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ABSTRACT

G-protein coupled receptors (GPCRs) control multi-
ple physiological states by transducing a multitude
of extracellular stimuli into the cell via coupling to
intra-cellular heterotrimeric G-proteins. Deciphering
which G-proteins couple to each of the hundreds
of GPCRs present in a typical eukaryotic organism
is therefore critical to understand signalling. Here,
we present PRECOG (precog.russelllab.org): a web-
server for predicting GPCR coupling, which allows
users to: (i) predict coupling probabilities for GPCRs
to individual G-proteins instead of subfamilies; (ii)
visually inspect the protein sequence and structural
features that are responsible for a particular cou-
pling; (iii) suggest mutations to rationally design arti-
ficial GPCRs with new coupling properties based on
predetermined coupling features.

INTRODUCTION

G-protein coupled receptors (GPCRs) are the largest class
of cell-surface receptors and the target for 30% of marketed
drugs (1,2). They are responsible for transducing a myriad
of stimuli from the extracellular environment to activate
multiple intracellular signalling pathways. They do so by
coupling to one or more heterotrimeric G-proteins, whose
�-subunits are grouped into four major G-protein families:
Gs, Gi/o, Gq/11 and G12/13 (3). Aberrant coupling of GPCRs
to G-proteins has been linked to several pathological pro-
cesses and diseases such as cardiovascular and mental dis-
orders, retinal degeneration, AIDS and cancer (4). Untan-
gling GPCR/G-protein coupling can also aid the design of
chemogenetic tools, such as Designer Receptors Exclusively
Activated by Designer Drugs (DREADDs), that can be of

great use in tinkering with signalling pathways in living sys-
tems (5).

Ligand binding to GPCRs induces conformational
changes that lead to binding and activation of G-proteins
situated on the inner cell membrane. Most of mammalian
GPCRs couple with more than one G-protein giving each
receptor a distinct coupling profile (6) and thus specific
downstream cellular responses. Determining these coupling
profiles is critical to understand GPCR biology and phar-
macology. Despite decades of research and hundreds of ob-
served interactions, coupling information is still missing for
many receptors and sequence determinants of coupling-
specificity are still largely unknown. However, it is clear
that, in contrast to e.g. enzyme specificities (7), simple
amino acid differences explaining coupling differences are
rare.

Here, we present a machine learning-based predictor
(PRECOG) of Class A GPCR/G-protein couplings, which
was developed as a part of the most systematic quantifica-
tion of GPCR coupling selectivity to date (8). PRECOG
was built by exploiting experimental binding affinities of
144 human Class A GPCRs for 11 chimeric G-proteins ob-
tained through the TGF� shedding assay (9). We derived a
set of sequence- and structure-based features that were sta-
tistically associated with each of 11 G-proteins, which we
used to devise predictive models.

Given one or more input sequences or Uniprot pro-
tein accessions (or gene symbols), PRECOG provides both
overview predictions for each G-protein and putative mech-
anistic insights into how each prediction was made. De-
terminants of coupling-specificity are displayed on the se-
quence and on available (known or homologous) 3D struc-
tures. Users can also assess the impact of mutations on
GPCR/G-protein coupling with respect to the wild type.
We provide views that can aid users in selecting muta-
tions that can help alter coupling specificity and ultimately
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to design receptors having specific couplings. We have al-
ready used PRECOG to predict coupling preferences of all
human GPCRs, as well as to design a chemogenetic tool
(DREADD) specific for GNA12 (8).

MATERIALS AND METHODS

Coupling data for 144 class A GPCRs and 11 chimeric G-
proteins from the TGF� shedding assay

