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Abstract: The development of photothermal materials with a high light-to-heat conversion capability
is essential for the utilization of clean solar energy. In this work, we demonstrate the use of a
novel and sustainable concept involving cellulose liquefaction, rapid gelation, in situ synthesis and
hot-press drying to convert cellulose and metal–organic framework (Prussian blue) into a stable
photothermal bioplastic that can harvest sunlight and convert it into mechanical motion. As expected,
the obtained Prussian blue@cellulose bioplastic (PCBP) can effectively absorb sunlight and the surface
can be heated up to 70.3 ◦C under one sun irradiation (100 mW cm−2). As a demonstration of the
practicality of PCBP, it was successfully used to drive a Stirling engine motion. Meanwhile, hot-
pressing promotes the densification of the structure of PCBP and, therefore, improves the resistance
to the penetration of water/non-aqueous liquids. Moreover, PCBP shows good mechanical properties
and thermal stability. Given the excellent photothermal performance and environmentally friendly
features of photothermal conversion bioplastic, we envisage this sustainable plastic film could play
important roles toward diversified applications: a photothermal layer for thermoelectric generator,
agricultural films for soil mulching and photothermal antibacterial activity, among others.

Keywords: bioplastic; Prussian blue; liquid-resistant; photothermal conversion; mechanical motion;
mechanical properties

1. Introduction

In academia and the industry, the conversion of electricity, chemical energy, fossil
fuels, light energy and other forms of energy sources into mechanical motion has attracted
widespread attention. As a sustainable, inexhaustible source of clean energy, solar energy
offers an effective solution to alleviate the energy crisis [1,2]. Therefore, the conversion of
solar energy to mechanical motion is particularly attractive. The effective way to realize the
conversion of solar energy into mechanical motion is to convert solar energy into thermal en-
ergy, which in turn is converted into mechanical motion. Photothermal conversion materi-
als could achieve sequential energy conversion by effectively harvesting solar energy. Some
photothermal nanomaterials have been developed, including carbon-based materials [3–5],
noble-metal nanoparticles [6–9], black inorganic semiconductors [10–12] and low-cost con-
ductive polymers [13,14]. Meanwhile, many organic–inorganic composite materials, such
as MoS2/SWNTs [15], Al-Ti-O/polyvinylidene fluoride [16], Ti2O3/cellulose [17], etc., have
also been developed for use in photothermal materials. However, most of the previous
research of photothermal materials have focused on tumor photothermal therapy [18],
photothermal antibacterial activity [19], wastewater purification and desalination [20,21],
but little research has been conducted on the conversion of light energy to mechanical
motion [22,23].
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Metal–organic frameworks (MOFs) are emerging porous crystalline materials that
have attracted wide attention due to their wide range of applications [24–26]. To the best
of our knowledge, the use of MOFs in solar thermal materials is rarely reported. Re-
cently, Prussian blue (PB) particles have attracted much attention owing to their biosafety,
biocompatibility, green and simple synthesis, low cost, high stability, adjustable morphol-
ogy, and excellent photothermal performance [27–30]. PB belongs to a typical transition
metal–organic framework (MOF), which can be fabricated by simple co-precipitation of
[Fe(CN)6]4− and Fe3+ [31]. PB has a remarkable photothermal effect due to the charge
transfer between the metal from Fe2+ to Fe3+ [32–34], which has a light-to-heat conversion
efficiency higher than or equal to that of carbon nanomaterials and noble Au [35,36], but
it involves a far lower cost. Compared with other MOFs, PB has attractive water and
organic solvent stability, especially its excellent resistance to organic solvents making it
suitable for a wide range of solvent media [37]. Therefore, in this work, PB is reasonably
selected as a photothermal material in consideration of its excellent photothermal effect,
low cost and easy synthesis characteristics. However, the disadvantageous nature of PB,
such as inherent fragility and unsatisfied processability, hinder some practical applications.
Therefore, it is urgent to select a suitable and flexible substrate to solve these limitations.

