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Introduction
Atrial fibrillation (AF) is the most common sustained cardiac 
arrhythmia and is currently estimated to affect around five 
million Americans.1,2 AF is characterized by uncoordinated 
electrical activity and contractions in the left atrium (LA) 
and is associated with increased mortality and several mor-
bidities, the most notable of which is that because of stroke. 
It is estimated that AF is the cause of up to 24% (200,000) of 
strokes in the United States per year.3 The role of the shape 
of the LA and other heart chambers in AF is not yet well 
understood, but is hypothesized to be an indicator of the AF 
pathology and to play a role in the formation of thrombus, a 
precursor to embolic stroke.4–6 Thus, a better understanding 
of the structural changes of the LA because of arrhythmia 
could inform new diagnostic and therapeutic approaches 
to treatment and lead to new insights into the causes and 
maintenance of AF. 

Advances in cardiac imaging, including contrast MRI 
with late gadolinium enhancement (LGE-MRI), have enhanced 
our ability to noninvasively assess changes to the structure 
and function of the LA in AF. LGE-MRI can even high-
light microstructural changes in endocardial tissues relating 
to fibrosis, which are implicated in AF.7–10 However, studies 
of the LA shape, as it relates to AF and its comorbidities, 
have traditionally been limited to empirical observation11,12 
and metrics that capture only limited information about 
the geometry of the heart, such as LA volume, normalized 
width measurements, or the extent to which its geometry 
resembles a sphere (“sphericity”).13–15 The goal of this study 
was to identify a more descriptive and comprehensive model 
of the LA shape. To that end, we propose the use of compu-
tationally based models and related techniques from the field 
of medical image analysis to search for new diagnostic and 
therapeutic approaches.16–22
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Here, we describe a methodology for computational 
shape analysis of the LA and the left-atrial appendage 
(LAA) that is based on a technique called particle-based 
modeling (PBM),16–19,21 which we have developed and used 
previously.37–42 We adapted and validated these techniques 
for the LA in two studies of AF patient populations. First, 
we compared the endocardial shape of the LA in subjects 
with AF to that of healthy control subjects. We show that 
there are significant shape differences between the AF and 
non-AF patients who also characterize the severity of AF 
(paroxysmal vs. persistent). In the second study, we sought 
to establish a link between the shape of LAA and decreased 
blood flow in the LAA, a risk factor for the formation of 
thrombus, which can lead to cardioembolic stroke.4 All MRI 
data for the following studies were obtained retrospectively 
from a database of AF patient and healthy control MRI (“the 
Utah AF database”) that is maintained by the Comprehensive 
Arrhythmia Research and Management (CARMA) Center at 
the University of Utah. Patients were classified as having par-
oxysmal AF or persistent AF according to the ACC/AHA/
ESC 2006  guidelines. Patient information gathered for the 
purposes of these studies was de-identified and protected in 
compliance with HIPAA regulations, and IRB approval was 
therefore not required.

Methods
Shape analysis pipeline. The image processing steps that 

we use to produce shape models from the MRI of the LA 
are as follows: first, AF patients undergo cardiac magnetic 
resonance angiography (MRA) and LGE-MRI to image 
the shape of the LA and fibrosis in the LA wall. Next, the 
LA and associated structures [pulmonary vein (PV) antrum 
regions, LAA, mitral valve (MV)] are segmented from the 
MRA and the LGE-MRI. Finally, the shape models are com-
puted directly from the set of image segmentations using an 
open-source implementation of what is known as the particle-
based shape modeling algorithm (PBM). The PBM method 
generates a set of parameters that represent different aspects 
of shape variation within the sample of images and forms the 
basis for statistical comparisons. The other sections describe 
each of the steps in the pipeline, as we implemented them, in 
more detail.