To train a predictor for G-protein coupling specificity, we
exploited data from the TGF� shedding assay, which is
a robust, high-throughput means to measure accumulated
GPCR signals (8,9). This approach exploits a ADAM17-
induced ectodomain shedding of alkaline phosphatase-
fused TGF� (AP-TGF�) and chimeric G-proteins where
the 11 unique C-termini (which have previously been shown
to account for most of the coupling specificity) from hu-
man G� subunits replace the last 6 amino acids of GNAQ.
Chimeric G-proteins are expressed in cells lacking endoge-
nous G� subunits (GNAQ, GNA11, GNA12 and GNA13)
that mediate the AP-TGF� shedding response. This means
that induction of specific GPCRs with titrated concentra-
tion of their ligands leads to binding to the co-transfected
G-protein partner. AP-TGF� release signals over titrated
concentrations were fitted with a sigmoidal concentration-
response curve, from which we obtained EC50 and Emax
values. For each chimeric G� condition, an Emax/EC50
value was normalized by the maximum Emax/EC50 value
among the 11 G� chimeras (relative intrinsic activity, RAi
(10)). The base-10 log-transformed values (LogRAi), rang-
ing from –2 to 0 (100-fold in linear range), represent cou-
pling indices. We have shown that the chimeric G-proteins,
with their C-termini, are capable of reporting a reliable cou-
pling across the four G-protein families (8). Functional as-
says were performed systematically for 144 representative
Class A GPCRs. In order to define a LogRAi threshold for
true couplings, we compared our dataset with reported cou-
plings from the IUPHAR/BPS Guide to PHARMACOL-
OGY (GtoPdb) (6) through a Receiver Operating Charac-
teristic (ROC) analysis, which suggested a cutoff of LogRAi
≥ –1.0 (optimizing True Positive Rate, or TPR, while mini-
mizing False Positive Rate, or FPR; AUC = 0.78) when con-
sidering high-confidence known coupling data (8).

The use of individual genes instead of the standard cou-
pling groups confuses nomenclature. For clarity, we use
group symbols (Gq/11, Gi/o, Gs, G12/13) when speaking of
the collective action of all proteins in each group, and gene
symbols when referring to specific proteins. The 11 sub-
units grouped are: Gq/11 = GNAQ, GNA14, GNA15; Gs =
GNAS, GNAL; G12/13 = GNA12, GNA13; Gi/o = GNAI1,
GNAI3, GNAO1, GNAZ. We note that the six C-terminal
sequences are identical for GNAQ and GNA11, and for
GNAI1, GNAI2, GNAT1, GNAT2 and GNAT3 and that
these members are not distinguished in our analyses.

Feature generation

We constructed a multiple sequence alignment of the 144
Class A GPCR sequences through the HMMalign tool
from the HMMER3 package (version 3.1b2 (February
2015)) (11) (see Supplementary Dataset 1), using the 7tm 1

Hidden Markov Model (HMM) from Pfam (2016 release)
(12). We then subdivided sequences into positives (coupled;
LogRAi ≥ –1) and negatives (not-coupled; LogRAi <-1)
for each G-protein. We then extracted sub-alignments and
constructed their corresponding HMM profiles (coupled vs.
not-coupled for 11 G-proteins) using HMMbuild (11).

For a given G-protein, we then extracted positions show-
ing statistically significant differences in terms of the amino
acid bit-scores (Wilcoxon’s signed-rank test; P-value ≤ 0.05)
among the coupled and uncoupled HMMs. Alignment po-
sitions with consensus columns (i.e. having a fraction of
non-gaps equal or greater than the symfrac parameter, con-
sidering a default value of 0.5) present in either HMMs,
were considered as either insertion or deletion if they were
present only in the coupled or not-coupled group. We also
included length and amino acid composition of the third in-
tracellular loop (ICL3) and C-terminus (C-term) consider-
ing features showing statistically significant differences (P-
value < 0.05; Wilcoxon’s rank-sum test) in coupled vs not-
coupled.

We employed the Ballesteros/Weinstein (B/W) scheme
(13) to number alignment positions (using GPCRDB (14)
to define the most conserved position). For positions lying
outside of the transmembrane helices (e.g. ICL3), we note
the corresponding Pfam 7tm 1 position in parenthesis.

