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Maternal prenatal depression is associated with
decreased placental expression of the imprinted
gene PEG3
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Background. Maternal prenatal stress during pregnancy is associated with fetal growth restriction and adverse neuro-
developmental outcomes, which may be mediated by impaired placental function. Imprinted genes control fetal growth,
placental development, adult behaviour (including maternal behaviour) and placental lactogen production. This study
examined whether maternal prenatal depression was associated with aberrant placental expression of the imprinted
genes paternally expressed gene 3 (PEG3), paternally expressed gene 10 (PEG10), pleckstrin homology-like domain fam-
ily a member 2 (PHLDA2) and cyclin-dependent kinase inhibitor 1C (CDKN1C), and resulting impaired placental human
placental lactogen (hPL) expression.

Method. A diagnosis of depression during pregnancy was recorded from Manchester cohort participants’ medical notes
(n1=75). Queen Charlotte’s (n=40) and My Baby and Me study (MBAM) (n=81) cohort participants completed the
Edinburgh Postnatal Depression Scale self-rating psychometric questionnaire. Villous trophoblast tissue samples were
analysed for gene expression.

Results. In a pilot study, diagnosed depression during pregnancy was associated with a significant reduction in placen-
tal PEG3 expression (41%, p=0.02). In two further independent cohorts, the Queen Charlotte’s and MBAM cohorts, pla-
cental PEG3 expression was also inversely associated with maternal depression scores, an association that was significant
in male but not female placentas. Finally, hPL expression was significantly decreased in women with clinically diagnosed
depression (44%, p <0.05) and in those with high depression scores (31% and 21%, respectively).

Conclusions. This study provides the first evidence that maternal prenatal depression is associated with changes in the
placental expression of PEG3, co-incident with decreased expression of hPL. This aberrant placental gene expression
could provide a possible mechanistic explanation for the co-occurrence of maternal depression, fetal growth restriction,
impaired maternal behaviour and poorer offspring outcomes.
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Introduction

Maternal psychological stress (or prenatal stress) dur-
ing pregnancy, such as symptoms of anxiety and/or
depression, has been associated with fetal program-
ming of adverse long-term consequences for the child
including an increased risk of fetal growth restriction
(for example, Steer et al. 1992; Rondo et al. 2003;
Khashan et al. 2008; Liu ef al. 2012), emotional and be-
havioural problems, learning difficulties, cognitive
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impairment and psychopathology (for reviews, see
Van den Bergh et al. 2005; Talge et al. 2007). In addition,
there is evidence that prenatal depression can impair
the normal development of postnatal maternal behav-
iour and mother-infant interactions (Pearson et al.
2012).

Located at the boundary between the maternal and
fetal environments, the placenta supports fetal growth
and development through numerous functions includ-
ing transport of nutrients and oxygen and the produc-
tion and metabolism of hormones (Gude et al. 2004).
The placenta has been proposed as a potential mechan-
ism mediating the association between maternal pre-
natal stress and adverse infant outcomes (O’Donnell
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et al. 2009; Janssen et al. 2016). Consistent with this hy-
pothesis, prenatal stress has previously been associated
with altered placental function in both animal models
(Mairesse et al. 2007; Jensen Pena et al. 2012) and in
humans (O'Donnell et al. 2012; Blakeley et al. 2013;
Reynolds et al. 2015).

Imprinted genes, which are monoallelically expressed
with expression depending on the parent of origin
(Surani, 1998), are regulated by epigenetic marks that
may respond to in utero environmental stimuli. These
genes have been suggested as potential mediators of ad-
verse infant outcomes because of their well-established
roles in controlling fetal growth, placental development,
adult behaviour and metabolism (Lefebvre et al. 1998; Li
et al. 1999; Curley et al. 2005; Smith et al. 2006; Tunster
et al. 2013; Jensen et al. 2014; McNamara & Isles, 2014).
Aberrant expression of imprinted genes in the placenta
has also been demonstrated to be associated with
impaired infant neurobehavioural development in
humans (Green et al. 2015). Recent studies demonstrate
that a subset of imprinted genes converge on the endo-
crine lineages of the mouse placenta to regulate placen-
tal hormone production (John, 2013). This may be of
particular relevance to maternal prenatal stress as the
placenta is a significant source of hormones, such as
placental lactogens (Glynn & Sandman, 2011). These
lactogenic hormones act on the maternal brain, prim-
ing the mother for pregnancy and postnatal care
(Bridges et al. 1985, 1990, 1997; Bridges & Freemark,
1995; Glynn & Sandman, 2011). In addition, impaired
placental lactogen production has been associated
with adverse infant outcomes such as fetal growth
restriction (Roh et al. 2005; Dutton et al. 2012).
Thus, it is possible that aberrant placental imprinted
gene expression and resulting impaired placental lacto-
gen production mediate the association between ma-
ternal prenatal stress and adverse infant outcomes. In
support of such a hypothesis, epigenetic changes in
cord blood DNA at imprinted loci have been asso-
ciated with both depressed maternal mood (Liu et al.
2012) and maternal stress (Vidal et al. 2014). The
expression of imprinted genes in the placenta has not
previously been examined in relation to maternal
prenatal stress.