Cellulose shows great promise for use as a supporting substrate or template material
to PB due to renewability, degradability, abundance in storage and low cost [38]. In fact,
numerous MOFs/cellulose composite materials have been successfully developed and
applied in various fields such as antibacterial [39], UV shielding [40], catalysis [41], flame
retardant [42], fluorescence [43], metal ion adsorption [44] and supercapacitor [45], etc.
Inspired by these works, we attempt to combine photothermal PB with a natural polymer,
i.e., cellulose, to prepare bioplastic with excellent photothermal effect, liquid resistance
and high mechanical strength. Using this photothermal cellulose-based bioplastic, solar
energy can be harvested and converted into mechanical motion. Due to the rapid growth
in demand for environmentally friendly materials and green energy, it makes sense to
manufacture a new type of green plastic with excellent photothermal performance.

In the present work, PB particles are in situ loaded into regenerated cellulose hydrogel
and then hot pressed to form photothermal bioplastics. The as-prepared photothermal bio-
plastics have good mechanical properties, flexibility and efficient photothermal conversion
performance. The obtained photothermal bioplastic can effectively absorb sunlight and
convert it to heat, and the surface of bioplastic can be heated to 70.3 ◦C under one sunlight.
Encouraged by this result, we used the as-fabricated photothermal bioplastic to drive the
Stirling engine motion to realize the goal of “solar light to mechanical motion”. The strong
barrier of bioplastic to penetration by aqueous/nonaqueous liquids was demonstrated.
Our proposed strategy is simple, green and easy to operate both in the work-up and purifi-
cation stage, in accordance with principles of green chemistry and sustainable development.
The fabrication process was carried out in an aqueous medium without any other toxic
solvents. This simple and sustainable strategy would direct green photothermal conversion
bioplastic toward diversified applications: photothermal layer for thermoelectric generator,
agricultural films for soil mulching and photothermal antibacterial action, among others.

2. Results
2.1. The Formation of Prussian Blue@Cellulose Bioplastic (PCBP)

Scheme 1 schematically illustrates the preparation of PCBP. Initially, the synthesis
process involved the preparation of a homogeneous cellulose/LiOH/urea aqueous solution,
followed by a physical gelation with anhydrous ethanol and washed with water to form a
cellulose hydrogel. The cellulose hydrogel with a thickness of about 2.0 mm in Figure 1a is
transparent. Subsequently, PB particles were in situ loaded into the regenerated cellulose
hydrogel to obtain a PB@cellulose composite hydrogel. Finally, the PB@cellulose composite
hydrogel was hot-pressed to obtain composite bioplastic. The hot-pressing not only rapidly
evaporated and removed the water from the cellulose hydrogel, but also changed the
orientation and crystalline structure of the cellulose, leading to the structural densification.
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In Figure 1b, the obtained pure cellulose bioplastic (CBP) with about 0.2 mm thickness
is transparent and shows a relatively high transmittance (85.1% at 600 nm; Figure S1,
Supplementary Material). As shown in Figure 1c,d, the PB @cellulose composite hydrogel
and PCBP exhibit a dark blue color, indicating the accumulation of PB particles inside or
on the surface of the PB@cellulose composite hydrogel.
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Figure 1. Digital photographs of samples placed on black pattern strip with printed Chinese calligra-
phy. Cellulose hydrogel (a), CBP (b), PB@cellulose hydrogel (c), and PCBP (d).