We integrated the above sequence-based feature set with
additional structure-based features derived from available
3D complex structures of Class A GPCRs/G-proteins
through the InterPreTS approach (15,16), which uses
learned parameters of amino-acid pair contacts across pro-
tein interfaces (i.e. statistical potentials) to predict how well
aligned homologues fit on to a particular interface of known
structure. We selected six GPCR-G protein complex struc-
tures covering the most diverse interaction interface reper-
toire (considering both receptors and G-proteins): ADRB2-
GNAS (PDB ID: 3SN6), ADORA2A-miniGNAS (6GDG),
RHO-GNAI1 (6CMO), Oprm1-GNAI1 (6DDE), ADORA1-
GNAI2 (6D9H), HTR1B-GNAO1 (6G79). For each com-
plex, we aligned GPCR and chimeric G� subunit sequences
from the TGF� shedding assay to sequences homologous
to the corresponding template structure chains. For each
template structure, we calculated Z-scores and P-values (by
generating 100 random permutations) for all the 144 Class
A GPCR with each of the 11 G-proteins generating score
distributions for coupled and uncoupled receptors to a par-
ticular G-protein and checking, through a Wilcoxon rank-
sums test (P < 0.05), whether these were significantly dif-
ferent among the two groups. Whenever true, we considered
that 3D complex as suitable to model the interaction with a
particular G-protein and included derived Z-scores as fea-
tures in the model.

Predictor

We implemented the predictor using a logistic regression
(log-reg) classifier, available from the Scikit-learn package
(17), considering the features described above. A logistic re-
gression model is defined as:

h(x) = w1x1 + w2x2 + w3x3 + . . . . + wn xn (1)
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where x1, x2, x3 . . . , xn are input features whereas w1, w2, w3,
. . . , wn denote the regression coefficients. Thus, the proba-
bility of the input to couple with a given G-protein can be
defined as:

f (x) = (1 + e−WT X)−1 (2)

where the variable X and W denote the vector of input fea-
tures [x1, x2, x3, . . . , xn] and of the regression coefficients
[w1, w2, w3, . . . , wn], also termed weights, respectively.

Regularization is an essential technique in machine learn-
ing to counter over-fitting, which log-reg implements in two
forms: L1 and L2. Both have a Lambda parameter that
is directly proportional to the penalty of finding complex
or over-fitted models. The regularization term (i) in the L1
form is the product of Lambda and the sum of the weights,
while (ii) in the L2 form (used here) it is the product of
Lambda and the sum of the squares of the weights. The
target value is expected to be a linear combination of the
features considered.

As an optimization problem, binary class L2 penalized
logistic regression minimizes the following cost function:

min
w,c

(
1
2
wTw + C

n∑
i = 1

log(exp(−yi (XT
i w + c)) + 1)

)
(3)

where c ∈ R∧n is the intercept, C is inverse of regularization
strength (positive float), y takes values in {–1, 1} at trial i
and n is the number of trials conducted. We used the liblin-
ear method as the optimization algorithm as shown to be
optimal for relatively small datasets (18).

Considering 7TM positional, extra-domain and struc-
tural features, we created a training matrix for each G-
protein. For positional features, every position in the input
sequence provided two bit scores (derived from the coupling
and not-coupling HMMs for a given G-protein) for the
corresponding residue. For insertions or deletions, the ap-
proach returns the single bit score, derived from the respec-
tive HMM (i.e. coupled or not-coupled). If for any GPCR,
no amino acid was present at the given position, it is as-
signed the highest bit scores from both the models, implying
the least conserved scores.

We scaled all the features in the training matrix to the
range [0, 1], which helps both to converge the algorithm
faster and to assess the feature relevance (19). We performed
a subsequent grid search over a stratified 5-fold cross val-
idation to select the best value of C (inverse of the regu-
larization strength). Owing to the imbalance nature of the
set, we set the class weight parameter to balanced, which au-
tomatically adjusts the weights of the classes (coupled ver-
sus not coupled) inversely proportional to their frequencies
in the training matrix. We divided the training matrix ran-
domly into five equally stratified sub-matrices, preserving
the ratio of positive (coupled) and negative (not coupled)
GPCRs. To build a model for each G-protein, we chose the
parameters showing the best Area Under the Curve (AUC)
of the ROC curve. We repeated the experiments ten times,
for each G-protein, to ensure minimal variance due to ran-
dom division of the training matrix during cross validation.
We assessed the performance of our predictor using stan-
dard metrics (MCC, ACC, PRE, REC, SPE, AUC, F1M;
Supplementary Table S1). We used the weights obtained af-

ter the training of the logistic regression model (as in (19))
to highlight the most relevant features of every G-protein
group, which can also be seen as a heat-map (see Supple-
mentary Figure S1).