In this study we examined the expression levels of
the paternally expressed gene 3 (PEG3), paternally
expressed gene 10 (PEG10), pleckstrin homology-like
domain family a member 2 (PHLDA2) and cyclin-
dependent kinase inhibitor 1C (CDKN1C). These four
imprinted genes were chosen based on the conserved
imprinting status between mouse and human and
their predicted role in regulating the production of pla-
cental hormones, including the placental lactogens,
known to induce physiological changes in pregnant
women (John, 2013). Expression of these genes was

first analysed in a pilot cohort of women (the
Manchester cohort) with clinically diagnosed depres-
sion during pregnancy, with results suggesting a sign-
ificant alteration in placental PEG3. Based on these
results, we further analysed placental PEG3 expression
in two additional independent cohorts of mothers
reporting prenatal symptoms of depression. Finally,
given the proposed link between PEG3 expression
and placental hormones, we quantified expression of
human placental lactogen (hPL, also known as chorion-
ic somatomammotropins; CSH) in all three cohorts.

Method
Manchester cohort

Placental gene expression was first analysed in a pilot
cohort. Women (n=75) presenting with maternal per-
ception of reduced fetal movements (RFM) at St
Mary’s Hospital (Manchester, UK) were approached
to participate in the study as previously described
(Dutton et al. 2012, Warrander et al. 2012). Written
informed consent was obtained and the study
approved by Oldham and Greater Manchester North
Research Ethics Committees (REC no. 08/1011/83 and
11/NW/0664). A diagnosis of depression during preg-
nancy, including any treatment prescribed, was
recorded from the participant’s medical notes.

Queen Charlotte’s and My Baby and Me study
(MBAM) cohorts

For both cohorts, women awaiting an elective
Caesarean section (with no known complications of
pregnancy) were recruited from Queen Charlotte’s ma-
ternity hospital, London. Participants in the Queen
Charlotte’s cohort (1=40) were recruited between
2010 and 2011, while an independent cohort of
women participating in the MBAM (n=81) were
recruited in 2014. Written informed consent was
obtained. The Queen Charlotte’s study was approved
by the Ethics Committee of Hammersmith and
Queen Charlotte’s Hospital, London (REC no. 08/
HO0708/126) and MBAM was approved by the
Research Ethics Committee of London (Chelsea)
(REC no. 13/L0O/1436).

At the time of recruitment, maternal prenatal depres-
sive symptoms were measured using the Edinburgh
Postnatal Depression Scale (EPDS). This questionnaire
has been validated for use during pregnancy (Cox
et al. 1996), with total EPDS scores ranging from 0
(low depression) to 30 (high depression). An EPDS
score >13 is used to identify women at risk of a de-
pressive disorder (Cox et al. 1987).
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Placental dissection

All placentas were collected immediately after delivery
and sampled within 1h (O’'Donnell et al. 2012;
Warrander et al. 2012). Villous trophoblast tissue sam-
ples were taken from the maternal surface of the pla-
centa, midway between the cord and distal edge.
Sampling methods were comparable across all three in-
dependent cohorts. Tissue samples were washed in
phosphate-buffered saline to remove maternal blood
and stored in RNAlater (Sigma-Aldrich, UK) prior to
storage at —80°C.

Gene expression analysis

Total RNA was extracted from the placental tissue
samples from the Manchester and MBAM cohorts
using the GenElute Mammalian Total RNA Miniprep
Kit (Sigma-Aldrich, UK). RNA quantity and quality
(based on the 260:280 absorbance ratio) were assessed
using a NanoDrop ND-1000 spectrophotometer. From
the Queen Charlotte’s cohort, RNA was extracted from
placental tissue samples using RNeasy Mini Kits
(Qiagen, UK). In addition, for this cohort RNA integ-
rity was examined using a Bioanalyzer 2100 (Agilent,
UK), according to the protocol for a RNA 6000 Nano
Assay; samples with a RNA integrity number (RIN)
value of >5 were considered of sufficient quality for
reverse transcription and quantitative polymerase
chain reaction (qQPCR).

