells [57], and develop clinical antimalarial resistance [58-83 

60]. We are specifically interested in the genetic diversity of one species of malaria, P. falciparum, since 84 

this may explain its rapid adaptation to new drugs and host environments [61]. Due to its relatively 85 

small, AT-rich genome (23 Mb, 19.4% GC [62]), low-input genomics is challenging in this single cell 86 

protozoan. However, we previously optimized a single cell genomics approach and developed novel 87 

computational tools to evaluate de novo CNVs in the P. falciparum genome [63] (see Materials and 88 

Methods for tool details).  89 

Here, we combined these advancements and made additional improvements to investigate de novo CNV 90 

formation in the P. falciparum genome. Since various types of cellular stress can induce genetic change 91 

(reviewed in [2, 64-66]), we also evaluated the impacts of replication stress on de novo CNV 92 

identification. Using our low-input genomics pipeline, we observed that replication stress increased the 93 

number of de novo CNVs across the parasite genome. This study of genome dynamics, along with 94 

improved tools, increases our understanding of how stress can stimulate rapid microbial evolution. 95 

 96 

RESULTS  97 

Refined low-input genomics pipeline increased efficiency and accuracy 98 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.19.629492doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.19.629492
http://creativecommons.org/licenses/by-nc/4.0/


We developed a robust pipeline for assessing the frequency of de novo CNVs in the Plasmodium genome 99 

based on our prior studies (Fig. 1). We adapted our single cell genomics method to improve parasite 100 

isolation and whole genome amplification steps ([63], Fig. 1A, Fig. S1). In this modified protocol, we 101 

used fluorescence-activated cell sorting (FACS) to isolate parasites to improve efficiency and modified 102 

aspects of our whole genome amplification method to improve coverage (Table S1, Fig. S1). We also 103 

sorted low-cell populations to increase accuracy (e.g. 2-cells per well, Fig. S2), and added quality control 104 

steps that confirmed our samples were of high quality prior to short-read sequencing. The resulting low-105 

input genomics pipeline consisted of basic steps including parasite isolation using flow sorting, whole 106 

genome amplification using a modified MALBAC-based approach, quality control confirmation, short-107 

read sequencing, and CNV analysis (Fig. 1A). 108 

 109 

 110 

Figure 1. Low-input genomics approach for analysis of malaria parasite genomes under stress. Early erythrocytic stage P. 111 
falciparum parasites grown in vitro were treated with a replication inhibitor (DSM1) or the solvent control (dimethylsulfoxide) 112 
followed by recovery and reinvasion to produce a new round of ring stage parasites. A. For low-input genomics, parasite-113 
infected erythrocytes were isolated using flow sorting (10-cell control or 2-cell samples). Parasite genomes were amplified using 114 
a modified MALBAC-based whole genome amplification approach (Fig. S1). Quality control steps involved DNA quantification to 115 
assess amplification success, droplet digital PCR to assess parasite genome amplification, and PCR-high resolution melting to 116 
assess sample cross-contamination. After Illumina short-read sequencing, reads are filtered, trimmed and used as input for 117 
copy number variation analysis using HapCNV and LUMPY. B. Parasite erythrocytic life cycle including approximate timing (h), 118 
genome number (n), and effect of treatment.  119 

 120 

Replication stress followed by a recovery period led to isolation of healthy parasites 121 

To explore the impact of replication stress on de novo CNV generation, we treated the parasites with an 122 

antimalarial that inhibits DNA replication by limiting pyrimidine pools; DSM1 targets Plasmodium the 123 

dihydroorotate dehydrogenase enzyme [67]. Application of DSM1 for an extended period kills parasites 124 

by perturbing DNA synthesis (>48hrs at 10x the EC50, [68]). However, short-term treatment reversibly 125 
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stalls parasite replication similar to another replication inhibitor, aphidicolin (Fig. S3). For low-input 126 

genomics, we applied DSM1 to ring-stage parasites for a brief time (12hr, Fig. S4A and B). Similar to our 127 

pilot experiment (Fig. S3A), we observed that treated parasites stalled prior to replication (Fig. S4C and 128 

E) and slightly decreased their growth rate compared to untreated parasites (Fig. S4G). We harvested 129 

viable parasites after a recovery period (~30hrs, Fig. S4H), where we allowed parasites to complete an 130 

additional round of replication and erythrocyte invasion to produce those that have a single, haploid 131 

genome (rings, Fig. S4D and F). The recovery stage was essential as it allowed parasites to repair the 132 

DNA damage accumulated during treatment. As a control for cross-sample contamination between 133 

isolation wells, we isolated and amplified untreated parasites with different genetic backgrounds (FCR3 134 

vs Dd2, Table 1, Fig. S5).  135 

Prior to isolation of low-cell populations, we confirmed that untreated and DSM1-treated parasites were 136 

at a similar life cycle stage and viability using staining for mitochondrial membrane potential (Table 1, 137 

Fig. S5A); we saved a portion of these samples for parasite population sequencing (i.e. bulk samples). 138 

We then proceeded to isolate small populations of viable, ring stage parasites using FACS (Fig. S5B) for 139 

whole genome amplification. 140 

 141 

Table 1: Parasite density, staging, and health at isolation for low-input genomics. 142 

Line/Treatment* Mean % 

Parasitemia
$
 

Mean % Rings Mean % 

Viability
@ 

Untreated FCR3^  0.6% 90%  91% 

Untreated Dd2^  0.8% 87%  94% 

DSM1-treated Dd2  0.6% 77%  95% 
*Treatment conditions: 1µM DSM1 (~10x EC50) for 12hrs prior to 30.8hrs of recovery.  Untreated samples were incubated with 143 
DMSO as a solvent control for 12hrs and allowed to recover for 28-30hrs (Fig. S4H). $Parasitemia was determined by calculating 144 
the number of infected erythrocytes (SYBR Green+) compared to uninfected erythrocytes (SYBR Green-) (Fig. S4).

@
Viability of 145 

parasites was determined by measuring the mitochondrial membrane potential (Mitoprobe+) and calculating % of total SYBR 146 
Green-based parasitemia (plots presented in Fig. S4D, S4F, and Fig. S5). ^FCR3 (Africa) and Dd2 (Southeast Asia) parasite lines 147 
are from distinct geographic origins [69, 70]. 148 

 149 

Quality assessments showed effective isolation and amplification of low-input samples 150 

We sorted low-cell populations from each parasite group into 60 wells of a 96-well plate (FCR3, 151 

untreated Dd2, and treated Dd2), including 6 wells with 10-cells and 56 wells with 2-cells. Ten-cell wells 152 

served as positive controls for the whole genome amplification step and 2-cell wells provided the 153 

optimal balance between sorting accuracy (Fig. S2) and de novo CNV detection. Zero cells were sorted 154 

into the top 2 rows of the plate (“no-cell” wells). After parasite lysis and applying PfMALBAC version-2 155 

whole genome amplification (Fig. S1), we assessed amplification success using three approaches. First, 156 

we measured the resulting DNA quantity across 80% of the amplified wells (Fig. S6). On average, 157 

MALBAC amplification in wells that contained sorted parasites yielded ~120ng of total DNA per reaction, 158 

with a ~10% increase in DNA for 10- vs 2-cell samples (mean of 127ng versus 116ng total, respectively). 159 

We did not detect position-based bias across plates or appreciable amplification from no-cell wells, but 160 

we did observe that treated Dd2 wells had ~3-fold lower levels of amplification than other samples 161 
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(mean of 51ng versus 151ng total, respectively). There was little difference in mean amplified DNA 162 

amounts between the two untreated sample groups (FCR3 at 146ng and untreated-Dd2 at 152ng). 163 

Second, we performed droplet digital PCR (ddPCR) for parasite-specific genes on approximately one-164 

third of wells post isolation to confirm the amplification of the parasite genome. DdPCR for pfmdr1 and 165 

pfhsp70 displayed that wells with measurable DNA contained amplified parasite DNA (Fig. S6 and S7). 166 

Additionally, we confirmed that 2-cell wells with very low total DNA amounts (Fig. S6) were positive for 167 

parasite genomes while “no-cell” wells did not show evidence of parasite material (Fig. S7). 168 