Cardiac MRI. Cardiac MR imaging was performed on 
AF patients presenting at the University of Utah Hospital’s 
Electrophysiology Clinic. Image sequences include a respi-
ratory and ECG-gated MRA, acquired during continuous 
gadolinium contrast agent injection (0.1  mmol/kg, Mul-
tihance [Bracco Diagnostic Inc.]), followed by a 15-minute 
postcontrast LGE sequence.23 Images were acquired on 
either a 1.5  T or 3  T clinical MR scanner (Siemens Medi-
cal Solutions) using phased-array receiver coils. LGE-MRI 
scans were acquired about 15  minutes after contrast agent 
injection using a 3D inversion recovery, respiration navi-
gated, ECG-gated, gradient echo pulse sequence. Images 

were acquired at the end-diastole phase of the cardiac cycle. 
Figure 1 shows samples of good quality MRA and MRI. Typ-
ical image acquisition parameters include the following: free 
breathing using navigator gating, a transverse imaging vol-
ume with voxel size = 1.25 × 1.25 × 2.5 mm (reconstructed to 
0.625 × 0.625 × 1.25 mm), and inversion time = 270–320 ms. 
Inversion times for the LGE-MRI scan were identified using 
a TI scout scan. Other parameters for the 1.5  T scanner 
included a repetition time of 5.4 ms, echo time of 2.3 ms, and 
a flip angle of 20°. Scans performed on the 3 T scanner were 
done using a repetition time of 3.1 ms, echo time of 1.4 ms, 
and a flip angle of 14°. ECG gating was used to acquire a small 
subset of phase encoding views during the diastolic phase of 
the LA cardiac cycle. The time interval between the R-peak of 
the ECG and the start of data acquisition was defined using 
cine images of the LA. Fat saturation was used to suppress the 
fat signal.

Image segmentation. Image segmentation was per-
formed by expert observers on MRA volumes using a semi-
automatic approach to delineate the boundaries in 3D of the 
LA and the LAA. Approximate boundaries of the LA and 
LAA were first segmented using an automated grow-cut algo-
rithm,24 and then further refined by manual contouring. Fur-
ther manual segmentation of the LA wall boundary was done 
on the LGE-MRI, in order to define a region of interest for 
fibrosis identification and to define the location of attachment 
of the PVs and the MV. MRA and LGE-MRI were typically 
in good alignment because they were acquired in the same 
imaging session; however, to increase alignment accuracy fur-
ther, we performed affine registration by using maximization 
of mutual information.25 Fibrotic regions were identified in 
the LA wall using a supervised thresholding process by expert 
observers, as described previously in Refs.7,9,26,27. Total seg-
mentation time for a single patient case was about 45 minutes. 
We used the Corview software (Marrek, Inc.) for all image 
processings, which was developed at the University of Utah 
for cardiac image segmentation. An example of segmentations 
of an LA endocardial surface, with attached PVs are illus-
trated in Figure 2, which shows (a) a single slice from an LA 
segmentation of the endocardial wall and attached structures 
and (b) a 3D surface rendering of the LA endocardial surface 
and PVs.

Particle-based shape modeling. A variety of computa-
tional shape modeling approaches have been proposed, but two 
major categories are common. The first strategy is to consider 
the shape geometry as embedded in the image intensity values 
at pixels or voxels, and then use nonlinear image registration to 
map all the sample images to a reference image.28–33 A second 
approach to shape modeling, and the one that we used in this 
study, is to extract surface contours from digital images, and 
then sample them in a systematic way to produce an arbitrarily 
dense set of homologous landmark positions. These methods, 
called point-based models,34 are the computational exten-
sion of traditional morphometric landmarking approaches. 
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Morphometric approaches require manual identification of 
small sets of landmarks on images or physical samples (see 
Refs.35,36 for review). By contrast, computationally derived 
point-based models consist of dense sets of hundreds or thou-
sands of landmarks that are computed automatically. These 
dense sets of landmarks are called correspondence points and 
are able to model shape geometry in much greater detail than 
traditional manual approaches.

In order to compute the correspondence points for 
our shape models of the LA and LAA, we use a specific 
optimization algorithm called PBM. The development of 
PBM is described in a series of papers from our labora-
tory20,37–40 and has proven to be effective for the inves-
tigation of scientific and clinical questions in a range of 
applications, including neuroscience,16,19,39,41 biological 
phenotyping,42,43 and orthopedics.43,44 PBM represents the 
correspondence points as interacting sets of particles that 
redistribute themselves under an energy optimization. The 
optimization finds correspondence positions that minimize 
the entropy of the model, which is a metric of information 
content. By minimizing information content, PBM learns 
the shape parameters that are the most efficient descriptors 
of the geometry of the LA, thereby maximizing the model’s 

statistical power and generalizability. PBM is also partic-
ularly well suited for the LA (and other heart structures) 
because its particle system formulation can accommodate 
holes in a surface, such as the MV openings and PV open-
ings. PBM is also able to capture areas of higher detail, such 
as folds and ridges, by increasing particle sampling rates in 
regions of higher surface curvature.16 For our experiments, 
we use an open-source distribution of the PBM algorithm 
called ShapeWorks, which was developed at the University 
of Utah.