In this study, PB with cubic crystals was synthesized from a single iron-source
Na4Fe(CN)6. Figures S2 and S3 show the SEM images and crystal structure of PB. To
obtain the morphology of the functional bioplastic filled with PB particles, a represen-
tative cross-sectional SEM image of CBP and PCBP-1 was observed. It can clearly be
seen in Figure S4 (Supplementary Material) and that cellulose microfibrils show a parallel
arrangement, demonstrating that the cellulose hydrogel composed of cellulose molecular
chains was transferred into transparent CBP after hot pressing. In Figure 2, we can see the
existence of PB particles in the network structure of PCBP-1, the PB particles are tightly
encapsulated in the PCBP-1 with the magnified SEM image, the PB particles (circled) are
well-distributed in the PCBP-1 without congregation. PB particles are firmly embedded
in the cellulose matrix, which indicates a strong interfacial adhesion between cellulose
and PB particles. The uniform distribution and the alignment of PB particles, as well as
a strong interface, are conducive to improving the light absorption and heat conduction.
An EDS analysis also confirmed the formation of PB particles inside PCBP (Figure 2c).
Signals of nitrogen, iron and sodium were recorded in EDS analysis patterns for cellulose
decorated by PB. Elemental mapping images (Figure 2d) of PCBP-1 also revealed the
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uniform distributing of PB particles in PCBP-1, as demonstrated by the uniform detection
of iron, sodium and nitrogen atoms in PCBP-1 apart from the carbon and oxygen atoms.
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The surface SEM images of the CBP, PCBP-1 and PCBP-2 are displayed in Figure 3.
For comparison purposes, the SEM images of the surface morphology of the CBP are
shown in Figure 3a–c. The surface of CBP shows desirable flatness, homogeneity and high
compactness, which is attributed to plastic deformation after hot pressing. The PB particles
are uniformly dispersed on the surface of PCBP without visible aggregates shown in the
SEM images of PCBP-1 and PCBP-2. It can be seen in Figure 3d–f that some PB particles
on the surface of PCBP-1 were trapped in the cellulose matrix. This is because the PB
particles are closely attached to the cellulose due to hot pressing. This result indicates
that PB was not only formed inside the hydrogel, but also a large amount of PB was
formed on the surface of the hydrogel. Compared with PCBP-1, PCBP-2 had more PB
particles on its surface (Figure 3g–i). It can be seen that the PB particles are embedded in
the cellulose matrix.
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To confirm the existence of PB particles in the prepared photothermal bioplastic, the
chemical structure of PB, pure CBP and PCBP-1 was studied by FTIR, as shown in Figure 4a.
In the FTIR spectrum of the PB, the peaks at 2086 and 601 cm−1 were attributed to the
C=N stretching and Fe–O formation [46], respectively. For neat CBP, the characteristic
peaks at 3321 and 2888 cm−1 were ascribed to the O–H and C–H stretching vibrations
of the sugar ring, respectively. The peaks at 1644 and 1021 cm−1 were ascribed to the
stretching vibration of C=O and C–O. The same peaks were observed for the PCBP-1. After
introduction of PB, the occurrence of a new peak at 2086 cm−1 attributed to the vibration
of C=N in PCBP-1, demonstrating successful synthesis of PB in PCBP-1.

The formation of PB in the photothermal bioplastic was further confirmed by using an
XRD analysis of CBP, PB and PCBP powders. Dark blue PB particles were fabricated from
a single iron-source Na4Fe(CN)6. Figure 4b shows that the XRD diffraction spectrum of
the CBP had three strong diffraction peaks at 12.4◦, 20.2◦, and 22.2◦, corresponding to the
diffraction of the (1–10), (110) and (200) planes of the cellulose II-type, demonstrating that
the crystal structure of the sample did not change [47]. For pure PB powder, diffraction
peaks at 2θ◦ = 57.1◦, 54.0◦, 50.7◦, 43.5◦, 39.5◦, 35.5◦, 24.9◦, and 17.5◦ corresponded to the
(620), (600), (440), (422), (420), (400), (220) and (200) planes, respectively [27]. The PCBP also
showed diffraction peaks at the (620), (600), (440), (422), (420), (400), (220) and (200) planes,
which are attributed to the successful synthesis of PB particles into the cellulose network.