For the Manchester cohort, 5 ug of RNA were re-
verse transcribed using M-MuLV reverse transcriptase
(Promega, UK) with random hexamers, according to
the manufacturer’s instructions. For both the Queen
Charlotte’s and MBAM cohorts, 2 ug of RNA were re-
verse transcribed using the Superscript II first strand
complementary DNA (cDNA) synthesis system
(Invitrogen, UK), according to the manufacturer’s
instructions.

Quantitative RT-PCR was performed using a
Chromo 4 Four Colour Real Time Detector (M]
Research) in a 20 ul reaction containing 5 ul of cDNA
(diluted 1 in 50), 1X Buffer 2 mm MgCl,, 2 mm deoxy-
nucleotides (dNTPs), 0.65 units Taq [Fermentas
(Thermo), UK], 1 um of each primer (Sigma-Aldrich,
UK) and 0.12X Sybr Green (Invitrogen, UK). All samples
were run in triplicate and duplicate plates were per-
formed for MBAM. Conditions for amplification were:
(1) 15min at 94°C; (2) 30s at 94°C; (3) 30s at 60°C;
(4) 30 s at 72°C; and (5) 30 s 75°C, with steps 2-5 repeated
for a total of 40 cycles. Melt Curve was performed from 70
to 94°C, reading every 0.5°C and holding for 2 s.

Primer sequences were as follows: YWHAZ forward:
TTCTTGATCCCCAATGCTTC and reverse: AGTTAA
GGGCCAGACCCAGT; PEG3 forward: CTCACAACA
CAATCCAGGAC and reverse: TAGACCTCGACTGGT

GCTTG (Feng et al. 2008); PEGI0O forward:
AAATTGCCTGACATGAAGAGGAGTCTA and re-
verse: AAGCCTAGTCACCACTTCAAAACACACTAAA
(Diplas et al. 2009); PHLDA? forward: GAGCGCAC
GGGCAAGTA and reverse: CAGCGGAAGTC
GATCTCCTT (Apostolidou et al. 2007); CDKNIC for-
ward: CCCATCTAGCTTGCAGTCTCTT and reverse:
CAGACGGCTCAGGAACCATT (Diplas et al. 2009);
hPL forward: CATGACTCCCAGACCTCCTTC and re-
verse: TGCGGAGCAGCTCTAGATTG (Dutton et al.
2012). hPL primers were designed to analyse the expres-
sion of CSH1/hPL-A and CSH2/hPL-B, from which the
majority of circulating placental lactogens is derived
(Newbern & Freemark, 2011). Primer specificity was
assessed based on gel electrophoresis product band size
and qPCR melt curves.

Gene expression data are presented as the ACT (tar-
get gene expression relative to the housekeeping gene
YWHAZ) and as the fold change in expression, calcu-
lated using the 272" (Livak & Schmittgen, 2001)
where the AACT is the target gene expression relative
to expression in the control group. The housekeeping
gene YWHAZ has previously been demonstrated to
be stably expressed in the human placenta (Meller
et al. 2005; Murthi et al. 2008; Cleal et al. 2009, 2010).
Furthermore, we found no significant difference in
YWHAZ expression between control and depressed
participants in the Manchester cohort (p=0.76) in an
initial pilot study.

Data analysis

Placental gene expression and maternal EPDS data
were normally distributed and parametric statistical
tests were used to analyse the data. Placental gene ex-
pression data were not significantly associated with
any maternal demographics listed in Table 1. The effect
of potential confounders (infant birth weight, sex and
gestational age) was examined using multiple linear re-
gression analysis. To ease interpretation, ACT values
representing gene expression values have been inverted
[x(—1)] such that lower values represent decreasing gene
expression. Mediation analysis was carried out in IBM
SPSS Statistics Version 20 and PROCESS for SPSS ver-
sion 2.15 (Hayes, 2013). Bootstrap confidence intervals
(ClIs) were used to assess statistical significance of the
indirect effect (Hayes, 2013).

Results
Manchester cohort

In an initial pilot study, expression of the imprinted
genes PEG3, PEG10, PHLDA2 and CDKN1C was ana-
lysed in a cohort of placentas (1 =75), which included
a subset of women (n=7) who had diagnosed
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Table 1. Participant characteristics of the Manchester, Queen Charlotte’s and MBAM cohorts

Manchester cohort Queen Charlotte’s cohort MBAM cohort
Birth outcomes
Fetal sex, n %
Male 37 (49) 22 (55) 44 (54)
Female 38 (51) 18 (45) 37 (46)