Finally, we employed high-resolution melting analysis to profile a drug resistance marker that differs 169 

between FCR3 and Dd2 parasites. By assessing the pfdhps SNP profile of amplified genomes and 170 

comparing it to the parental profile in ~10% of samples, we confirmed that there was no evidence of 171 

cross-sample contamination during the preparation and amplification steps (Fig. S8). Therefore, we 172 

proceeded to sequence the amplified bulk and low-input samples (Table S2). 173 

 174 

Coverage deviation and SNP profiles exhibited expected trends in low-input samples 175 

We sequenced 3 bulk samples and 90 low-input samples using Illumina short-read sequencing (Table 2 176 

and Table S3). Overall, sequencing proceeded well as indicated by coverage and coverage deviation of 177 

the bulk samples, as well as an equivalent mean mapping quality across all samples (Table 2). Because 178 

we noticed that treated Dd2 wells had lower levels of DNA following amplification (Fig. S6), we 179 

sequenced higher amounts of material for this condition; this choice impacted mean coverage levels 180 

where treated Dd2 samples had ~4-times higher coverage than untreated Dd2 samples (Table 1). The 181 

percent of total reads that mapped to the P. falciparum genome was high across all samples (mean of 182 

67%), indicating efficient amplification of the parasite genome and little contribution of environmental 183 

contamination during sample amplification. As expected based on previous studies [63], coverage 184 

deviation was ~3-fold higher in low-input samples when compared to bulk samples, reflecting the bias of 185 

the whole genome amplification step to over- or under-amplify specific genomic regions.  186 

We removed five low-input samples from further analysis based on low coverage levels; on average, 187 

excluded samples had ~7-times lower coverage than other low-input samples (Table S3). Of the 188 

remaining samples, 18 were 10-cell samples and 57 were 2-cell samples. Although mean coverage was 189 

~2-fold higher for 2-cell samples (due to the higher coverage of treated low-input samples), mean 190 

normalized deviation was similar between 10- and 2-cell samples (3.5 and 3.1, respectively).  191 

To evaluate the quality of the sequencing data, we tracked SNPs in the low-input samples compared to 192 

bulk samples. Despite some variation due to the non-clonal nature of parasite lines (see Materials and 193 

Methods), low-input SNP profiles were similar to their corresponding bulk sample (Fig. S9A). After 194 

normalizing total SNPs to mapped reads, we detected a lower rate of SNPs in treated samples compared 195 

to untreated counterparts (p value of 0.0001, Fig. S9B). We did not detect a correlation between 196 

normalized total SNPs and amplification quality (Fig. S9C, R2: untreated Dd2, 0.01; treated Dd2, 0.01); 197 

we did observe a positive correlation between SNP number and coverage depth in treated versus 198 

untreated Dd2 samples (Fig. S9D, R2: untreated Dd2, 0.66; treated Dd2, 0.27), indicating that the 199 

difference in SNP numbers is likely due to varying sensitivity at different levels of read coverage [71, 72].  200 

 201 
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 202 

 203 

Table 2: Sequencing Summary for low-input samples and paired bulk samples 204 

    No. of 

samples

** 

Mean no. 

mapped reads 

per sample 

Mean 

coverage 

per sample 

Mean 

Coefficient of 

Variation (CV
#
) 

Mean 

mapping 

quality 

  

Bulk Untreated FCR3 1 9,966,137 54.9 59.5 58.2 

Low-input Untreated FCR3 16 2,694,209 13.7 105.1 58.2 

Bulk Untreated Dd2 1 5,735,107 33.6 33.3 58.5 

Low-input Untreated Dd2 33 2,579,674 13.2 82.6 58.3 

Bulk Treated Dd2 1 72,380,215 416.3 35.2 58.5  

Low-input Treated Dd2*  36 9,936,903 53.7 86.5 58.4 

*On average, ~4x more material was loaded on the flow cell for the treated samples than the untreated samples due to lower 205 
initial amplification yields (Fig. S6). 206 
**Excludes samples that were removed due to low coverage. For low-input samples, includes both 10- and 2-cell samples. 207 
#
CV is the coefficient of variation of normalized read abundance as in [63] 208 

 209 

 210 

Experimental and computational advances improved known CNV calls across low-input samples 211 

For the current study, we employed two different CNV calling methods in low-input samples. HapCNV is 212 

a novel read coverage-based CNV calling method specifically designed for low cell data from haploid 213 

genomes [73]. In contrast to traditional methods that arbitrarily select reference samples for CNV data 214 

normalization, HapCNV constructs a genomic location (or bin)-based pseudo-reference as a comparison 215 

baseline. This step systematically alleviates amplification bias for the identification of de novo CNVs. 216 

LUMPY is an established CNV calling method that exhibits high sensitivity due to the incorporation of 217 

multiple CNV signals (i.e. split and discordant reads) generated from short-read sequencing. It is 218 

particularly well-suited for detecting low-frequency variants in low-coverage datasets; however, for 219 

many CNV callers, high sensitivity leads to higher false positives [74-76]. 220 

Using these two distinct CNV calling methods, combined with a recently developed CNV counting 221 

approach, we evaluated the presence of known CNVs in our 2-cell samples (Fig. 2A). The identification of 222 

known CNVs (i.e. those identified in the bulk sample, see Materials and Methods) within low-input 223 

samples displays the utility of the specific CNV calling method for different size CNVs in specific genome 224 

locations. In our previous study, we identified 2 of the 3 known CNVs in ~10% of single cell genomes 225 

[63]. In the current study, we identified the pfmdr1 amplicon in 100% of 2-cell samples using HapCNV 226 

(57/57) and 79% of samples using LUMPY (45/57). We did not identify the pf11-1 amplicon in any 2-cell 227 

samples using HapCNV (0/57) but detected this locus in 75% of samples using LUMPY (43/57). Finally, 228 

we identified pf332 CNVs in 46% of 2-cell samples using HapCNV (26/57) and 100% of samples using 229 

LUMPY (57/57). Although our two studies used different CNV calling methods and are not directly 230 
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comparable, the overall improvement in the detection of known CNVs in the current study is likely due 231 

to advances in both the whole genome amplification method to limit amplification bias (Table S1) and 232 

recently developed analyses approaches. When we evaluated the detection of three known CNVs in Dd2 233 

low-input samples, we observed a somewhat higher rate of known CNV detection by either method in 234 

treated samples (Fig. 2B, HapCNV: mean of 1.2 out of 3 total CNVs for untreated and 1.7 for treated 235 

(increase of 42%), LUMPY: mean of 2.1 out of 3 total CNVs for untreated and 2.9 for treated (increase of 236 

38%, Table S4).  237 

De novo CNVs in low-input samples consisted of rare and common CNVs 238 

We next sought to quantify de novo CNVs in low-input samples. We defined de novo CNVs as those not 239 

present in the bulk sample and we categorized them based on their frequency in low cell samples. 240 

“Common” CNVs were present in a larger number of genomes (≥10% of the same sample type, i.e. 241 

untreated or treated), and “rare” CNVs were those that occurred in a small proportion of samples (<10% 242 

of the sample type) (Fig. 2A). Overall, LUMPY detected more total de novo CNVs than HapCNV across all 243 

samples (12-fold), and the proportion of rare versus common CNVs varied depending on the method 244 

(18% vs 82% for HapCNV, 61% vs 39% for LUMPY, respectively, Table S4). Additionally, de novo CNVs 245 

were more often identified as duplications than deletions for both CNV calling methods (Fig. 2C).  246 

To understand the nature of common and rare CNVs, we also assessed how often their locations 247 

overlapped across the two sample types (untreated and treated, Fig. S10). This analysis is useful for 248 

tracking common/rare category utility and relevance. For utility, this step acts as a sanity check since, by 249 

definition, we do not expect rare CNV locations to overlap as often as common CNVs. For relevance, de 250 

novo CNVs with conserved locations across sample types are less likely to represent true CNVs newly 251 

arising in a genome.  As expected, we identified many common CNVs with conserved locations (22% for 252 

HapCNV and 52% for LUMPY, Fig. S10A). The lower rate of overlapping calls across samples for HapCNV 253 

is likely due to the bin-based normalization strategy to remove amplification artifacts [73]. Conversely, 254 

we found that rare CNVs were predominantly called in unique genome locations (94% for HapCNV and 255 