As shown in Figure 4c, the CBP showed a three-step thermal degradation behavior:
The first step corresponding to a small mass loss appeared at 75 ◦C. The subsequent mass
loss in the range of 150–210 ◦C is attributed to the evaporation of residual moisture from
the specimens. The next mass loss in the range of 270–350 ◦C, was the sign of carbohydrate
polymer degradation. The final 10% mass loss at 370–800 ◦C could be ascribed to the
oxidation of the residues, leaving a little amount of residue (13.7 wt%) at 800 ◦C. Similar to
CBP, the decomposition of PCBP-1 and PCBP-2 also involved three similar steps. It should
be noted that the thermal stability of PCBP-1 and PCBP-2 increased and they had higher
amounts of the residual chars. The mentioned enhancement could be due to the existence
of PB, as it efficiently prevents the volatilization of the decomposition products into the
gas phase.
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The chemical composition and electronic structure of the CBP and PCBP-1 were char-
acterized by XPS measurements. As seen in the wide-scan XPS spectra of PB, iron (Fe 2p),
carbon (C 1s), oxygen (O 1s) and nitrogen (N 1s), signal peaks were present at around 708.4,
284.6, 532.7 and 399.6 eV, respectively, suggesting Fe, C, O and N four elements existing on
PB. The neat CBP consisted of (β1→4)-linked D-glucose units containing only C 1s and O
1s peaks at 284.8 and 533.1 eV, and no N 1s and Fe 2p peaks. (Figure 4d). The XPS survey
scan of the PCBP-1 showed C 1s, N 1s, O 1s, and Fe 2p peaks with binding energies of
284.6, 399.6, 532.7 and 708.4 eV, respectively. The O 1s spectrum (Figure 4f) of the PCBP-1
showed two peaks at 531.21 and 286.56 eV, corresponding to Fe–O and C–O, respectively.
The spectrum clearly showed a chemical bond between cellulose and PB based on the
existence of the Fe–O peak [48,49] (Figure 4e). The Fe 2p spectrum of the PCBP-1 was
curve-fitted into three components at 721.68, 712.18 and 708.48 eV corresponded to the
low spin (Fe 2p1/2) states, the high spin (Fe 2p3/2) and the ferrocyanide of ferric ions [50],
respectively (Figure 4g). The C 1s spectrum (Figure 4h) of the CBP was deconvoluted
into three constituents: C–C (284.7 eV), C–O (285.9 eV), and O–C–O (286.6 eV). The C 1s
spectrum (Figure 4i) of the PCBP-1 was curve-fitted into four components at 284.70, 285.02,
286.59 and 287.74 eV assigned to the C–C, C–N, C–O and O–C-O, respectively. The C–N
peak proved the presence of PB in the PCBP, which was absent in the C 1s spectrum of CBP.
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2.2. The Properties Analysis of PCBP

It is inevitable that any material will come into contact with various liquids in the
course of its use. Therefore, the liquid resistance ability of materials would be urgently
needed in certain cases. Nevertheless, compared to fossil-fuel plastics, applications of
cellulose-based products are strongly hampered by limited resistance to penetration by
liquids. Therefore, high liquid-resistant properties of cellulosic-based products, e.g., cellu-
lose paper, cellulose aerogel and cellulose film, are highly desirable. The general strategy
for cellulosic products to obtain liquid barrier properties is through the surface anchorage
of barrier coatings. Structural reorganization of microfibers involving the combination
of dissolution, regeneration and hot-pressing as an alternative to the use of barrier coat-
ings was found to be very effective in developing liquid barrier properties. As shown in
Figure 5a, CBP and PCBP all had a strong resistance to penetration by colored ethanol,
grease solution and water. The water-contact angles for CBP and PCBP-2 were 60.6 and
73.3◦, respectively—still less than 90◦ (Figure 5b,c).
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The mechanical property is another critical parameter for the practical application
of plastic materials. The mechanical strength of the photothermal bioplastics constructed
from PB and cellulose support is a prerequisite for the long-term operation in a harsh
environment. Figure 6a shows the stress–strain curves for CBP, PCBP-1 and PCBP-2. The
CBP possesses a tensile strength of 85.7 MPa. The mechanical strengths of PCBP-1 and
PCBP-2 were 77.2 MPa and 65.7 MPa, respectively (Figure 6b). Compared with CBP, the
tensile strength of PCBPs decreased. The main reason for the decrease in the mechanical
strength of PCBPs was the addition of hydrochloric acid during the formation of PB. In
Figure 6a, the inserted digital image shows a good mechanical strength and flexibility of
PCBPs. Meanwhile, Figure S5 (Supplementary Material) shows the tailoring process; note
that no brittle failure occurred during tailoring of the CBP and PCBP samples. Furthermore,
distinguished mechanical robustness of PCBP-2 was clearly identified. CBP and PCBP-
2 were able to support a metal flattener (10 kg; Figure S7a,b, Supplementary Material).
Videos S1 and S2 (Supplementary Material) show the mechanical robustness of CBP and
PCBP-2 in regard to the metal flattener.
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2.3. Photothermal Conversion Behavior of PCBP and Applications