Shape parameters and statistical analysis. The mathe-
matics and theory behind point-based shape models have been 
developed over the last several decades and is described in 
many excellent reference texts and papers.45–48 Here, we briefly 
summarize the major concepts that are relevant to the results 
presented in this paper. We define a point-based shape model 
as a collection of n sets of k correspondence points (3D land-
mark positions). In our case, n represents the number of LA 
or LAA segmentations and k is the number of correspondence 
points placed on each shape. Thus, each LA surface geometry 
is represented by a unique set of k 3D points. Correspondence 
among the LA segmentations is determined by running the 
PBM algorithm to produce a set of k correspondence points 
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Figure 2. An example of LA segmentation from the MRA and LGE-MRI. (A) A single slice from a segmentation of the LA wall (LGE-MRI). (B) A surface 
rendering of the LA segmentation, showing attached PVs, MV, and the LAA.
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Figure 1. MRA and LGE-MRI of the LA. (A) A single slice from a 3D MRA sequence of the LA, showing the endocardial boundaries of the LA, the antrum 
of the RIPV, and the AO. (B) A co-registered slice from the subsequent 3D LGE-MRI sequence of the LA wall, showing enhancement in the LA wall.
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x. Point xi on segmentation number 1 corresponds to point 
xi on segmentations 2, 3, 4,…, n, where i = 1,…, k. Note that 
increasing k allows for a more detailed representation of the 
LA shape, while decreasing k would produce a model that is 
more coarse.

The average shape geometry in a point-based model is 
defined as the set of averages of each of the k correspondence 
points. Similarly, the variability in geometry can be described 
by the variability in each of the k correspondence points. All 
shapes in the model are normalized with respect to scale, such 
that the root-mean-square distances of the correspondence 
points to their centroids are equal to one.47 Note that normal-
izing with respect to the scale means that we are analyzing the 
geometric variability that remains after the scale is removed. 
Our intention is to perform an analysis that is independent 
from uniform volume change in the LA, the latter having 
been previously shown to correlate with AF.49–52

The geometric variability of a PBM point model can be 
summarized as a set of shape parameters that are the orthogo-
nal directions of a principal components analysis (PCA) of 
the correspondence point positions. A complete mathematical 
description of this process can be found in Refs.34,47. PCA-
based shape parameters allow us to compress the very large 
amount of geometric information into a much smaller repre-
sentation of shape that is suitable for traditional statistics, while 
still retaining most of the geometric information of the shapes. 
Typically, we choose a finite number of shape parameters m for 
analysis, either empirically, or by picking a set that accounts for 
most of the variability in the model (eg, 95% is often chosen). 
The latter is a standard approach to model the selection that 
assumes the remaining parameters, containing relatively small 
amounts of variance, are likely the result of noise from the 
imaging, segmentations, or other sources. Once the m PCA 
shape parameters are chosen, every LA shape in the cohort 
can be represented for statistical analysis as an m-dimensional 
vector of scalar values, where m is typically less than 10. We 
can also conduct empirical analysis of the variability in shape 
by reconstructing shapes from arbitrary combinations of dif-
ferent values of m parameters. For example, we can examine 
the change in the shape described by each PCA parameter as 
we move between ±3 standard deviations from the mean in 
that parameter, a technique we employed for the LA shape 
analysis, as described below.

Shape analysis experiments. We applied PBM shape 
modeling in two studies of the shape of the LA and the LAA 
in AF. The first study was a basic investigation of the shape 
of the LA endocardial surface in AF patients compared to 
non-AF controls. The second study addressed the question of 
whether the shape of the LAA is associated with indicators 
for stroke risk, specifically the presence or absence of spon-
taneous echocardiographic contrast (SEC) in transesophageal 
echocardiography (TEE).