97% for LUMPY, Fig. S10A), supporting their novel nature. This pattern was consistent when we 256 

randomly down-sampled all sequencing data to the lowest read coverage prior to CNV calling (1.3 257 

million reads, Fig. S10B). This comparison not only highlights the suitability of the common and rare 258 

categories but also the difference between the CNV calling methods. Based on these observations, for 259 

the following analysis, we assessed common and rare CNVs using both methods to capture the broadest 260 

view of stress effects on CNV generation.  261 

Genome-wide de novo CNVs increased following replication stress 262 

When we compared de novo CNVs in genomes with and without replication stress, we found that results 263 

were consistent regardless of the CNV calling method (Fig. 2). While the proportion of duplication and 264 

deletions did not change appreciably with treatment (Fig. 2C), we identified a highly significant 265 

difference in de novo CNVs between treated and untreated 2-cell samples (p value of 0.0002 for 266 

HapCNV and <0.0001 for LUMPY, Fig. 2D). This pattern was consistent when we down-sampled all 267 

sequencing data (p value of 0.001 for HapCNV and <0.0001 for LUMPY, Fig. 2E), indicating that the 268 

difference in de novo CNV counts between treatments was not due to read coverage.  When we 269 

assessed common and rare CNV categories, we once again observed highly significant differences 270 

between treated and untreated 2-cell samples in common CNVs using both methods (common: p value 271 
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0.0004 for HapCNV and <0.0001 for LUMPY, Fig. 2F; rare: p value of 0.008 for HapCNV and <0.0001 for 272 

LUMPY, Fig. 2G).  273 

When we compared the proportion of de novo CNVs relative to total CNVs per sample, rare CNVs were 274 

significantly increased over common CNVs (p value of 0.003 for HapCNV and 0.009 for LUMPY, Fig. 2H). 275 

This difference persisted regardless of down-sampling (p value of 0.02 for HapCNV and 0.004 for LUMPY, 276 

Fig. S11) and is in line with our assessment above that rare CNVs are more likely to be novel in nature 277 

(Fig. S10). Overall, we detected a ~2-3-fold increase of de novo CNVs in treated samples, regardless of 278 

the CNV calling method (Table 3). Once again, rare CNVs displayed the largest increase following 279 

treatment (~3-4-fold, Table 3, Fig. 2I).  280 

De novo CNVs represented diverse cellular pathways with clinical benefits 281 

When we compared overlaps between the HapCNV and LUMPY (Fig. 3A), we detected a set of CNV 282 

regions that was consistent within sample groups (5 for untreated and 38 for treated, Table S5). The 283 

frequency of these “high-confidence” CNVs also reflected the increase in CNVs following replication 284 

stress (with knowns excluded, ~15-fold increase in treated samples). Overall, high-confidence CNVs were 285 

located on the majority of chromosomes (12 of 14, Fig. 3B) and represented both duplications and 286 

deletions (Fig. 3C). Of note, approximately half of these regions were identified as “rare” by both CNV 287 

calling methods across treated samples (17/36, 47%; Table S5), indicating that novel CNVs were 288 

stimulated in parasite genomes under stress. When we searched for genes that are covered by these 289 

regions, we identified 26 genes (across 3 de novo CNV regions) and 198 genes (across 37 de novo CNV 290 

regions) in untreated and treated Dd2 samples, respectively (Table S5). Emphasizing their random 291 

nature, genes encompassed by the CNV regions represented diverse protein classes (Fig. 3D) and no 292 

gene ontology (GO) categories were significantly enriched (using an FDR adjusted p value of 0.05, Table 293 

S6).  294 

Finally, we evaluated whether CNVs that arose under stress were important for parasite survival by 295 

comparing genes covered by our treated CNV regions to those from the largest catalogue of clinically 296 

relevant CNVs to date. This list of high frequency CNVs was previously called using genomes from 2855 297 

parasite isolates from 21 malaria-endemic countries and represented genes from larger (>300bp), high-298 

quality, core genome variants [59]. Assuming ~5000 genes in the core P. falciparum genome [77], we 299 

found that genes from the two lists were ~2-times more likely to overlap than by chance (chi-square 300 

odds ratio of 2.5 for HapCNV-treated CNV list and 1.6 for LUMPY-treated CNV list). This significant 301 

association between CNV locations suggests that stress-induced de novo CNVs have the potential to be 302 

beneficial in the clinical environment (Fisher’s exact p value <0.0001 for HapCNV-treated CNV list and 303 

0.03 for LUMPY-treated CNV list). 304 

      305 

Table 3. Mean CNV counts per 2-cell sample using two analysis methods. 306 

CNV 

detection 

method
$
 

Condition (2-cell 

only) 

Rare 

CNVs per 

sample* 

Common 

CNVs per 

sample* 

Combined 

de novo 

CNVs per 

sample^ 
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HapCNV 

treated Dd2 7 23 15 

untreated Dd2 1.7 15 8 

fold change 4.4 1.6 1.9 

LUMPY 

treated Dd2 297 163 230 

untreated Dd2 99 68 84 

fold change 3.0 2.4 2.7 

*Includes both duplications and deletions. Values are calculated by taking the mean of CNV counts per sample within each 307 
category. ^De novo CNV counts combined the subcategories of rare (<10% of samples) and common CNVs (>10% of samples, 308 
absent in bulk). 

$
CNV analysis performed using all reads. 309 

  310 

 311 

Figure 2. Low cell genomics displays an increase in de novo CNVs following replication stress. Number of CNVs  from 312 
untreated (U-Dd2) and treated (T-Dd2) 2-cell samples from two CNV analysis methods: HapCNV and LUMPY. Statistics for all 313 
plots use an unpaired T-test with two tailed Welch’s correction (****:p value <0.0001; ***: <0.001; **: <0.01; *:<0.05; no stars: 314 
not significant). Analyses include all reads, unless otherwise indicated (i.e. panel E is down-sampled). Line at mean value for 315 
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each dataset. A. Depiction of CNV categories used in the analysis. Known CNVs (orange) are detected in bulk samples and 316 
present in all low cell samples. De novo CNVs are not present in bulk samples are considered common (green, <10%) or rare 317 
(teal, <10%) depending on their frequency across the 2-cell samples. B. Detection of three known CNVs in 2-cell samples. 318 
Known CNVs were identified in Dd2 bulk sequence (either pfmdr1, pf11-1, or pf332). 0: no known CNVs were detected in 2-cell 319 
sample; 1/2/3: one/two/or three known CNVs were detected in 2-cell sample (see Table S4 for sample counts). C. Proportion of 320 
total CNVs detected as duplications (Dup) or deletions (Del) in untreated (U) or treated (T) 2-cell Dd2 samples (p values: 0.02 for 321 
Dup and 0.03 for Del from LUMPY). D. Detection of de novo CNVs (common and rare combined) from all reads (p values: 0.0002 322 
for HapCNV, <0.0001 for LUMPY). E. Detection of de novo CNVs (common and rare combined) from down-sampled reads (p 323 
values: 0.0014 for HAPCNV and <0.0001 for LUMPY). F. Detection of common CNVs from all reads (p values: 0.0004 for HapCNV, 324 
<0.0001 for LUMPY). G. Detection of rare CNVs from all reads (p values: 0.008 for HapCNV, <0.0001 for LUMPY). H. Proportion 325 
of total CNVs detected as rare and common from all reads; pie charts plot the mean but statistics are calculated using all data 326 
points from the rare CNV category (p values: 0.003 for HapCNV, 0.009 for LUMPY). Pie chart size does not represent total de 327 
novo CNV numbers (~12x higher for LUMPY, Table S4) I. Mean fold change between rare and common CNVs detected by 328 
HapCNV and LUMPY in untreated and treated Dd2 2-cell samples (see Table 3).  329 