Next, the xenon lamp was used to simulate solar radiation to study the solar-to-
thermal properties of PCBPs. The surface temperature of PCBPs under solar irradiation
was monitored using an infrared camera. Figure 7a,c,d show that the surface of PCBPs was
rapidly heated up, and reached 61.2 ◦C on PCPB-1 and 70.3 ◦C on PCBP-2 under standard
one sun illumination. The temperature of the PCPB-1 and PCBP-2 increased from ~25 ◦C
to 61.2 ◦C and ~70.3 ◦C during 6 min illumination, indicating that the bioplastic films have
good light absorption and photothermal conversion performance. The surface temperature
of PCBP-2 can be further increased up to 88.9 ◦C under two sun (200 mW cm−2) illumina-
tion (Figure 7b,e). The light absorption ability of PCBP at wavelengths ranging from 200 to
2400 nm was investigated. As displayed in Figure 7f, the solar reflectance of PCBP-2 demon-
strated lower values than the controlled sample (pristine CBP). The overall reflectance of
PCBP-2 was below 10% across the wavelength from 200 to 1200 nm. Meanwhile, the light
absorption of PCBP-2 was significantly higher than that of pure CBP as shown in Figure S6
(Supplementary Material). PCBP-2 showed a high light absorption capacity, especially in
the visible and near-infrared wavelength range (200–1200 nm), which belongs to the main
distribution region of solar energy. This result indicates PCBP-2 has strong absorption,
which is attributed to the uniform distribution and the strong light absorption capacity
of PB particles. As displayed in Figure 7g, the stable light-to-heat conversion capability
of the PCBP-2 was proven by repeated heating/cooling cycles, including turning on the
xenon lamp irradiation for 240 s, followed by turning it off for 160 s. The quick light-to-heat
conversion capacity was well-maintained during four heating/cooling cycles.
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temperature change of the PCBP-2 during four heating/cooling cycles.

Based on the excellent photothermal conversion of PCBPs, we next studied whether
PCBPs can be used to drive Stirling engine motion. The Stirling engine (or engine) was
first invented by brit Robert Sterling in 1816, and is an externally heated (or burnt) piston
engine. The working medium is mainly gas, that is, a temperature difference is applied to
both sides of the engine box, and the air in the engine box is reversibly compressed and
expanded, thereby driving the reciprocating motion of the diaphragm and the continuous
rotation of the engine turbine. PCBPs were fixed to a transparent substrate (such as a poly-
methyl methacrylate (PMMA) board) on the bottom side of the Stirling engine (Figure 8a).
PCBPs absorb sunlight and heat the air at the bottom of the Stirling engine, generating a
temperature difference between the top and bottom of the engine box. Figure 8b shows a
physical photograph of the Stirling engine and non-contact speed meter. The rotational
speed of the Stirling engine was measured by a non-contact tachometer. As a result, when
the sunlight penetrated the transparent PMMA plate (Video S3, Supplementary Material)
and was absorbed by PCBPs, the rotation of the engine turbine was observed. For a
comparison purpose, the Stirling engine placed CBP only on the PMMA board, and no
rotation occurred during solar irradiation, verifying that the rotation was triggered by the
photothermal conversion caused by PCBP-1 and PCBP-2 (Videos S4 and S5, Supplementary
Material). PCBPs with different loading amounts of PB particles triggered rotation of the
engine turbine at different speeds, ranging from 0 to 154 r/min for PCBP-1 and 195 r/min
for PCBP-2 (Figure 8c). When the PCBP-2 was used to drive the Stirling engine motion,
changes in the illumination level (0.5, 1, 1.5 and 2 standard units of solar radiation) also
triggered different rotational velocities (Figure 8d). All of these results demonstrate that
the fabricated solar-thermal material can be used to drive a Stirling engine, and the rotation
speed of the Stirling engine can be tuned by changing the loading amount of photothermal
material and by changing the light intensity.
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3. Materials and Methods
3.1. Materials

Filter paper (FP) was obtained from Hangzhou Special Paper Industry Co., Ltd.
(Hangzhou, China). Sodium ferrocyanide (Na4Fe(CN)6), Lithium hydroxide (LiOH) and
urea were obtained from Macklin Biochemical Co., Ltd. (Shanghai, China), Tian Da
Chemical Reagent Co., Ltd. (Zhangqiu, China) and Tian li Chemical Reagent Co., Ltd.
(Tianjin, China), respectively. Glycerol and hydrochloric acid (HCl) (36.0–38.0%) were of
analytical reagent grade and used without further purification.