Mean gestational age, weeks (s.0.)/range
Mean birth weight, g (s.p.)/range
Mean placental weight, g (s.0.)/range
Mean Apgar score: 1 min (s.0.)/range
Mean Apgar score: 5 min (s.0.)/range
Mode of delivery, n (%)
Elective Caesarean section
Emergency Caesarean section
Vaginal
Instrumental
Maternal characteristics
Ethnicity, n (%)
Caucasian
African/Afro-Caribbean
Indian/Pakistani/Bangladeshi
Middle Eastern
Far Eastern
Other
Do not wish to say
Maternal education, 1 (%)
Left before GCSE/O level
GCSE/O level
A levels
Vocational training
University degree
Higher degree
Do not wish to say
Household income, 1 (%)
<£18 000 per year
£18-25 000 per year
£25-43 000 per year
>£43 000 per year
Do not wish to say
Mean age, years (s.D.)/range
Mean maternal BMI, l<g/rn2 (s.0.)/range
Mean parity (s.D.)/range
Smoking during pregnancy, 1 (%)
Yes
No
Alcohol consumption, 7 (%)
None
1-5 units/week
Mean maternal EPDS score, total (s.0.)/range
Clinical depression during pregnancy, n (%)*
No
Yes

40 (1.18)/36—42
3382 (461)/2350-4680
604 (131)/354-854
9 (0.97)/6-10
10 (0.12)/9-10

6 (8)

9 (12)
39 (52)
21 (28)

50 (67)
709)
13 (17)
20
0(0)
34)
0(0)

Not recorded
Not recorded
Not recorded
Not recorded
Not recorded
Not recorded
Not recorded

Not recorded
Not recorded
Not recorded
Not recorded
Not recorded
29 (5.50)/17—42
25 (4.16)/19-38
1 (1.13)/0-5

11 (15)
64 (85)

74 (99)
1(1)
Not assessed

68 (91)
709)

39 (0.55)/38-41
3451 (421)/2640-4700
619 (134)/387-932
9 (0.48)/8-10
10 (0.34)/9-10

40 (100)
0 (0)
0 (0)
0(0)

29 (72.5)
2 (5)
1(2.5)
1(2.5)
2 (2.5)
2 (5)
3(7.5)

1(2.5)
3(7.5)
6 (15)
5 (12.5)

16 (40)
9 (22.5)
0 (0)

3(7.5)
3(7.5)
8 (20)
18 (45)
8 (20)
35 (4.48)/26-42
24.26 (4.08)/19-38
1 (1.45)/0-9

3(7.5)
37 (92.5)

32 (80)
8 (20)
8.9 (5.46)/0-25

40 (100)
0(0)

39 (0.78)/37-41
3384 (415)/2212-4392
564 (111)/299-873
9 (0.68)/5-10
10 (0.34)/9-10

81 (100)
0 (0)
0 (0)
0(0)

47 (58)
6 (7)
8 (10)
4(5)
34

10 (12)
34

0(0)
6(7)
6(7)
45
42 (52)
19 (24)
45

9 (11)
34)
8 (10)
37 (46)
24 (29)
34 (3.86)/26—41
Not recorded
2 (1.80)/0-10

2(2)
79 (98)

76 (94)
5(6)
7.3 (4.66)/0-18

Not recorded
Not recorded

MBAM, My Baby and Me study; s.D., standard deviation; GCSE, General Certificate of Secondary Education; O level,
Ordinary level; A level, Advanced level; BMI, body mass index; EPDS, Edinburgh Postnatal Depression Scale.
® A diagnosis of clinical depression was recorded from participants’ medical notes.
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Fig. 1. Manchester cohort — maternal diagnosed depression and placental gene expression. (2) There was a significant
decrease in paternally expressed gene 3 (PEG3) expression in women with diagnosed depression during pregnancy. Placental
paternally expressed gene 10 (PEG10), pleckstrin homology-like domain family a member 2 (PHLDA2) and cyclin-dependent
kinase inhibitor 1C (CDKN1C) expression was not significantly altered. (v) Human placental lactogen (hPL) expression was
also significantly reduced in depressed participants. Values are means of fold gene expression, with standard errors

represented by vertical bars. * p <0.05.

depression during pregnancy. Characteristics of the
study participants in the Manchester cohort are
shown in Table 1. Participants with diagnosed depres-
sion did not differ significantly in terms of maternal
demographics from control participants (results not
shown).

There was no significant alteration in the expression
of PEG10, PHLDA2 or CDKNIC in association with
maternal depression (Fig. 1a4). However, placental
PEG3 expression was significantly decreased (by
41%) in placentas from depressed participants com-
pared with controls (Fig. 1a). The association between
placental PEG3 expression and maternal diagnosed

depression remained significant after controlling for in-
fant birth weight, offspring sex and gestational age
(Fa73=3.43, p=0.01, R%= 0.16), with only maternal
depression diagnosis significantly predicting placental
PEG3 expression (p=0.003). Three participants
reported prescribed anti-depressant use during preg-
nancy; the observed decrease in placental PEG3 expres-
sion remained significant with the exclusion of these
participants (p=0.02, n=75).