 330 

Figure 3: High-confidence CNVs are located across the genome and represent diverse protein classes. A. Comparison of CNV 331 
calls showing the number of CNV regions consistent across the two CNV calling methods. High-confidence CNVs in untreated 332 
samples (U-Dd2, in yellow text); high-confidence CNVs in treated samples (T-Dd2, in white text). Central number (grey): CNVs 333 
consistent across all samples and calling methods (includes 2 known CNVs and 2 de novo CNVs, Table S5). B. Chromosomal 334 
location of high-confidence CNVs identified by both HapCNV and LUMPY methods (green) from untreated (black) and treated 335 
(red) parasites. Only core regions of the genome are included in the representation; subtelomeric regions as defined by Otto, et 336 
al. were omitted. Each CNV region was increased by a factor of 2 to facilitate visualization relative to the rest of the genome. *, 337 
de novo high-confidence CNVs identified in both untreated and treated samples. C. Summary of duplications and deletions 338 
represented in high-confidence CNV list. U-Dd2, untreated; T-Dd2, treated. Mix: sub-regions were called as duplications and 339 
deletions across a single CNV region by the same CNV calling method (i.e. HapCNV or LUMPY). D. Panther classification system 340 
v19 protein class comparison. Top chart: protein classes from all annotated P. falciparum genes. Bottom charts: protein classes 341 
represented by high-confidence CNV regions in untreated (U-Dd2) and treated (T-Dd2) samples. UC: unclassified proteins 342 
(green). Other colors are randomly assigned by the program to represent diverse protein classes. 343 

 344 

Discussion: 345 
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De novo CNVs are not detected when analyzing a population of parasites predominantly because their 346 

signal (e.g. extra reads that align to that region or reads that span breakpoints) is negated by the 347 

overwhelming signal from normal copy number at that genome location. For this reason, assessments of 348 

fewer cells are necessary to investigate de novo CNV generation. Here, we optimized a low-input 349 

analysis pipeline and successfully isolated, amplified, and sequenced P. falciparum samples. With 350 

experimental and computational improvements, we were able to increase our rate of parental, or 351 

“known”, CNV calling over our prior study [63]. Importantly, we detected non-parental, or “de novo“, 352 

CNVs across the parasite genome and replication stress significantly increased their rate formation. By 353 

analyzing ~45 low-input samples per condition, we are limited to observing a subset of the population. 354 

However, our findings demonstrate that replication stress readily drives the rapid generation of de novo 355 

CNVs.  Below we cover how this study contributes to our understanding of genome evolution and 356 

integrate it with an overarching model of P. falciparum adaptation.  357 

Application of sub-lethal stress without evidence of selection to explore CNV dynamics 358 

To evaluate the impact of replication stress on de novo CNV generation, we applied sub-lethal treatment 359 

to parasites just prior to replication. We observed replication stall and then resume post-treatment, 360 

which provided evidence that we successfully applied non-lethal stress (Fig. S3 and S4). Following this 361 

step, we allowed the parasites to complete replication and reinvade new erythrocytes. We reasoned 362 

that this “recovery phase” enabled the repair of the resulting DNA damage, which is likely to be 363 

replication-dependent (reviewed in [1, 78]. Additionally, reinvasion facilitated the isolation of haploid 364 

parasite genomes (1n, Fig. 1B and S4B), encouraging the detection of de novo CNVs due to limited 365 

contrasting signal [36]. Because of the reinvasion step, which involves an expansion in parasite number 366 

(~3-fold, Fig. S4G), there was a potential to select for beneficial DNA changes across the population of 367 

parasites. However, we did not detect evidence of strong selection from SNP profiles (Fig. S9A) or high-368 

confidence CNV regions (Fig. 3, Table S5). Specifically, we did not observe a preference for CNVs that 369 

encompassed the dihydroorotate dehydrogenase gene (pfdhodh), which contributes directly to DSM1 370 

resistance [79], or enrichment of CNVs that include genes from DNA-related pathways (Table S6).  371 

Relative comparison using multiple CNV calling methods to appreciate the impact of stress 372 

De novo CNV estimates using single cell methods from neurons, yeast, and human cancer vary greatly 373 

and are difficult to standardize due to the use of different experimental techniques and CNV calling 374 

methods [33, 34, 80]. For these reasons, we are not attempting to compare the rate of P. falciparum 375 

CNV formation from this study to those from other organisms. Additionally, this lack of standardization 376 

in the field led us to use multiple CNV calling methods in our analysis. Due to the strengths and 377 

weaknesses of HapCNV and LUMPY, we observed differences in both known (Fig. 2B) and de novo CNV 378 

(Table S4) calling using the two methods. LUMPY identifies reads that cover breakpoint regions to 379 

sensitively detect CNVs [74]; because we are counting regions with few reads as support, both sensitivity 380 

and the number of false positives are high in this analysis. High known calling rates along with high 381 

numbers of de novo CNVs in our studies exemplified this feature of LUMPY. On the other hand, HapCNV 382 

uses a genome-specific pseudo-reference for normalization, which removes repeated patterns of over-383 

and under-amplification ([73], and  Materials and Methods); because we require read coverage to span 384 

3 consecutive 1kb bins, small CNVs in lower coverage genomic neighborhoods are excluded in HapCNV 385 

anaylsis. This limited the detection of smaller known amplicons (pf11-1 and pf332) and led to fewer de 386 

novo CNV calls using this method. Given the high abundance of small CNVs (<300bp) in the parasite 387 

genome [59, 81], HapCNV is likely underestimating their impact in our studies.   388 
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Ultimately, the value of our study is in the relative comparison of treated and untreated samples by 389 

both methods. In this case, we assume that false positive CNVs occur at a similar rate across both 390 

groups, which allowed us to confidently assess the impact of stress. Variations in known and de novo 391 

CNV calling described above serve to remind us that no CNV calling method is perfect and combining 392 

them can improve confidence in results [63, 76, 82, 83]. Therefore, we investigated de novo CNV 393 

patterns using the two individual methods (Figs. 2, S10, S11) as well as those that overlapped between 394 

HapCNV and LUMPY (Fig. 3, Table S5). Importantly, these “high-confidence” CNVs reflected increases 395 

after stress previously detected using the individual tools, albeit at a greater level (3- vs >10-fold 396 

increase). Additionally, we speculate that newly arising CNVs would have distinct locations across 397 

samples; thus, the rare nature and unique locations of high-confidence CNVs emphasized their potential 398 

to be novel (Table S5).   399 

De novo CNV categories highlighting existing and novel genome variation  400 

During our investigations, we identified two types of de novo CNVs; those detected in one or a few 401 

genomes (rare) and those detected in more than a few (common). There is no precedence for these CNV 402 

categories in the context of Plasmodium biology (i.e. a haploid parasite with asynchronous replication 403 

and schizogeny [84]). However, we propose that tracking these categories helps us to understand the 404 

biological relevance of de novo CNVs in our analysis.  405 

Based on their frequency, common CNVs are either artifacts of low-input procedures/CNV analysis or 406 

represent minor variants that preexist in the population or arise early in the replication cycle. For the 407 

former, bias during the whole genome amplification step (i.e. the repeated pattern of over/under-408 

amplification that occurs in a reproducible pattern across the parasite genome [63]) and PCR during 409 

library construction have the potential to skew gene copy number and increase the false positive rate 410 

[85, 86]. However, we chose experimental and computational methods designed to limit the 411 

contribution of amplification bias. First, MALBAC amplification itself limits the over-amplification of 412 

genomic regions by avoiding exponential amplification at the earliest steps [85] and we used limited PCR 413 

cycles during library preparation (3 cycles, [63]). These efforts are most clearly shown through the 414 

reduction in CV following MALBAC optimization in both of our studies (by ~39% after modifying the 415 

amplification primer [63] and by 43% after switching to the Bsu polymerase, Table S1). Second, LUMPY 416 

is not dependent on read coverage and HapCNV specifically addresses amplification artifacts by 417 

removing repeated signal present in all samples [73, 74]. Overall, we detected very few CNVs with 418 

conserved genomic locations across low-input samples, which provides evidence that our methods limit 419 

the effect of amplification bias on the final results; we only identified two high-confidence CNV regions 420 

that had conserved locations across multiple Dd2 and FCR3 2-cell samples (Fig. 3B, Table S5). In the 421 

future, single-read visualization of long-reads may offer advantages in distinguishing amplification bias 422 

from minor variants and de novo CNVs [87].    423 

Rare CNVs, on the other hand, represent either random noise or true signal from novel CNVs arising in 424 

the genome. We assert that most noise is removed through normalization procedures, especially with 425 