3.2. Synthesis of Prussian Blue Powder

The synthesis of Prussian blue (PB) was as follows: 8 mmol of Na4Fe(CN)6·10H2O
was solubilized in 200 mL distilled water and 6 mL concentrated hydrochloric acid was
subsequently added. Then, the above solution was reacted at 60 ◦C for 6 h under stirring;
during the reaction procedure, the mixture gradually turned blue from light yellow. The
product was collected by centrifugation and washed three times with water and ethanol,
then dried at 70 ◦C overnight to obtain the final PB powder.

3.3. Fabrication of Cellulose Hydrogel

Briefly, powder-like cellulose was added to LiOH/urea solution (4.6 wt%/15 wt%)
and stirred for 5 min at room temperature. Then, the above mixture was frozen in the
refrigerator at −20 ◦C for 12 h to form 4 wt% transparent Li–cellulose solution. The
resultant viscous Li–cellulose solution was subjected to ice water bath sonication for 20 min
to remove air bubbles. The viscous bubble-free Li–cellulose solution was cast on a glass
mold, followed by anhydrous ethanol being used as the green non-solvent to induce rapid
regeneration, and then thorough washing with distilled water to obtain cellulose hydrogel
with about 2.0 mm of thickness.
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3.4. Fabrication of Prussian Blue@Cellulose Bioplastics

In this process, cellulose hydrogel was immersed in a 200 mL solution containing
8 mmol Na4Fe(CN)6·10H2O for 6 h. Subsequently, 6 mL concentrated HCl was added.
Then, the reaction system was heated to 60 ◦C and maintained and reacted for 6 h. The
reaction process was repeated 2 times. PB@cellulose hydrogel was then removed from
mixtures and washed with water to neutrality. Depending on the number of reactions,
the PB@cellulose hydrogels were labeled as PB@cellulose hydrogel-1 and PB@cellulose
hydrogel-2. The PB@cellulose hydrogels were immersed in 5 w/w% glycerin aqueous
solution for 30 min. Before hot pressing, the composite cellulose hydrogels were dried
at room temperature for 1 h to remove some of the moisture. The resulting PB@cellulose
hydrogels were sandwiched between stainless steel plates and then dried at 110 ◦C at an
applied pressure of about 0.1 MPa initially, and finally were hot pressed at an applied
pressure of about 60 MPa with an R32022015 hot press machine (Schuler, Shanghai, China).
Thus, photothermal Prussian blue@cellulose bioplastic films with a thickness of about
0.20 mm were obtained, called as PCBP-1 and PCBP-2. For comparison purposes, a pure
cellulose bioplastic (CBP, 0.20 mm) was obtained using the same process.

3.5. Characterization

Light reflection of the samples was tested using a Cary 5000 UV–Vis–NIR spectropho-
tometer over the spectral range 200–2400 nm. The transmittance of neat CBP in the wave-
length from 200 to 800 nm was tested. IR images were collected using a Testo 869 IR camera
(Testo SE & Co. KGaA, Lenzkirch, Germany). A CEL-S500 xenon lamp (Aulight Co., Ltd.,
Beijing, China), which simulates solar light, was used as the light source. Fourier transform
infrared (FTIR) spectra were collected on a FTIR spectrometer (Nicolet 6700, Thermo Fisher
Scientific Inc., Waltham, MA, USA) in the frequency range of 4000–500 cm−1. The scanning
electron microscope (SEM, Hitachi S4800, Hitachi High-Tech Corporation, Tokyo, Japan)
was used to identify the surface and cross-sectional morphologies, and surface elemental
composition analysis was conducted by energy-dispersive X-ray spectroscopy (EDS). The
samples were frozen in liquid nitrogen, snapped immediately, and then used for SEM
analysis. A D/max 2200PC X-ray diffractometer (Rigaku Corporation, Japan) with Cu Ka
radiation (λ = 0.154 nm) was used to collect the X-ray diffraction (XRD) patterns. X-ray
photoelectron spectroscopy (XPS) test was carried out with an ESCALAB 250Xi (Thermo
Fisher Scientific, Waltham, MA, USA) using Al Kα radiation. Thermal gravimetric analysis
(TGA) was performed by a STA 449 F3 (NETZSCH-Gerätebau GmbH, Selb, Germany)
equipment under a nitrogen atmosphere at a heating rate of 10 ◦C·min−1. The tensile
stress–strain curves were carried out at ambient temperature using a UTM2203 universal
testing machine (Shenzhen SUNS Technology Stock Co. Ltd., Shenzhen, China). Rectangu-
lar strips with 5 mm × 50 mm dimensions were used in tensile tests. The water contact
angles of samples were performed by a Data Physics Instrument (drop shape analysis
system DSA-100/10, KRÜSS) in dynamic mode. Water, ethanol, acetone, toluene, DMAC,
N-propanol and methanol were used to test the solvent resistance of bioplastic films. Pieces
of photothermal bioplastic films with the size of 6 mm × 50 mm were immersed in solvent
for 90 days, and they were photographed to show their solvent resistance performance.
Simultaneously, CBP and PCBP-2, equipped as filters, were combined with glass filtration
sets. Grease solution (mixture of castor oil, toluene, and n-heptane), colored ethanol and
water were used to interact with CBP and PCBP for 30 days. Digital photographs were
collected to evaluate liquid-barrier performance.