We performed a randomization test to assess over-fitting
(20), where we replace the original G-protein labels of the
training matrix with randomly assigned labels, while pre-
serving the ratio of number of positive (coupled) and nega-
tive (not coupled) GPCRs (Supplementary Table S2).

Pipeline

Given user input data, i.e. receptor WT or mutant se-
quences, the web server internally performs the following
key steps to extract features (see Figure 1). First, the in-
put sequences are aligned through hmmsearch to the 7tm 1
HMM model to get the sequence aligned to the 7TM he-
lices and to be assigned the consensus B/W numbering
(see above). From the coupled and not coupled HMMs of
each of the 11 G-proteins, bit-scores of the correspond-
ing amino acid at relevant positions are extracted and
insertions/deletions are detected and used as features for
predictions. Additional features are obtained by calculat-
ing the length and amino acid compositions (e.g. ICL3 and
C-terminus).

Second, InterPreTS is run with default parameters, per-
forming 100 random permutations, to derive scores (for
each individual input sequence) that predict the plausibil-
ity of interaction between the input and chimeric G-protein
sequences according to available 3D complex structures (see
above). For each 3D complex, InterPreTS takes the corre-
sponding structure and multiple sequence alignments of re-
ceptors and G-proteins.

Additionally, to detect the closest homolog for struc-
tural visualization purposes, every input sequence is aligned
through BLAST (21) to 3D structures of Class A GPCRs
from the PDB (nearly 250 structures to date), obtained from
SIFT PDB-PFAM mappings (22).

We developed PRECOG by using the Python program-
ming language, both for the web framework, which is based
on Flask (http://flask.pocoo.org/), and the internal pipeline
to handle back-end processes. Additionally, we used several
JavaScript libraries at the front end. In more details, we used
JSmol (http://www.jmol.org/) to view protein structure in
3D and neXtProt (23) sequence viewer to draw protein se-
quences in a readable format.

USING THE WEBSERVER

Input

The input can be one or more protein identifiers (UniProt
identifiers, accessions or gene symbols), mutations or
FASTA sequences. A user can choose to make predictions
or design a GPCR. The first option allows to predict the
coupling preferences for input receptor(s), either wild type
or mutant (see Figure 1).

The second option exploits feature information (i.e.
weights) to automatically suggest a ranked list of muta-
tions that are more likely to favour (or disfavour) particu-
lar couplings. Checkboxes are provided to enable the users
to select the members of one or more G-protein families

http://flask.pocoo.org/
http://www.jmol.org/
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Figure 1. Workflow of the procedure. The user queries the server by inputting either the receptor sequence or mutations through the front-end. Features
are extracted from the sequences and used by the machine learning algorithm to carry out the predictions. Results are returned to the front-end and
summarized in a tabular format as well as annotated into sequence and structural representations for in depth analysis.

as target of the design. Residues of the input sequence
corresponding to 7TM positions that are statistically as-
sociated to a coupling(s) of choice are systematically mu-
tated into each of the remaining 19 amino acids and cou-
pling probabilities computed. For each mutant and each
G-protein coupling, two probability differences are calcu-
lated: P(coupled), i.e. the difference between Mutant and
WT, and P(uncoupled), i.e. the difference between the WT
and the Mutant. While the former tells if a particular muta-
tion is predicted to increase a coupling of interest, while the
latter suggests whether the same modification reduces un-
wanted couplings. To shortlist more interesting mutations,
it is possible to set a threshold for both probability differ-
ences, which is by default 0.25, corresponding to the value
that retains most of the interesting candidates based on our
experience.

Output

For both options the user can visualize a summary of pre-
dicted couplings as well as the sequence and structural fea-
tures responsible for predictions (Figures 1 and 2). Figure 2
shows an illustrative example of the output. We have cho-
sen P2RY8, a purinergic receptor which has been reported
to be recurrently mutated in lymphomas, where it also dis-
plays mutual exclusivity with GNA13 (24–26). Despite these
mutations have been functionally linked in cancer, direct ex-
perimental evidence of binding is missing and P2RY8 trans-
duction mechanisms are currently not reported in GtoPdb
(6). PRECOG readily predicts P2RY8 to be a GNA13 cou-
pled receptor (Figure 2) as is widely expected owing to the
observations above.