Given the proposed regulation of placental lactogens
by PEG3, expression of hPL was also analysed in this
cohort. Placental PEG3 and hPL expression were sign-
ificantly positively correlated (r=0.26, p=0.03, n="75).
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There was a significant 44% decrease in placental #PL
expression in depressed participants compared with
controls (Fig. 1b).

Queen Charlotte’s cohort

Results from the pilot study indicated a significant de-
crease in placental PEG3 and hPL expression in a small
number of women with clinically diagnosed depres-
sion during pregnancy. To determine whether more
general symptoms of prenatal depression were similar-
ly associated with aberrant placental gene expression
of these two genes, we made use of a second independ-
ent cohort (the Queen Charlotte’s cohort; n=40) with
information on maternal prenatal depression symp-
toms. The characteristics of the study participants in
the Queen Charlotte’s cohort are shown in Table 1.
Indication for elective Caesarean section (ELCS)
included previous section (1=26, 65%), breech presen-
tation (n=7, 18%), maternal request (n=2, 5%) and
other (e.g. previous tear, low-lying placenta, n=>5,
12%). No participant reported prescribed anti-
depressant use during pregnancy.

Despite promising pilot data, the modest correlation
between placental PEG3 expression and maternal pre-
natal EPDS scores (r=—0.23, p=0.16, n=40) failed to
reach statistical significance. Placental PEG3 expression
does not differ between male and female placentas
from normal, uncomplicated pregnancies (Janssen
et al. 2015) but male and female human fetuses are
known to respond differently to an adverse intra-
uterine environment (Clifton, 2010). Therefore, the as-
sociation between placental PEG3 expression and ma-
ternal depression was also analysed independently in
male and female pregnancies. When the PEG3 expres-
sion data were analysed according to fetal sex, this
revealed a significant negative association between
placental PEG3 expression and maternal EPDS scores
in males (p=0.048) but not females (p=0.74) (Fig. 2a
and b). A 13% decrease in PEG3 expression was
observed in placentas from participants with an EPDS
score >13, highlighting them as at risk of a depressive
disorder, although this difference did not reach statistic-
al significance (p=0.16) possibly due to the relatively
small number of women scoring above this cut-off (1=
9). However, when participants in the current study
were grouped into lowest (mean EPDS 2.7, n=15) and
highest (mean EPDS 14.5, n=15) EPDS scorers there
was a significant 15% decrease (p =0.03) in PEG3 expres-
sion in placentas from the highest EPDS scorers com-
pared with the lowest EPDS scorers (Fig. 2c).

Placental hPL expression was also negatively
correlated with maternal EPDS scores (r=-—0.27, p=
0.13, n=40) but without statistical significance in the
full cohort or when analysed independently in male

(r =—0.25, p=0.25, n=22) and female (r=-0.29, p=
0.26, n=17) placentas. However, as with PEG3, a signifi-
cant 31% decrease (p =0.03) in placental hPL expression
was observed in the highest EPDS scorers compared
with the lowest EPDS scorers (Fig. 2d). There was no
significant correlation between placental PEG3 and
hPL expression (r=—0.13, p=0.43, n =40).

MBAM cohort

We next sought to replicate these findings in the
MBAM cohort (n=81), a larger independent cohort
of samples with similar information on maternal pre-
natal depression symptoms. Characteristics of the
study participants in the MBAM cohort are shown in
Table 1. Indication for ELCS included previous
Caesarean section (1=43, 53%), breech presentation
(n=15, 19%), maternal request (n=11, 14%), placenta
previa (n=6, 7%) and obstetric history (1=6, 7%).

Placental PEG3 expression was significantly
inversely associated with maternal prenatal EPDS
scores (r=—0.32, p=0.003, n=81). As with the Queen
Charlotte’s cohort, when gene expression was analysed
according to fetal sex, there was a significant inverse
association between PEG3 expression and maternal
EPDS scores in male (r=-0.42, p=0.005, n=44) but
not female placentas (r=-022, p=0.19, n=37)
(Fig. 3a and b). Multiple linear regression analysis
showed that the association between placental PEG3
expression and maternal depression symptoms
remained significant after controlling for infant birth
weight, offspring sex and gestational age (Fy7¢=2.45,
p=0.05, R2=0.11), with only maternal prenatal EPDS
scores significantly predicting placental PEG3 expres-
sion (p=0.005). Only two participants reported pre-
scribed anti-depressant use during pregnancy; the
association between placental PEG3 expression and
maternal EPDS scores remained significant with
the exclusion of these participants (r=-0.30, p=
0.006, n=79). Finally, a significant 22% decrease in
PEG3 expression was observed in placentas from par-
ticipants with EPDS scores >13, highlighting them
as at risk of a depressive disorder (Fig. 3c).