3.6. Light Drive Stirling Engine Motion Test

The tests of light drive Stirling engine motion were carried out under xenon lamp
irradiation. The xenon lamp light was employed to simulate sunlight. For the light drive
Stirling engine motion test, the iron support with the supporting iron ring was placed
directly above the xenon lamp holder, then a piece of transparent polymethyl methacrylate
(PMMA) was placed on the iron ring, and the photothermal bioplastics (PCBP-1 and
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PCBP-2) with a size of 6 cm × 6 cm were placed on the PMMA board. Finally, the Stirling
engine was pressed onto the bioplastic film to make it in full contact with the PCBP. When
solar light penetrated the high transparent PMMA plate, the temperature difference was
generated between the top and bottom of the Stirling engine, rotation of the Stirling engine
was observed. The rotational speed of the Stirling engine was measured by a non-contact
speed meter (AR926, Wan Chuang Electronics Mfg. Co., Ltd., Dongguan, China). For
comparison purposes, a pure CBP was used to drive the Stirling engine motion.

4. Conclusions

In this work, with the premise of using green processes in mind, PCBP with excellent
photothermal conversion performance was prepared by a novel and sustainable processing
method, i.e., cellulose liquefaction, rapid gelation, in situ synthesis and hot-press drying.
The obtained PCBP-2 can effectively absorb sunlight and the surface can be heated up to
70.3 ◦C under one solar illumination (100 mW cm−2) during 6 min. The cyclic photothermal
conversion experiment suggested the good photothermal stability of the PCBPs. As a
demonstration of the practicality of PCBP, it was successfully used to drive a Stirling engine
motion. The PCBPs possessed a strong resistance to penetration by aqueous/nonaqueous
liquids. The water-contact angle of PCBP-2 was up to 73.3◦. As-prepared PCBPs exhibited a
high mechanical strength and thermal stability. Our work provides a new method to utilize
cellulose and PB in the fabrication of photothermal bioplastic materials that can convert
sunlight into mechanical motion. Since Stirling engines had great potential in the energy
area and PCBP could be fabricated by a simple, green and low-cost method, this work is
expected to provide an efficient pathway to sustainable and clean energy. This simple and
green strategy would direct sustainable cellulose-based photothermal bioplastic toward
diversified applications: photothermal layer for thermoelectric generator, agricultural films
for soil mulching and photothermal antibacterial activity, among others.

Supplementary Materials: The following are available online: Figure S1: UV–vis spectroscopy of the
CBP, Figure S2: SEM images of PB, Figure S3: the crystal structure of PB, Figure S4: cross-sectional
SEM images of CBP, Figure S5: tailoring process of CBP and PCBP-2, Figure S6: absorption spectra of
the pristine CBP and PCBP-2 in the wavelength range of 200–2400 nm, Figure S7: digital photographs
showing mechanical robustness of CBP and PCBP-2 in supporting a metal flattener (10 kg), Video S1:
CBP easily supporting a metallic flattener (10 kg), Video S2: PCBP-2 easily supporting a metallic
flattener (10 kg), Video S3: CBP for light-driven Stirling engine movement, Video S4: PCBP-1 for
light-driven Stirling engine movement, Video S5: PCBP-2 for light-driven Stirling engine movement.
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