HapCNV, and the impact of remaining false positives are minimized by the relative comparison of our 426 

studies (see above). We identified the majority of rare CNVs in unique genome locations across sample 427 

types, providing evidence that they are not a result of amplification bias where the same CNVs are 428 

repeatedly detected in each sample. Additionally, the greater impact of stress on rare CNVs than 429 

common CNVs (Table 3 and Figs. 2G, 2I) supports their replication dependence. The random nature of 430 
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de novo CNVs, as well as the capacity to encompass any gene across the genome, ensures that CNVs can 431 

alter all aspects of parasite biology in response to the host environment. Further, our finding that stress-432 

induced  de novo CNVs tended to exhibit altered copy number in clinical isolates combined with the high 433 

frequency of unique CNVs in previous genome-wide CNV studies [53, 59], directly illustrate the 434 

expansive evolutionary potential of this organism.  435 

Adaptations that encourage de novo CNV formation 436 

The current model of CNV formation in asexual erythrocytic P. falciparum parasites is that AT-rich 437 

sequences form hairpins, disrupt replication, and eventually lead to double-strand breaks that are 438 

repaired by error-prone pathways [61]. The evolution of CNVs in this organism is especially interesting 439 

because of its unique genome architecture and alternative repertoire of CNV-generating repair 440 

pathways [62, 88]. Although they arise at many locations across the genome ([51, 52, 59], Fig. 3A), P. 441 

falciparum CNVs that contribute to adaptation are commonly gene duplications with a relatively simple 442 

structure. Many impactful duplications form in tandem head-to-tail orientation ([61, 79, 89, 90], Fig. 443 

4A), which is likely due to a limited repertoire of DNA repair pathways; P. falciparum lacks the canonical 444 

nonhomologous end-joining pathway that contributes to CNV formation in other organisms [1, 88]. 445 

Instead, parasites use pathways that employ varying lengths of sequencing homology (i.e. homologous 446 

recombination, or HR, and microhomology-mediated repair, Fig. 4B). This repair repertoire, along with 447 

an especially high AT-content genome that facilitates CNV formation [61, 79] and a lack of cell cycle 448 

checkpoints that control replication forks during times of stress (reviewed in [91]), likely represent 449 

adaptations that assist haploid P. falciparum parasites in accumulating CNVs across their genome (Fig. 450 

4A).  451 

Updating the model of P. falciparum genome adaptation 452 

By combining insights from the current study with previous knowledge about CNV formation [1, 61, 65], 453 

we propose a connection between replication stress, DNA repair, and CNV generation in P. falciparum 454 

(Fig. 4B). Prior studies have shown that stress can either alter levels of proteins essential for HR-based 455 

repair or increase the frequency of DNA breaks [92-94]. With a decrease in HR activity in particular, the 456 

parasite may increase its reliance on alternative error-prone pathways to repair DNA damage. 457 

Microhomology-mediated pathways require less homology and therefore, are more likely to interact 458 

with diverse sequences up- and downstream of a DNA break to generate various length CNVs. So far, the 459 

predominant evidence for this model in P. falciparum was the detection of microhomology-mediated 460 

pathway signatures in CNV breakpoints [61]. Our observation of stress-induced de novo CNV formation 461 

(Table 3 and Fig. 2I) further supports this model in P. falciparum and is consistent with studies on 462 

diverse organisms [30-32, 95, 96]. Interestingly, the level of de novo CNV stimulation is consistent across 463 

organisms; treatment of mammalian cells with replication inhibitors also leads to a ~3-5-fold increase in 464 

de novo CNVs [30-32].  465 

Even with a change in the copy number of a single region per parasite, the genomic diversity within a 466 

single infected human is expansive due to the sheer numbers of P. falciparum parasites (estimated to 467 

reach 10
8 

parasites when symptomatic and >10
11 

in severe infection, [97]).  This diversity becomes an 468 

obvious advantage as a heterogeneous population prepares asexual parasites to respond to diverse 469 

stressors (Fig. 4C). However, one question has been whether random CNVs constitutively arise across 470 

the P. falciparum genome or only when under stress. In the former, random amplicons within individual 471 

parasites would position the population to respond rapidly to selection (e.g. antimalarial exposure). In 472 

the latter, specific stressors would stimulate CNV formation to increase genomic diversity. Since some 473 
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antimalarials act rapidly [68], we hypothesize that beneficial CNVs must already be present in a few474 

parasites across the population to increase the chances of survival. Indeed, we observed a low level of475 

de novo CNVs across the parasite genome under normal conditions (Fig. 2D and 2E). However, it is also476 

important to understand how parasites respond to stressful environments during infection, including477 

changes in nutrient composition in different hosts, drug treatment during symptomatic infection, or478 

attack from the human immune system. While the current study focused on replication stress, it will be479 

important to evaluate the impact of other sources of stress on P. falciparum CNV formation. For480 

example, hypoxia stimulates CNV formation in cancer cells [92] and a proteotoxic drug stimulates481 

genetic change in yeast [98]. 482 

 483 

 484 

Figure 4: Connection between replication stress, DNA repair, and CNV generation in the malaria genome. A. Adaptations that485 
encourage CNV formation in the P. falciparum genome (underlined). B. Summary of how replication stress impacts DNA repair486 
pathways. HR, homologous recombination; NHEJ, non-homologous end-joining; MMEJ, microhomology-mediated end joining487 
MMBIR, microhomology-mediated break-induced repair; DSB, double-strand breaks.  C. Benefits of a diverse parasite488 
population for evolutionary potential. Stress elevates the frequency of de novo CNVs across the population, which leads to489 
more rapid evolution of beneficial CNVs (blue cells).  490 

Clinical implications & future questions 491 

P. falciparum causes the majority of worldwide malaria deaths and readily acquires antimalaria492 

resistance [99, 100]. Resistance-conferring CNVs that encompass multiple genes have been identified in493 

both clinical infections [51, 59, 101-105] and laboratory selections [79, 90, 106-111]. Despite their direct494 

contribution to resistance, CNVs may also facilitate the acquisition of point mutations in haploid P495 

falciparum; strong evidence for the close relationship comes from the observation of point mutations496 

within amplifications selected in vitro [90, 107, 109, 112, 113]. Once de novo CNVs form during497 

replication of the asexual erythrocytic stage (Fig. 4), meiotic recombination during the sexual phase in498 

the mosquito can streamline beneficial CNVs to balance fitness costs [114]. Given the importance of499 

CNVs in P. falciparum adaptation, it is not surprising that this organism has evolved strategies to500 

encourage CNV formation (as described in Adaptations that encourage de novo CNV formation)501 

Additionally, parasites from specific regions of the world may have an increased propensity to develop502 
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drug resistance [115]. Evaluating whether the CNV rate correlates with the parasite background will help 503 

to define the evolutionary potential of this successful pathogen. Despite some success with antimalarial 504 

therapies and vaccines targeting the Plasmodium parasite, a strategy to impede genome evolution may 505 

be required to control malaria infections.  506 

 507 

Materials and Methods: 508 

Parasite Lines, Compounds, and Treatments 509 

We acquired Dd2 (MRA-156) and FCR3 (MRA-731) parasite lines from Bei Resources (ATCC, Manassas, 510 

VA).  In this study, we were interested in detecting sub-clonal levels of genomic diversity that occur 511 

naturally in cell culture (i.e. untreated conditions); therefore, we did not re-clone parasite lines prior to 512 

treatment. For low-input genomics, we grew parasites in complete RPMI 1640 with HEPES (Thermo 513 

Fisher Scientific, Waltham, MA) supplemented 0.5% Albumax II Lipid-Rich BSA (MilliporeSigma, 514 

Burlington, MA) and 50Smg/L hypoxanthine (Thermo Fisher Scientific) and donor A+ human 515 

erythrocytes (BioIVT, Hicksville, NY).  We grew all cultures at 3% hematocrit at 37°C and individually 516 

flushed flasks with 5% oxygen, 5% carbon dioxide, and 90% nitrogen gas. We diluted cultures with 517 

uninfected erythrocytes and changed the culture medium every other day to keep parasitemia below 518 

2% during maintenance. We confirmed that all cultures were negative for mycoplasma contamination 519 

approximately monthly using a LookOut Mycoplasma PCR detection kit (MilliporeSigma).  520 

We synthesized DSM1 as in previous studies [87, 116] and purchased aphidicolin (MilliporeSigma). 521 