The statistics package R53 was used for all analysis. Con-
tinuous variables such as surface area (mm2) are presented as 

mean ± standard deviation. Shape parameters and other con-
tinuous data were analyzed by the unpaired Student’s t-test 
and Hotelling’s T 2 test, where normally distributed, or other-
wise by permutation testing. A probability value of P , 0.05 
was considered to be statistically significant.

Left-atrial endocardial shape in AF. The Utah AF 
database was queried for patients who underwent MRA of the 
LA with paroxysmal AF (n = 50), persistent AF (n = 50), and 
no history of arrhythmia (n = 37). After segmentation of the 
LA endocardium, we constructed PBM shape models for the 
LA endocardial surface using 1024 correspondence points per 
segmentation. We computed the volume of each LA cham-
ber from their endocardial image segmentations. The PVs 
were excluded prior to shape modeling. We performed PCA 
to define the characteristic shape parameters and chose the 
shape parameters describing 95% of the variation for analysis. 
Summary of patient characteristics for the LA shape study 
are described in Table 1. We performed multivariate Hotell-
ing’s T 2 test and Student’s t-test for significant differences in 
the group mean values of our shape parameters, with the null 
hypothesis of equivalent mean values across groups.

LAA shape and TEE findings. For this study, we iden-
tified a cohort of 203 patients from the Utah AF database who 
had also undergone TEE to evaluate LAA thrombi. These 
are patients who were imaged before undergoing either radio
frequency ablation or cardioversion for restoration of normal 
sinus rhythm. In a TEE screening, the LAA was classified as 
normal, SEC present, or thrombus present. SEC is an indica-
tion of decreased blood flow in the LAA and is thus consid-
ered a risk factor for thrombus formation. For our study, we 
identified 57 patients with SEC present and 147 patients clas-
sified as normal. The patients with thrombus were excluded 
because of their relatively low frequency in our database. (AF 
patients are generally on anticoagulation therapy, and thus 
unlikely to develop thrombi.) The LAA endocardium was 
segmented from LGE-MRI for each patient. We constructed 
PBM shape models of the LAA using 256 correspondence 
points and identified the shape parameters that described 
95% of the variation in the model for analysis. Summary of 
patient characteristics for the LAA shape study are described 
in Table 2. We performed multivariate Hotelling’s T 2 test and 
Student’s t-test for significant differences in the group mean 
values of our shape parameters, with the null hypothesis of 
equivalent mean values across groups.

Results
Left-atrial endocardial shape in AF. Using the PBM 

shape model of endocardial LA shape, we performed group-
wise comparisons of the mean shapes between the non-AF, 
paroxysmal AF, and persistent AF groups. We chose the top 
eight PCA shape parameters from the model for analysis, 
which collectively account for 95% of the variation. The mul-
tivariate Hotelling’s T 2 test using these shape parameters 
indicated highly significant differences in group means 
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Table 1. Patient cohort characteristics for the LA shape study.

Control (n = 37) Paroxysmal (n = 50) Persistent (n = 50)

Mean (std dev) Mean (std dev) Mean (std dev)

Age (years) 47.6 (17.2) 67.8 (11.4) 68.0 (11.7)

Height (cm) 169.9 (8.5) 171.0 (10.3) 173.1 (10.1)

Weight (kg) 79.1 (16.9) 82.5 (18.6) 89.4 (23.2)

BMI (kg/m2) 27.1 (5.8) 28.1 (5.5) 29.6 (6.5)

Number (percent) Number (percent) Number (percent)

Female gender 22 (59) 24 (48) 24 (48)

Coronary artery disease 2 (5) 12 (24) 8 (16)

Hypertension 14 (37) 27 (54) 29 (58)

Diabetes mellitus 3 (8) 12 (24) 24 (48)

Mitral valve regurgitation 2 (5) 2 (4) 2 (4)

Congestive heart failure 3 (8) 2 (4) 10 (20)

Stroke 4 (11) 4 (8) 4 (8)
 

Table 2. Patient cohort characteristics for the LAA shape study.