Users are presented first with an overview showing cou-
pling probabilities of individual G-proteins for each protein
or mutant queried (Figure 2A). In addition, when available,
information on known couplings (either from GtoPdb or
our TGF� shedding assay results) are shown for compari-
son, including the measured parameters when available (i.e.
LogRAi (8)). Moreover, an interactive sequence and struc-
ture viewer (Figure 2B,C) shows positions in the sequence
and structure that PRECOG identifies as most relevant for
any selected G-protein. As for P2RY8 prediction, projection
of feature weights on the sequence as well as on the closest
3D homolog structure, suggests that the strongest contribu-
tions to this prediction derive from amino acids at the ICL3
and several 7TM positions (e.g. 6.40; Figure 2B, C).

Interestingly, positions identified as relevant to coupling
predictions are not always at known GPCR/G-protein in-
terfaces. We have recently shown that determinants of cou-
pling specificity span the entire 7TM bundle and connect,
in a G-protein-specific fashion, the intracellular face with
the ligand binding sites through a network of intramolec-
ular residue contacts (8). Additionally, recent studies have
emphasized the role of amino acids near or at the ligand
binding pocket as triggers for biased agonism (27,28). To
highlight these mechanisms, which might be of great rel-
evance in the design of biased ligands, we give the user
the opportunity to visualize a consensus network (where
links are contacts mediated by 7TM positions, i.e. network
nodes), derived from the analysis of multiple 3D structures
in both active and inactive states. We moreover show, when-
ever present in the chosen 3D structure, the ligand (as sticks)
and G-protein (as cartoons).
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Figure 2. Illustrative example of a prediction to uncover couplings of a poorly characterized receptor (i.e. P2RY8). (A) Summary table with predicted
couplings. Those with coupling probabilities greater than 0.5 are highlighted in green, the others in red. Above each prediction (indicated as P(WT)),
couplings from GtoPdb (where PC and SC stand for Primary and Secondary Couplings, respectively) and from the TGF� shedding assay (a LogRAi value
equal or greater than –1 indicating coupling); (B) query receptor sequence, with highlighted coupling features for a coupling of interest (i.e. GNA13 in this
example). If the length of either ICL3 or C-term is relevant for the prediction, the entire corresponding amino acid stretch is highlighted in orange or grey in
the sequence. ICL3 and C-term amino acids whose count is relevant for a given coupling are underscored. Significant 7TM positions are highlighted in the
family with specific color code (i.e. green for G12/13) and by clicking on each of them a barplot with bitscores distribution from coupled and not-coupled
HMMs for that G-protein is displayed. Clicked 7TM significant positions are automatically displayed as spheres on the corresponding position of the
closest (by homology) template 3D structure; (C) 3D cartoon representation of the closest structure (i.e. 3WL7 for P2RY8, by homology) with positions
corresponding to significant features highlighted with the same family-specific color coding (i.e. green for G12/13) and links indicating consensus contact
network (contact frequency ≥ 0.5).

The user is given the option to choose alternative struc-
ture templates corresponding to the input sequence through
a dropdown menu (by default the closest match by sequence
homology is shown, see Methods). With the help of check-
boxes, the user can also toggle between the significant po-
sitions of G-protein families to be displayed on the struc-
ture. Information about interaction contacts, either involv-
ing ligand or G-protein binding interfaces, or the network of
intramolecular contacts, is obtained by our previous study
(8) and can also be optionally visualized on the structure. A
widget allows the user to visualize edges at different contact
frequency cutoffs. The frequency is calculated as the frac-
tion of protein sequences with at least one structure forming
a given contact (8).

RESULTS

Test set

We compared the performance of PRECOG with that of
PredCouple, a publicly available GPCR/G-protein predic-
tion tool (29) by running both on a list of 86 Class A
GPCRs whose coupling is reported in GtoPdb, but which
were absent from both training sets (see Supplementary
Dataset 2). Since both GtoPdb and PredCouple only con-
sider G-protein families and not specific G-proteins, we
grouped PRECOG predictions to this level, considering any
G-protein to represent its family. In the absence of any avail-

able true negative set, thus, we chose recall (sensitivity or
true positive rate) as the metric to compare performances.
We also trained and tested an additional predictor using ex-
actly the same procedure as reported above using GtoPdb
coupling information instead of the TGF� shedding assay.
This allowed us to assess whether our approach, in the ab-
sence of a rich new dataset, showed improvement over ear-
lier methods.