DSM1 targets P. falciparum dhodh, which contributes to pyrimidine biosynthesis [67]. Aphidicolin 522 

inhibits B-Family DNA polymerases, and consequently, P. falciparum replication [117, 118]. Both 523 

compounds, when applied to ring-stage parasites (Fig. 1B), inhibit DNA replication and stall parasites at 524 

trophozoite stage (Fig. S3A and S4G, [118]).  525 

To assess the effects of short-term DSM1 treatment, we acquired high ring-stage cultures (>85%) by 526 

synchronizing parasites twice with 5% sorbitol, 48hrs apart. We then applied 1μM DSM1, solvent control 527 

(dimethylsulfoxide, DMSO), or replication inhibition control (4.4μM aphidicolin) for 12hrs. Following 528 

treatment, we washed parasites with sterile 1x phosphate-buffered saline (PBS, Thermo Fisher 529 

Scientific), returned them to complete RPMI, and allowed parasites to complete their life cycle and 530 

reinvade new erythrocytes for an additional 29.5-34.5hrs (Fig. S3B). We tracked parasitemia and 531 

parasite viability on an Accuri C6 flow cytometer (BD Biosciences, Franklin Lakes, NJ) as previously 532 

performed [63, 116, 119]. We stained parasites with 1x SYBR Green (Thermo Fisher Scientific, stains the 533 

parasite nucleus) to assess the proportion of infected erythrocytes (parasitemia) and stage of the 534 

parasite development cycle (Fig. 1B) and 10nM MitoProbe DiIC1 (5) (Thermo Fisher Scientific, stains 535 

active parasite mitochondria) to indicate the proportion of the parasites that are viable over time (Fig. 536 

S3C). 537 

For parasite treatment for low-input genomics, we synchronized parasites (as above), applied 1μM 538 

DSM1 or the DMSO control for 12hrs, and allowed recovery for 28-31hrs (Fig. S4H). We removed 539 

treatments and tracked parasite number and health as described above. Following reinvasion, we 540 

harvested viable 1n ring stage parasites for low-input genomics using flow sorting (details in Parasite 541 

Flow Sorting for Low-input Genomics).  542 
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Parasite Flow Sorting for Low-input Genomics  543 

Cell sorter calibration & accuracy assessments. We calibrated the flow sorter (SH800, Sony 544 

Biotechnology, San Jose, CA) using the manufacturer’s calibration beads. We accounted for overlaps in 545 

the excitation/emission wavelengths using the integrated compensation panel matrix calculation in the 546 

SH800 software according to the manufacturer’s procedure. We also manually calibrated the droplet 547 

sorting to the nearest 0.2mm, as recommended by the manufacturer, using the 96-well plate setting 548 

(Armadillo high- performance 96-well plate, Thermo Fisher Scientific).  We evaluated SH800 sorting 549 

accuracy prior to low-input harvest using a colorimetric assay as previously described [120]. Briefly, we 550 

mixed SYBR Green+/MitoProbe+ parasites (see staining details in Parasite lines, Compounds, & 551 

Treatments) with horseradish peroxidase enzyme (Thermo Fisher Scientific) at a final concentration of 552 

2.5mg/ml. We then sorted parasites into a 96-well plate filled with TMB-ELIZA substrate (Thermo Fisher 553 

Scientific) using the single cell (3 drops) instrument setting, in triplicate plates (Fig. S2). Formation of a 554 

color in the well (blue, green, or yellow) indicates the successful sorting of the enzyme, and therefore 555 

parasites, into the well with the substrate. This assessment allowed us to evaluate the accuracy of 556 

SH800 sorting (through the evaluation of success for 1- versus 2-cell wells, Fig. S2C), the consistency of 557 

sorting (through the evaluation of replicates), and the best plate positions for sorting (through the 558 

evaluation of performance in different plate rows/columns). Based on these evaluations, we proceeded 559 

with isolating 2- and 10-cells per well (Fig. S2D) and avoided sorting into the top 2 rows and the first and 560 

last column of the 96-well plate (Figs. S2D and S6). 561 

Parasite isolation & storage. We stained parasites with  SYBR Green and MitoProbe DiIC1 (5) in complete 562 

RPMI as above (see staining details in Parasite Lines, Compounds, & Treatments), gassed the tubes with 563 

5% CO2, 5% 02, 90% N, and placed sample on ice to ensure viability prior to flow sorting within 15min 564 

(SH800, Sony Biotechnology Inc., San Jose, CA). We used a final concentration of 1 x 10
7
 parasites/ml 565 

diluted in sterile 1x PBS (Thermo Fisher Scientific) as input for sorting at the “single-cell setting” (3 drop) 566 

into a 96-well plate (Armadillo high performance 96-well plate, Thermo Fisher Scientific) with each well 567 

containing 2.375μl of cell lysis buffer (0.025M Tris Ph8.8 (Roche Diagnostics, Indianapolis, IN), 0.01M 568 

NaCl (MilliporeSigma), 0.01M KCl (MilliporeSigma), 0.01M (NH4)2SO4 (Thermo Fisher Scientific), 0.001M 569 

EDTA (Promega, Madison, WI), and 10% Triton X-100 (MilliporeSigma)). We gated viable 1n ring-stage 570 

parasites (Fig. S5) and sorted into the wells containing cell lysis buffer with an approximate sorting time 571 

of 10min. After sorting, we centrifuged for 30 seconds in a plate centrifuge (MPS1000, Labnet 572 

International, Madison, NJ). We immediately overlaid samples with one drop (approx. 25μl) of light 573 

mineral oil (BioReagent grade for molecular biology, MilliporeSigma) and sealed the plates with 574 

Microamp® Clear Adhesive Film (Applied Biosystems, Waltham, MA) before storage at -80°C until whole 575 

genome amplification.  576 

MALBAC Whole Genome Amplification for Low-input Genomics 577 

Before whole genome amplification, we thawed the plates containing sorted parasites (see Parasite 578 

Isolation & Storage) and added 1mg/ml Proteinase K in sterile 1x PBS (Thermo Fisher Scientific) to a final 579 

volume of 2.5μl per well. We heated the plates in a PCR cycler (C1000, Bio-Rad Laboratories, Hercules, 580 

CA) at 50°C for 3hrs, followed by 75°C for 20 min and 80°C for 5 min for proteinase k inactivation. We 581 

amplified the parasite genome using the Multiple Annealing and Looping Based Amplification Cycles 582 

(MALBAC) method essentially as previously described ([63], Version 1 in Fig. S1) with some 583 

modifications (Version 2, Fig. S1). In summary, 1) we modified the pre-amplification random primer by 584 
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adding 5 additional degenerate bases with 20% GC-content to increase annealing to AT-rich genome 585 

sequences (5’GTGAGTGATGGTTGAGGTAGTGTGGAGNNNNNNNNNNTTT 3’); 2) we performed 19 of the 586 

21 total linear cycles with the Bsu DNA Polymerase (Large Fragment, New England Biosciences), which 587 

has a lower optimal reaction temperature (37°C) to improve the amplification on AT-rich sequences 588 

[121]; 3) we lowered the extension temperature from 40/50°C to 37°C during the linear amplification 589 

cycles that used the Bsu enzyme (see full cycling parameters in Fig. S1); and 4) we integrated robotic 590 

pipetting (Mosquito LV, SPT Labtech, Melbourn, UK) to increase the throughput of our assays (from 23 591 

samples in Version 1 to 90 samples in the current Version 2) and limit contamination potential. 592 

Overall, we performed 21 total linear cycles (19 cycles with Bsu polymerase and 2 cycles with Bst 593 

polymerase, New England Biolabs, Ipswitch, MA) and 17 total exponential amplification cycles using 594 

Herculase II Fusion DNA polymerase (Agilent Technologies, Santa Clara, CA). During amplification steps, 595 

we employed standard steps to limit contamination [63]. For automated pipetting of the enzyme 596 

solution during linear cycles, tips were changed after each round of pipetting. Post-amplification, we 597 

purified amplified DNA with Zymo DNA Clean & Concentrator-5columns (Zymo Research, Irvine, CA) 598 

according to the protocol and ran 2µl of all samples on 1% agarose gels to check for the presence of 599 

DNA (generally, if >30ng/µl, samples could be visualized with a size range of 100 to >1500bp).  600 