No TEE SEC (n = 147) TEE SEC Present (n = 57)

Mean (std dev) Mean (std dev)

Age (years) 64.6 (11.8) 70.1 (9.5)

Height (cm) 174.3 (10.9) 173.7 (12.0)

Weight (kg) 90.14 (19.5) 87.6 (19.5)

Number (percent) Number (percent)

Female gender 53 (36) 27 (47)

Coronary artery disease 26 (18) 12 (21)

Hypertension 94 (64) 42 (74)

Diabetes mellitus 18 (12) 17 (12)

Mitral valve regurgitation 17 (12) 3 (5)

Congestive heart failure 16 (11) 9 (16)

between the control vs. paroxysmal groups (P ,  0.0001), 
the control vs. persistent groups (P , 0.0001), and the par-
oxysmal vs. persistent groups (P , 0.001). Closer inspection 
of the shape parameters revealed that shape parameter 1, 
which accounts for 21% of the total model variation, cap-
tured most of the significant shape differences between the 
groups. Empirically, the majority of this variation appeared 
to correspond to a dilation of the LA in the anterior–pos-
terior (AP) direction. Accordingly, we will refer to this 
shape variation as the AP-dilation parameter. Note that 
because the AP-dilation parameter was represented in the 
first PCA mode, expansion in other orthogonal dimensions 
(inferior–superior, left–right) exhibited lower variability in 
our population.

Figure 3 compares the distributions of the AP-dilation 
shape parameter in each of the three groups, along with a 
right-superior-posterior view of the shape variation described 
by the parameter. Student’s t-test showed that the means of 

all these distributions were all well separated (P  ,  0.001). 
The interpretation of the LA shape and specifically AP-
dilation variation is further illustrated in Figure  4, which 
depicts two orthogonal views of the mean LA shape, and the 
shapes corresponding to ±1.5 and ±3 standard deviations of 
the shape parameter. Labeled vertical lines in the figure also 
show that the LA shapes from patients with paroxysmal and 
persistent AF were clustered toward the dilated (negative) 
end of the spectrum, while shapes from the control popula-
tion were clustered in the more flattened (positive) end of the 
spectrum. There was also some shape change in the right–left 
and inferior–superior directions, though not as pronounced. 
Finally, we note that the LA shape parameter also appeared 
to capture some of the variation in the length of the ostia of 
the PVs. However, given the difficulty in defining consistent 
boundaries of the ostia during segmentation, it is possible 
that this apparent variation in the ostia simply reflected seg-
mentation error.
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size changes, for example, because of increased volume. To 
investigate the correlation of the LA shape with volume, we 
performed a linear regression correlation analysis between 
volume measurements and the AP-dilation parameter over 
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Figure 4. Shape variation described by the AP-dilation shape parameter. Two views of reconstructed LA shapes along a spectrum of ±3 standard 
deviations (σ) from the mean. The dilation is clearly visible in the inferior view. Positions of the average shapes in each group are also shown.
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Figure 3. Distribution by group of the AP-dilation shape parameter. Reconstructed LA shapes described by this parameter are shown in the left. Note that 
control shapes tend to cluster at the positive, less-dilated end of the spectrum, while AF shapes cluster at the negative, more-dilated end, with persistent 
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Shape, as defined by our PBM model, is normalized 
with respect to the overall scale, which means that the AP 
shape parameter that we identified as the dominant mode of 
variation in this patient cohort was independent of any uniform 
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the entire patient cohort and the control group. LA volume 
was significantly increased in patients with paroxysmal 
AF (85.1  mL) relative to controls (57.3  mL), patients with 
persistent AF (116.9  mL) relative to controls, and between 
the two symptomatic patient groups (all P  ,  0.001). Lin-
ear regression also showed significant correlation of volume 
with the AP-dilation parameter over the entire patient cohort  
(P , 0.0001) and in the control group (P , 0.0001). However, 
there was no correlation between shape and volume in the par-
oxysmal and persistent AF subgroups, as shown in Figure 5.

LAA shape and TEE findings. Using the PBM shape 
model of the LAA, we performed groupwise comparisons of 
the mean shapes between the patients whose TEE findings 
showed SEC (the SEC group, assumed to be at risk of throm-
bosis) and the patients who had no SEC (the no-SEC group). 
The first nine PCA shape parameters of our model contained 
95% of the model variation, and a multivariate Hotelling’s T 2 
test on these parameters indicated that there were significant 
differences in shape between the group means (P = 0.007). In 
particular, the mean values of the first two shape parameters 
of our LAA model were significantly different, with P = 0.028 
for the first parameter and P = 0.004 for the second. These two 
parameters described 36% and 13% of the total shape varia-
tion, respectively.