Placental hPL expression was also significantly in-
versely associated with maternal prenatal EPDS scores
(r=-0.36, p=0.001, n=81) in the overall cohort. As
with PEG3, this association was sex specific, being
significant in male (r=—0.51, p<0.001, n=44) but not
female (r=-0.11, p=0.53, n=37) placentas. There
was also a significant 21% decrease in hPL expression
in placentas from participants with EPDS scores >13
(Fig. 3d). Finally, there was a positive correlation be-
tween placental PEG3 and hPL expression although
this was not statistically significant in the overall co-
hort (r=0.20, p=0.08, n=81), being significant in
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Fig. 2. Queen Charlotte’s cohort — maternal depression symptoms and placental gene expression. The association between
maternal depression and placental paternally expressed gene 3 (PEG3) expression appears to be sex specific with a significant
inverse association between Edinburgh Postnatal Depression Scale (EPDS) scores and PEG3 expression in male () but not
female (b) placentas. There was a significant decrease in PEG3 (c¢) and human placental lactogen (hPL) (d) expression between
15 participants with the lowest and highest EPDS scores. Values are means of fold gene expression, with standard errors

represented by vertical bars. * p<0.05.

male (r=0.39, p=0.01, n=44) but not female placentas
(r=—0.26, p=0.12, n=37).

Mediation analysis

Mediation analysis determines the effect of an inde-
pendent variable on a dependent variable via a third
mediating variable and is typically conducted in larger
cohort sizes of >100 participants (Fritz & Mackinnon,
2007). In this study mediation analysis was carried
out in the two largest cohorts (Manchester and
MBAM) with the hypothesis that the association be-
tween placental PEG3 and maternal EPDS scores is
mediated by placental hPL expression. In the
Manchester cohort (1=75) the indirect effect of placen-
tal PEG3 expression on maternal EPDS scores
mediated by placental 1PL expression was not statistic-
ally significant in the overall cohort (B=0.29, 95%
CI —0.08 to 1.13) or when only male placentas were
analysed (B=0.91, 95% CI —0.64 to 5.20). Similarly,

in the MBAM cohort (n=81) the indirect effect of pla-
cental PEG3 expression was not statistically significant
in the overall cohort (B=—0.53, 95% CI —1.71 to 0.46)
or when only male placentas were analysed (B=1.35,
95% CI —0.26 to 3.64).

Maternal depression and birth weight

Maternal stress is known to be associated with an
increased risk of fetal growth restriction (Steer et al.
1992; Rondo et al. 2003; Khashan et al. 2008; Liu et al.
2012) and therefore we analysed birth weight in rela-
tion to maternal depression in the three cohorts. Birth
weight was not significantly altered in women with
diagnosed depression (3.30 kg v. 3.09 kg, p=0.41, n=
75) in the Manchester cohort. There was also no signifi-
cant association between maternal prenatal EPDS
scores and birth weight in the Queen Charlotte’s
(r=—0.17, p=0.28, n=40) or MBAM (r=0.12, p=0.28,
n==81) cohorts. Reduced expression of Peg3 in mice
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Fig. 3. My Baby and Me Study (MBAM) cohort — maternal depression symptoms and placental gene expression. The inverse
association between paternally expressed gene 3 (PEG3) expression and maternal depression was significant in male (a) but
not female (b) placentas. There was a significant decrease in PEG3 (c) and human placental lactogen (hPL) (d) expression in
participants with Edinburgh Postnatal Depression Scale (EPDS) scores >13 (cut-off for clinical depression). Values are means

of fold gene expression, with standard errors represented by vertical bars. * p <0.05.

has also been linked to fetal growth restriction (Li ef al.
1999). There was no significant association between pla-
cental PEG3 expression and birth weight in the
Manchester (r=0.05, p=0.70, n="75), Queen Charlotte’s
(r=0.09, p=0.58, n=40) or MBAM (r=—0.02, p=0.84,
n =81) cohorts. However, it should be noted that for
the Queen Charlotte’s and MBAM cohorts women
with complications of pregnancy (including fetal
growth restriction) were excluded and that previous
studies demonstrating an association between maternal
prenatal stress and fetal growth restriction examined
substantially larger cohorts (Talge et al. 2007).