Assessments of Amplification Success for Low-input Genomics 601 

DNA quantification. We quantified the MALBAC-amplified DNA using a Qubit fluorimeter (Qubit 1X 602 

dsDNA High Sensitivity Assay Kit, Thermo Fisher Scientific). 603 

Droplet Digital PCR. To confirm the presence of parasite DNA in MALBAC-amplified samples, we 604 

performed droplet digital PCR (ddPCR) as described previously using the QX2000 droplet generator, 605 

C1000 thermocycler, and QX2000 droplet reader (Bio-Rad Laboratories) [116, 122]. We used duplex 606 

assays to evaluate two parasite genomic loci concurrently  (pfmdr1: Forward- 607 

TGCCCACAGAATTGCATCTA; Reverse- ACCCTGATCGAAATGGAACCT; Probe - 608 

TCGTGTGTTCCATGTGACTG; pfhsp70: Forward- TGCTGTCATTACCGTTCCAG; Reverse - 609 

AGATGCTGGTACAATTGCAGGA; Probe - AGCAGCTGCAGTAGGTTCATT (Integrated DNA 610 

technologies, Newark, NJ). The reaction master mix contained 600nm of forward and reverse primers, 611 

50nm probes, 10µl of ddPCR Supermix for Probes (2x, Bio-Rad Laboratories), 3µl of nuclease-free water 612 

(QIAGEN), and 1.5ng (5µl) of template DNA per assay (total of 20µl). We used the following cycling 613 

conditions for PCR amplification: 10 min at 95°C initial denaturation step, 1 min at 95°C second 614 

denaturation step, and 2 min at 58°C annealing and extension step (ramp rate of 1°C per second), the 615 

second denaturation step and the annealing/extension step repeated 60 times, and then 10 min at 98°C 616 

to halt the reaction [122].  In addition to running amplified samples to assess amplification success, we 617 

ran ddPCR with bulk genomic DNA as a positive control, no template controls (water replaced DNA), and 618 

material from “no cell” wells to assess cross-well contamination. We considered the samples positive for 619 

parasite DNA if there were more than 50 total positive droplets in target-positive clusters.   620 

High Resolution Melting Assay. To assess potential contamination between MALBAC-amplified samples, 621 

we performed asymmetric PCR amplification of the pfdhps locus followed by high-resolution melting 622 

(HRM) as described previously [123, 124]. The pfdhps locus at codon 613 is distinct in Dd2 and FCR3 623 

parasite lines (Dd2: Ser-613 and FCR3: Ala-613, [125]). Each 20µL reaction contained 8µl of the 2.5x 624 

LightScanner Master mix (BioFire
TM

 Defense, Salt Lake City, Utah, USA), 1/10µM of forward/reverse 625 

primers and 8µM probes targeting the pfdhps gene position 613: Forward - 626 
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CTCTTACAAAATATACATGTATATGATGAGTATCCACTT; Reverse- 627 

CATGTAATTTTTGTTGTGTATTTATTACAACATTTTGA; Probe - AAGATTTATTGCCCATTGCATGA/3SpC3, 628 

(Integrated DNA technologies), 7µl of nuclease free water, and 3µl of DNA (~0.05ng total). We used the 629 

following cycling conditions for PCR amplification with the Rotor-Gene Q instrument with a 72-well rotor 630 

(QIAGEN): 95°C for 5 min, 45 cycles of 95°C for 10s, 55°C for 30s, and 72°C for 10s, followed by a pre-631 

melt at 55°C for 90s, and a HRM ramp from 65°C to 90°C, with an increase of 0.1°C every 2s. We plotted 632 

the change in fluorescence versus temperature (dF/T) using Rotor-Gene Q software (version 2.3.5, build 633 

1; QIAGEN) and compared HRM peaks of amplified samples to bulk genomic DNA and plasmid controls.  634 

Bulk DNA Extraction for Short-Read Sequencing 635 

We extracted bulk DNA for short-read sequencing as previously performed [63].  Briefly, we lysed 636 

erythrocytes with 1.5% saponin and washed the parasite pellet 3 times with 1x PBS (Thermo Fisher 637 

Scientific), before resuspension in a buffered solution (150mM NaCl (MilliporeSigma), 10mM EDTA 638 

(Promega Corporation, Madison, WI), and 50mM Tris pH7.5 (Roche Diagnostics)) to a total volume of 639 

500µl. We then lysed the parasites with 10% sarkosyl (MilliporeSigma) and 20mg/ml proteainase K 640 

(Thermo Fisher Scientific) at 37°C overnight before DNA purification using standard 641 

phenol/chloroform/isoamyl alcohol extraction and chloroform washing steps (2 times each, [63]). 642 

Finally, we precipitated DNA using 100% ethanol with 100mM of sodium acetate overnight in DNA-lo 643 

bind tubes (Eppendorf, Enfield, CT) and then washed twice with 70% ethanol before resuspension in 644 

50µl nuclease free water (QIAGEN). We stored bulk genomic DNA at -20°C until sequencing library 645 

preparation.  646 

Low-input Genomics Sample Selection & Short-Read Sequencing 647 

Low-input sample selection. We selected 16 low-input samples from the FCR3 plate, 36 samples from 648 

the untreated Dd2 plate, and 38 samples from the treated Dd2 plate for short-read Illumina sequencing. 649 

We based our selection on the quantity of the MALBAC amplified DNA and presence of parasite DNA 650 

using ddPCR (Figs. S6 and S7). In summary, the majority of FCR3 and untreated Dd2 samples yielded 651 

quantifiable parasite DNA following MALBAC amplification (53/60 FCR3 samples and 60/60 untreated 652 

Dd2 samples); in these conditions, we chose samples randomly to proceed with sequencing (indicated in 653 

Fig. S6). For treated Dd2 samples, we chose samples for sequencing if they had adequate DNA quantity 654 

(>10ng total, 30 samples, Fig. S6) or had ddPCR results showing the presence of parasite DNA (an 655 

additional 8 samples). 656 

Short-read sequencing. Before short-read sequencing, we sheared bulk samples and low-input samples 657 

using Covaris M220 Focused Ultrasonicator for 150s and 130s, respectively, to generate fragment sizes 658 

of ~350bp as evaluated by an Agilent 2100 Bioanalyzer using the High Sensitivity DNA kit (Agilent, Santa 659 

Clara). We adjusted the volume of sheared samples with nuclease-free water up to 50µl. For samples 660 

with >100ng (Table S2, including bulk and MALBAC amplified samples), we diluted them to 1.2-2ng/µl; 661 

for samples <100ng, we proceeded with no dilution. We used NEBNext Ultra II kit (Illumina Inc., San 662 

Diego, CA) to prepare libraries for sequencing with 3Scycles of PCR amplification, as performed 663 

previously [63]. We quantified the resulting libraries using NEBNext Library Quant Kit (Illumina Inc.) 664 

before sequencing on the Illumina Nextseq 550 using 150Sbp paired-end cycles. 665 

Short-Read Sequence Processing & Analysis  666 
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Read processing and alignment. We performed short-read quality control steps as described previously 667 

[61, 63]. Briefly, we reordered and removed singletons and subsequently interleaved paired reads using 668 

BBMap, trimmed the MALBAC common sequence, PhiX, and Illumina adapters from the remaining reads 669 

with the BBDuk tool within BBMap, and aligned reads to the pf3D7-62_v3 reference genome using the 670 

Speedseq genome aligner [126]. We removed reads that map to VAR regions from bam files according 671 

to previously defined genomic coordinates [77]. We filtered out reads with low mapping quality (<q30) 672 

and duplicated reads using SAMtools [127]. We employed Qualimap to report mean coverage and 673 

standard deviation across the genome [128]. Using non-overlapping 20kb size bins, we calculated the 674 

coefficient of variation of read coverage by dividing the standard deviation of coverage within a bin by 675 

the mean across a sample and multiplying by 100 [129, 130] (R version 4.4.2).  676 

Down-sampling. For analysis that assessed down-sampled data (Figs. 2, S10, and S11), we first 677 

converted the processed bam files back into FASTQ files using SAMtools and then used the reformat.sh 678 

option of BBtools to select 1.3M reads from each FASTQ (represented the fewest number of reads from 679 

a sample that passed quality filtering from the final dataset). We then realigned files to the reference 680 

genome (pf3D7-62_v3).  681 

Single nucleotide polymorphism analysis. We performed SNP genotyping and analysis as previously [63], 682 

based on the MalariaGen P. falciparum Community Project V6.0 pipeline [131-134] using the pf3D7-683 