Empirically, the first mode of our shape model appeared 
to capture a large component of the length of the LAA, as 
well as describing some of its thickness. We will refer to this 
parameter as the “length” parameter for brevity. The distribu-
tion of this parameter for both the normal (no SEC) and SEC 
groups is shown with box plots in Figure 6, along with the 

reconstructed LAA shapes at positions within the distribution, 
shown at the left edge of the box plots. The top row of the 
associated Figure 7 depicts reconstructed LAA shapes across 
a spectrum of ±2 standard deviations (σ) from the mean for 
the “length” shape parameter (right-anterior-superior view). 
Higher likelihood of SEC is found at the higher end of the 
spectrum, where the LAA shapes are longer and thinner.

The second shape parameter of our model for LAA varia-
tion described more subtle and complex shape changes than 
the first. Empirically, this shape parameter appeared to cap-
ture aspects of the orientation of the LAA, relative to the LA. 
The distribution of this “orientation” parameter for both the 
normal (no SEC) and SEC groups is shown with box plots in 
Figure 8, along with the reconstructed LAA shapes at posi-
tions within the distribution. LAA shape along a spectrum 
of ±2 standard deviations (σ) is shown in the bottom row of 
the associated Figure  7 (left-anterior-inferior view). From 
these figures, we see that SEC was more likely to be found 
in patients whose LAA shape was more curved and extended 
anteriorly, rather than in a straighter LAA that was oriented 
in a more superior direction. Other subtle shape differences 
included a slightly narrowed appendage tip in patients exhib-
iting SEC.

Discussion
The purpose of this study was to explore the value of a novel 
approach to analyzing the shape of the heart in identifying 
differentiating features in patients with various stages of AF. 
The study applied recent techniques in particle-based methods 
(PBM) of statistical shape analysis to high-quality MRI 
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Figure 5. Correlation of LA volume with the AP-dilation shape parameter. Volume correlates with shape in the entire cohort and with the control group, 
but is not correlated with shape in the paroxysmal and persistent AF groups.
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Figure 6. The LAA length shape parameter describes significant group differences between patients where SEC is present in TEE examinations and 
those where no SEC is found, P = 0.028. Longer, thinner LAA shapes tend to show more SEC than shorter, thicker shapes. (Note that units are not 
physical units, but units of the PCA shape parameter.).
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Figure 7. Shape variation of the LAA that describes significant group differences between SEC and non-SEC TEE findings. Reconstructed LAA shapes 
along a spectrum of ±2 standard deviations (σ) from the mean for the first (“length”) shape parameter (top row) and the second (“orientation”) shape 
parameter.

from a cohort of patients and controls, in order to identify 
relationships between shape variation and the progress and 
risk factors of AF. Our results indicate that there do appear to 
be shape parameters that can identify both patients at differ-
ent phases of AF and even those who may be at risk of subse-
quent embolic stroke.

Major findings from our PBM analysis of the LA and 
LAA include: (1) a strong statistical association between 

AP dilation of the left-atrial chamber and AF, which also 
increases with the severity of AF and (2) a parameterization 
of the characteristic shapes of the LAA that are more likely 
to exhibit decreased blood flow and hence risk of stroke, as 
measured by TEE.

Our structural f indings for the LA in AF populations 
support and agree with the previous f indings in the litera-
ture. Bisbal et al describe an association in AF between LA 
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endocardial shape and its degree of “sphericity,” which is 
def ined by a univariate metric of the geometric difference 
of the LA from that of a sphere. In Refs.13,14, the authors 
show a correlation between sphericity and AF recurrence 
after radiofrequency ablation and a reverse-remodeling 
toward a less spherical geometry after successful ablations. 
Given that increased AP dilation is associated with AF, 
our f indings are consistent with earlier studies of sphe-
ricity, but provide a more ref ined and focused descrip-
tion of the nature of the associated shape changes than  
previously described.