Discussion

This study has identified a novel association between
maternal prenatal depression and decreased placen-
tal expression of the imprinted gene PEG3. In our
pilot study, placental expression of the imprinted
genes PEG3, PEG10, PHLDA2 and CDKNIC was
relation to

examined in clinically diagnosed

depression. Despite the small number of participants,
there was a clear significant reduction in placental
PEG3 expression but no alteration in expression
of the other three imprinted genes examined.
Importantly, placental PEG3 expression was also
significantly inversely associated with symptoms of
maternal prenatal depression in two further inde-
pendent cohorts, the Queen Charlotte’s and MBAM
cohorts. This is the first report linking abnormal ex-
pression of this imprinted gene in the placenta with
maternal depression during pregnancy, which may
inform our understanding of the mechanisms under-
lying the association between prenatal depression
and adverse offspring outcomes.

PEG3 exemplifies all the known functions of
imprinted genes; it acts to regulate fetal growth, pla-
cental development, behaviour and metabolism in
mice (Li et al. 1999; Curley et al. 2005; Champagne
et al. 2009; Chiavegatto ef al. 2012; Kim et al. 2013).
We did not observe reduced birth weight in this
study, probably as a result of the small study numbers
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and exclusion of growth-restricted infants. However, it
is possible that reduced expression of PEG3 in human
pregnancy could contribute to fetal growth restriction,
either directly or indirectly via a placental defect, and
therefore mediate the previously reported association
between maternal prenatal stress and impaired fetal
growth.

In this study we also demonstrated a significant in-
verse association between placental hPL expression
and maternal prenatal depression in all three cohorts.
hPL is a lactogenic hormone, produced in large quan-
tities by the placenta, and is important for maternal
glucose management during pregnancy and fetal
growth (Newbern & Freemark, 2011). Maternal
serum hPL levels and placental hPL expression have
previously been demonstrated to be significantly
reduced in pregnancies complicated by fetal growth re-
striction (Roh et al. 2005; Dutton et al. 2012). Placental
lactogens are closely related to pituitary prolactin
(Haig, 2008). This hormone family is known to be im-
portant for driving the maternal physiological adapta-
tions to pregnancy (John, 2013) but studies in rodents
suggest that these hormones may also be important
for psychological adaptation to pregnancy. Both pro-
lactin and placental lactogen can induce maternal be-
haviour in non-pregnant rodents (Bridges et al. 1985,
1990, 1997; Bridges & Freemark, 1995) and prolactin
plays an important role in pregnancy-related neuro-
genesis (Bridges & Grattan, 2003; Shingo ef al. 2003;
Walker et al. 2012). There has not yet been a compre-
hensive examination of serum hPL levels in relation
to maternal mood in humans. However, decreased ma-
ternal serum levels of prolactin have been reported in
human mothers with postnatal depression symptoms
(Abou-Saleh et al. 1998; Ingram et al. 2003; Groer &
Morgan, 2007) and increased levels in mothers with
low anxiety scores during pregnancy (Asher et al.
1995). Prolactin contributes to a suppression of
anxiety-related behaviours during pregnancy via bind-
ing to prolactin receptors, which are also known to
bind the placental lactogens (Torner ef al. 2001). As
with reduced expression of PEG3, reduced placental
lactogen production could contribute to a suboptimal
pregnancy.

PEG3 has been proposed to regulate the production
of placental hormones (John, 2013). We observed a
significant correlation between placental PEG3 and
hPL  expression in the two largest cohorts
(Manchester and MBAM). Mediation analysis was
carried out in these two cohorts with the hypothesis
that the association between placental PEG3 and ma-
ternal depression is mediated by placental hPL ex-
pression. The indirect effect of placental PEG3
expression on maternal depression mediated by pla-
cental hPL expression was not statistically significant

in either cohort. However, it should be noted that the
sample sizes used in this analysis (Manchester cohort
n=75 and MBAM n =81) are relatively low given that
mediation analysis is typically conducted in studies
of >100 participants (Fritz & Mackinnon, 2007).
While it is possible that the gene expression changes
observed are independently related to maternal pre-
natal depression, studies in the mouse placenta dem-
onstrate reduced expression of Peg3 drives reduced
expression of Prls (mouse placental lactogens)
(Broad & Keverne, 2011; Kim et al. 2013). Future stud-
ies employing mediation analysis will probably be
more informative in larger cohorts and will be crucial
in determining the relationship between PEG3 and
hPL in the human placenta.