62_v3 reference genome. Briefly, we applied GATK’s Base Quality Score Recalibration using default 684 

settings. We detected potential SNPs using GATK’s HaplotypeCaller and subsequently genotyped the 685 

SNPs using CombineGVCFs and GenotypeGVCFs. Then we employed GATK’s VariantRecalibrator using 686 

previously validated SNP datasets [114]. We then applied GATK’s ApplyRecalibration to assign a VQSLOD 687 

score [134]. We filtered the resulting SNPs for those with VQSLOD > 6 and for a GT quality metric >20 to 688 

ensure high-quality variant calling. We only selected variants flagged as Bi-allelic to simplify the analysis. 689 

For SNP Principle Component Analysis (PCA), we merged experiment-wide SNP data (described above) 690 

into a single file. Then we merged the VCF into a large matrix and converted the genomic data into 691 

numeric information using the ‘vcfr’ package in R (Version 4.2.3) (https://CRAN.R-692 

project.org/package=vcfR). We excluded individual SNPs if >25% of the samples lacked a call in this 693 

position or if all calls were the same for each sample in that position). We scaled the remaining SNPs 694 

around the origin using the ‘scale’ R function. We then calculated the principal components using the 695 

‘prcomp’ R function, and scored the dataset using the ‘scores’ function from the ‘vegan’ R package 696 

(https://CRAN.R-project.org/package=vegan).  697 

Copy Number Variation Analysis 698 

CNV calling in bulk samples. We performed CNV detection for bulk samples similar to as previously 699 

described [61, 63]. Briefly, we called CNVs independently using two methods, CNVnator (read depth 700 

based calling, [135]) and LUMPY (split and discordant read based calling, [74]). To Identify CNVs called in 701 

both methods, we used SVCROWS to define overlapping CNV regions relative to their size. Briefly, 702 

SVCROWS uses a reciprocal-overlap-based approach (i.e. two CNVs must be overlapping each other at, 703 

or greater than, a defined threshold) to determine if two CNVs are close enough in their genomic 704 

position to be called the same. The source code for SVCROWS can be accessed at https://github.com/A-705 

Crow-Nowhere/SVCROWS.git. The program utilizes different thresholds for overlap based on the sizes of 706 

the CNVs being compared, ensuring that we account for shifts in CNV position. For known CNV calls, we 707 
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used the following SVCROWs input parameters: ExpandRORegion = FALSE, BPfactor = TRUE, DefaultSizes 708 

= FALSE, xs = 3000, xl = 10,000, y1s = 300, y1l = 1000, y2s = 50% and y2l = 80%; based on the average size 709 

of a P. falciparum gene (~2.3kb) and intergenic region (~2kb). Similar to our previous study [63], we 710 

identified 3 known CNVs that were called by both LUMPY and CNVnator methods in the core genome of 711 

bulk samples (untreated and treated). We determined known CNV boundaries using SVCROWS: pfmdr1 712 

(Pf3D7_05_v3, 888001-970000, 82kb), pf11-1 (Pf3D7_10_v3, 1521345-1541576, 20kb), and pf332 713 

(Pf3D7_11_v3, 1950201-1962400, 12kb).  714 

CNV calling in 2-cell samples. We employed two methods for CNV detection in the core genome of low-715 

input samples; LUMPY is a split/discordant read strategy with high sensitivity [74], and HapCNV is a read 716 

coverage-based strategy designed for haploid genomes [73]. We ran LUMPY as part of Speedseq with 717 

default parameters as previously described [61]. We filtered resulting structural variants to include only 718 

duplications (DUP, >1 copy of a region) and deletions (DEL, one less copy of region than the reference). 719 

We then filtered those calls for those GQ > 20 to ensure high-fidelity calls. In HapCNV, we used a quality 720 

control and bias correction procedure to exclude bins of poor quality and remove bias introduced by GC 721 

content and mappability variation. We then constructed a pseudo-reference for each Dd2 low-input 722 

sample using within-Dd2 information, which enabled control of background noise while preserving CNV 723 

signals after normalization. Finally, we used a circular binary segmentation algorithm (CBS, [136]) to 724 

detect copy number change points followed by a Gaussian Mixture Model (GMM, [137]) for CNV 725 

identification. The source code for HapCNV and examples of real data application can be accessed at 726 

https://github.com/FeifeiXiao-lab/HapCNV. For statistics, we used PRISM (GraphPad Software, La Jolla, 727 

CA), using unpaired parametric T-tests with Welch’s correction.  728 

Defining CNV regions/determination of “rarity” in CNV calling. Small differences in sequence quality 729 

surrounding a read can lead to shifted breakpoint determination for biologically identical CNVs, which is 730 

especially true for low-input genomics datasets [38]. To account for this, we used SVCROWS to 731 

determine whether two CNV signals were the same within and between samples (see CNV calling in bulk 732 

samples for input parameters). We assigned the categorizations of “rare” and “common” by assessing 733 

the CNV region frequency within datasets. “Rare” CNVs were defined as occurring in <10% of the 734 

samples within a treatment group; “common” CNVs were defined as occurring in ≥10% of samples 735 

within a treatment group; “known” CNVs were defined by CNVs called in bulk samples (see above, CNV 736 

calling in bulk samples).  737 

High-confidence CNV region identification. To identify “high-confidence” CNV regions called by both 738 

HapCNV and LUMPY methods, we compared the ‘consensus list’ generated by SVCROWS for each 739 

detection method by combining them into a single SVCROWS input file. Because 1) HapCNV generates 740 

imprecise breakpoints, and 2) there is a large disparity of average CNV region lengths between the two 741 

methods (HapCNV = ~40kb, LUMPY = ~4.3kb), we relaxed the stringency of the SVCROWS parameters. 742 

Our input parameters to generate the “high-confidence” list were as follows: xs = 3000, xl = 6000, y1s = 743 

500, y1l = 1500, y2s = 30% and y2l = 60%. We defined “high-confidence” CNV regions as those that had 744 

>1 match from both HapCNV and LUMPY that was the same type (i.e. either duplication or deletion or 745 

mixed). For Venn diagram generation, we calculated overlaps using SVCROWS "Scavenge" mode (input 746 

parameters: ExpandRORegion = FALSE, BPfactor = TRUE, DefaultSizes = FALSE, xs = 3000, xl = 6000, y1s = 747 

500, y1l = 1500, y2s = 30% and y2l = 60%). We systematically compared lists for each overlap 748 

comparison, and if regions had at least one match in an opposing dataset, we considered it a match. We 749 

used the draw.quad.venn function in the "VennDiagram" R package (R 4.2.1) to generate the diagram. 750 
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Gene Ontology enrichment and protein class identification. We used the online Gene Ontology Resource 751 

(geneontology.org) to perform GO enrichment analysis using the PANTHER Classification System [138, 752 

139]. Since a large portion of the P. falciparum genome remains unannotated (PlasmoDB, 30%) and the 753 

majority of molecular functions remain unclassified (92.8%), we used the Panther Protein class 754 

assessment (version 19.0, only 55.9% remained unclassified) with default statistics (Fisher’s test with 755 

FDR adjusted p value of <0.05 for significance, which is recommended for small counts and overlaps 756 

between classes). We used the web tool to represent protein classes on pie charts.  757 

Comparison to clinical CNV dataset. To determine genes covered by de novo CNVs from HapCNV and 758 

LUMPY, we used SVCROWS "Hunt" mode (input parameters:  BPfactor = TRUE, DefaultSizes = FALSE, 759 

xs = 3000, xl = 6000, y1s = 300, y1l = 600, y2s = 30, y2l = 60), which takes a secondary input list of 760 

known genes (Pf3D7_62_v3, Plasmodb.org) against which to compare CNV regions. For the clinical 761 

dataset, we used genes covered by >300bp CNV regions present in high frequency in clinical isolates 762 

(Supplementary Table 3 from [59]), and manually reformatted to match SVCROWS input style 763 

guidelines before rerunning as above. 764 
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