Indeed, our finally selected models outperformed both
this last predictor as well as PredCouple, indicating the crit-
ical contribution from the TGF� shedding assay couplings
(Supplementary Table S3).

Expanding the knowledge of coupling mechanisms of wild
type and mutant receptors

The TGF� shedding assay has provided new, quantitative
coupling information for well characterized receptors such
as GNAI1/GNAI2 and GNAZ for CHRM3, and the pre-
dictor we have developed proved successful in reproducing
them. PRECOG can also be used to illuminate the cou-
pling mechanisms of poorly characterized receptors. For ex-
ample, for the 61 receptors (21% of 286 Class A GPCRs)
lacking coupling information from either GtoPdb or the
chimeric G-protein-based assay, we predict a prevalence of
Gs followed by Gq/11 and G12/13 couplings, the latter being
the smallest fraction among currently known experimental
couplings (Supplementary Figure S3).
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PRECOG can also be used to predict the effect of mu-
tations on G-protein coupling. Many mutations that have
been reported to affect GPCR function and couplings (re-
viewed in (30)), and many have also been annotated in
Uniprot to affect signaling (Supplementary Table S4). We
systematically investigated the effects of these mutations on
coupling through PRECOG, revealing that 68% are pre-
dicted to affect coupling (i.e. absolute value of P(MUT) –
P(WT) ≥ 0.1). The most affected couplings are those of Gs,
Gi/o and, to a lesser extent, G12/13 (see Supplementary Table
S4).

Adding 3D complex information

We integrated in PRECOG structural information from the
increasingly available GPCR/G-protein complexes (31–37).
To assess the fit of each 3D complex to model the interac-
tion pairs from the TGF� shedding assay, we used Inter-
PreTS, an approach previously employed for structural an-
notation of protein interactions (38) (see Methods). As ex-
pected, we observed that Gs complexes (i.e. PDB IDs: 3SN6
and 6GDG) are statistically associated to the correspond-
ing couplings in the TGF� shedding assay (i.e. GNAS and
GNAL), as well as the GNAO1-HTR1B (PDB ID: 6G79)
complex is relevant for Gi/o couplings (i.e. GNAI1/GNAI2)
(see Supplementary Table S5). Surprisingly, we found that
two more Gi/o complexes (i.e. 6CMO and 6DDE) are also
good templates to model G12/13 couplings, suggesting for
this receptor class an interaction topology similar to the
Gi/o family members (see Supplementary Table S5).

Integration of structure-derived features from 3D com-
plex analysis leads to modest improvement of predictor per-
formance only for the Gs family (Supplementary Figure S2).
It is likely that additional structures (e.g. including those
groups lacking complexes entirely like Gq/11 or G12/13) will
lead to additional improvements in the future.

DISCUSSION

PRECOG represents a significant improvement over pre-
vious methods (29,39) both in terms of performance, but
also, by way of the web interface, in the ability to interro-
gate predictions for putative mechanistic explanations that
can be used potentially to alter coupling or design receptors
de novo for particular signalling effects.

The framework that we have developed lends itself natu-
rally to several future enhancements. First, the availability
of new data will enable new types of predictions (e.g. other
classes of GPCRs and potentially other interactions such
as �-arrestin). Easy visualization of coupling determinants
on sequence and structure, integrated with the usage of con-
tact networks, that are increasingly employed to understand
signalling protein mechanisms (40–49), will ease the ratio-
nal design of new biased ligands. Second, the speed of the
predictions will allow for more ambitious automated design
strategies, such as the ability to swap longer, variable seg-
ments from multiple GPCRs, as we have employed success-
fully in the development of a GNA12 specific DREADD (8).
Lastly, this framework can be adopted in the context of any
protein-interaction where specificity is difficult to determine
from sequence, but for which binding data are available.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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