The association between maternal prenatal depres-
sion symptoms and placental PEG3 and hPL expres-
sion showed a sex bias for both genes, in both
cohorts, with the effect more marked with male
fetuses. This result is of interest as previous studies
suggest sexual dimorphism in infant outcomes follow-
ing maternal prenatal stress (for a review, see Glover &
Hill, 2012). Boys, but not girls, are at an increased risk
of attention-deficit/hyperactivity disorder (Li et al.
2010), schizophrenia (van Os & Selten, 1998) and
impaired motor development (Gerardin et al. 2011).
There is also some preliminary evidence to suggest
that women who give birth to boys are more likely
to suffer from postpartum depression than those
having girls (de Tychey et al. 2008; Lagerberg &
Magnusson, 2012). It will therefore be important to es-
tablish whether there is an association between placen-
tal PEG3 and hPL expression, fetal sex, infant outcomes
and maternal postnatal depression.

This study was not designed to establish cause-or-
effect relationships. Prenatal depression, or other fac-
tors associated with prenatal depression, may drive
reduced expression of placental PEG3 and hPL in the
placenta (Fig. 4: model 1). Peg3 in the rodent placenta
is known to be responsive to environmental stimuli,
such as maternal diet (Broad & Keverne, 2011;
Radford et al. 2012). Alternatively, reduced PEG3
may contribute to or even initiate prenatal depression
(Fig. 4: model 2). Loss of function of Peg3 in mice
results in abnormal maternal behaviour (Li et al.
1999; Champagne et al. 2009; Chiavegatto et al. 2012).
However, in this scenario it is the dams that are mutant
for Peg3 and not the placenta. Rather, aberrant placen-
tal PEG3 expression may contribute to abnormal ma-
ternal mood in human pregnancies, via impaired
placental production of hPL (Janssen et al. 2016). It is
also possible that both models are correct. A subopti-
mal maternal environment, which may include mater-
nal prenatal stress, could misprogramme placental
expression of PEG3, which in turn may alter placental
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causing prenatal
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Fig. 4. Paternally expressed gene 3 (PEG3), human placental lactogen (hPL) signalling and maternal psychological adaptation
to pregnancy. Model 1: prenatal depression causes reduced PEG3 and reduced hPL expression. Model 2: reduced PEG3

initiates prenatal depression through regulation of placental lactogen production. Model 3: an adverse intra-uterine
environment causes reduced PEG3 expression limiting placental signalling and establishing a cycle of aberrant placental gene

expression, aberrant signalling and abnormal maternal mood.

signalling via hPL, thereby further contributing to the
depressed mood (Fig. 4: model 3).

There are limitations to this study, primarily in the
number of participants. However, this is countered
by the reproducibility of these findings in three inde-
pendent studies. Also, in the Queen Charlotte’s and
MBAM cohorts, maternal prenatal depression symp-
toms were assessed 1 day prior to elective Caesarean
section when mothers may be particularly anxious.
Ideally, future studies would involve assessment of
maternal mood at different time points throughout
pregnancy in a larger number of participants to pro-
vide a better indication of maternal prenatal stress
during pregnancy. Another study limitation is that
participants in the Manchester cohort suffered from
RFM before delivery and so are not representative
of uncomplicated pregnancies. However, both con-
trols and women with depression during pregnancy
experienced RFM and therefore this was not causative
of the differences in gene expression observed.
Finally, as depression diagnosis in the Manchester co-
hort was based solely on a diagnosis reported within
clinical records, we cannot exclude the presence of de-
pression symptoms in the control cases. Future stud-
ies with measures of depression for all participants
(as with the Queen Charlotte’s and MBAM cohorts)
as well as more detailed information on the nature

of depression and medication during pregnancy will
be important in confirming the association between
aberrant placental gene expression and diagnosed
depression.

Conclusions

In summary, this study is the first to report reduced ex-
pression of both PEG3 and hPL in the human placenta
in relation to adverse maternal mood. Substantial in-
direct data from rodent models suggest that this relation-
ship is pathologically relevant and may indeed be causal.
Animal studies will be important in further establishing
cause-and-effect relationships. Meanwhile, it will be im-
portant to validate our findings in a larger study cohort
and, importantly, to examine the outcomes of pregnan-
cies with reduced PEG3 expression, both for the child
and for the mother. Measuring maternal serum levels of
hPLwill be instrumental in determining whether reduced
placental hPL expression in the term placenta reflects
reduced hormone serum level during pregnancy. This
is of clinical relevance since it may be possible to use ma-
ternal serum hPL levels as a biomarker in combination
with self-report questionnaires to identify mothers at
high risk of maternal depression. Finally, our current
findings are of broader interest as reduced expression of
PEG3 could provide a mechanistic explanation for the
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co-occurrence of maternal depression, low birth weight
and poorer outcomes for the offspring, a finding that
will lead to a greater understanding of both the causes
and consequences of prenatal depression.
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