Our AP-dilation shape findings are also similar to those 
reported using an “asymmetry index” in Nedios et al.15, who 
defined asymmetry as an AP LA width measurement that is 
normalized by LA volume. Nedios et al reported significant 
(P = 0.002) differences in asymmetry between AF paroxys-
mal patients and controls, which are consistent with the (scale 
normalized) AP-dilation findings in our study, though with 
lower statistical power. Therefore, our results are further evi-
dence that LA dilation in the AP direction correlates with  
AF burden.

Increase in LA volume is well known to be correlated 
with an increase in AF burden and has been studied pre-
viously.49–52 Our results also support the hypothesis that 
LA volume is significantly increased in AF and further 
increased with AF severity (volumes in patients with parox-
ysmal AF are larger than in those with persistent AF). Our 
computational shape analysis using PBM suggests at least 

one hypothesis that may help explain the specific geometric 
nature of that volume change, specifically, that the width in 
the AP direction increases with AF and AF severity, ie, that 
the volume increase occurs primarily in the AP direction, 
rather than uniformly. Note that AP dilation, which is inde-
pendent from volume, was automatically derived in our study 
without a priori assumptions regarding shape differences. It 
also provides a higher-power discrimination between our 
AF and non-AF populations than volume alone (P = 0.0001 
vs. P = 0.001).

The LAA is thought to play a significant role in the 
formation of thrombi in AF that can lead to cardioembolic 
stroke.5,54–56 Unfortunately, the characteristic shape of the 
LAA is particularly difficult to describe, in part because of 
the significant amount of variability exhibited in the popu-
lation and the difficulty of obtaining accurate 3D imagery of 
the structure in vivo. Thrombus formation is likely a com-
plex interaction between hemodynamic factors, the shape 
of the LAA, and the tissue substrate of the LAA wall. Our 
results, however, suggest that there may be shape-related 
indices that can provide insight into risk and mechanism 
of thrombus and stroke. Specifically, we found two shape 
parameters that were associated with stagnant blood flow 
in the LAA (as measured by TEE). One advantage of the 
PBM modeling approach for the LAA is that it learns opti-
mized shape parameters from the data, conferring a poten-
tial advantage for statistical power in highly variable data 
like LAA shape.
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Figure 8. The LAA orientation shape parameter describes significant group differences between patients where SEC is present in TEE examinations 
and those where no SEC is found, P = 0.0004. LAA that are curved anteriorly tend to show more SEC than shapes that extend straight in a left-superior 
direction. (Note that units are not physical units, but units of the PCA shape parameter.)
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Of the two LAA shape parameters associated with 
increased SEC in TEE, the first corresponded strongly to 
overall LAA length and is perhaps more easily interpreted. 
One hypothesis is that a longer and narrower tubular 
structure for the LAA might be more restrictive of blood 
flow in the chamber, leading to increased stagnation and, 
thus, observed SEC. The second shape parameter, which 
seemed to correspond in part to the orientation of the LAA, 
exhibited more complicated and subtle variation. However, 
the SEC and no-SEC groups were actually better separated 
statistically based on this parameter than on the first (P 
= 0.024  in the first vs. P = 0.0004  in the second). Other 
researchers have recently shown correlation between LAA 
orientation and embolic stroke risk57 that support our find-
ings. However, we are unable to formulate specific hypothe-
ses regarding LAA orientation in our present study because 
our models do not include the LA shapes. We anticipate 
that joint PBM models of the LA and LAA will be useful in 
the future investigation of such questions of LAA position-
ing and orientation.

All these findings are observational in nature, and fur-
ther research, ideally using controlled animal models, is clearly 
needed to investigate hypotheses regarding the mechanisms 
of shape change in AF, such as the weakening of the wall 
because of fibrosis and the involvement of structures attached 
to the LA.

In summary, we have presented translational research in 
the application of new computational image analysis tools to 
the study of the heart in AF. We have described an image 
processing workflow using PBM that may serve as a tem-
plate for other researches into structural analysis of the heart. 
Through automated learning of shape descriptors, we remove 
a priori assumptions of shape and may gain unexpected 
insights into the function and structure of biological systems. 
Additionally, the increased geometric detail inherent in com-
putational models can describe much more subtle variation in 
shape than can be observed directly from the images. While 
further progress is required to translate and validate complex 
mathematical tools like PBM for the clinical research domain 
in general, this study has demonstrated its potential for mea-
suring cardiac shape in the challenging setting of AF.
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