
fmicb-13-980396 August 18, 2022 Time: 16:55 # 1

TYPE Original Research
PUBLISHED 24 August 2022
DOI 10.3389/fmicb.2022.980396

OPEN ACCESS

EDITED BY

Yingqun Ma,
Xi’an Jiaotong University, China

REVIEWED BY

Xiaodong Xin,
Dongguan University of Technology,
China
Panyue Zhang,
Beijing Forestry University, China

*CORRESPONDENCE

Hongwu Wang
wanghongwu@tongji.edu.cn

SPECIALTY SECTION

This article was submitted to
Microbiotechnology,
a section of the journal
Frontiers in Microbiology

RECEIVED 28 June 2022
ACCEPTED 08 August 2022
PUBLISHED 24 August 2022

CITATION

Wang YQ, Wang HW, Jin H and
Chen HB (2022) Performance and
mechanisms of enhanced hydrolysis
acidification by adding different iron
scraps: Microbial characteristics
and fate of iron scraps.
Front. Microbiol. 13:980396.
doi: 10.3389/fmicb.2022.980396

COPYRIGHT

© 2022 Wang, Wang, Jin and Chen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Performance and mechanisms
of enhanced hydrolysis
acidification by adding different
iron scraps: Microbial
characteristics and fate of iron
scraps
Yanqiong Wang1, Hongwu Wang1,2*, Hui Jin1 and
Hongbin Chen1

1State Key Laboratory of Pollution Control and Resource Reuse, National Engineering Research
Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji
University, Shanghai, China, 2Shanghai Institute of Pollution Control and Ecological Security,
Shanghai, China

HA, as one of low-carbon pre-treatment technology could be enhanced

by packing of iron or iron oxide powder for enhancing the transformation

of large molecular weight to generate volatile fatty acids (VFAs) for fuel

production. However, the controversy of iron strengthening the HA and

inherent drawbacks of iron oxide, such as poor mass transfer, and difficult

recovery, limit this pretreatment technology. Clean and rusty iron scraps

were packed into an HA system to address these issues while focusing

on the system performance and the response of core bacterial and fungal

microbiomes to iron scrap exposure. Results showed that clean and rusty

iron scraps can significantly improve the HA performance while considering

hydrolysis efficiency (HE), acidification efficiency (AE) and VFAs production,

given that VFAs ratios (Cacetate: Cpropionate: Cbutyrate) were changed from the

14:5:1 to 14:2:1 and 29:4:1, respectively, and the obtained VFAs ratios in iron

scraps addition systems were more closely to the optimal VFAs ratio for lipids

production. Redundant and molecular ecological network analyses indicated

that iron scraps promote the system stability and acidogenesis capacity by

boosting the complexity of microbes’ networks and enriching core functional

microbes that show a positive response to HA performance, among which

the relative abundance of related bacterial genera was promoted by 19.71

and 17.25% for RRusty and RClean systems. Moreover, except for the differences

between the control and iron scraps addition systems, the findings confirmed

that the RRusty system is slightly different from the RClean one, which was

perhaps driven by the behavior of 6.20% of DIRB in RRusty system and only

1.16% of homoacetogens in RClean system when considering the microbial
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community and fate of iron scraps. Totally, the observed results highlight the

application potential of the iron scrap-coupled HA process for the generation

of VFAs and provide new insights into the response of different iron scraps in

microbes communities.

KEYWORDS

hydrolysis-acidification, iron scraps, VFAs production, microbial community
structure, redundancy analysis, molecular ecological network

Introduction

The hydrolysis–acidification (HA) process is a widely used
pre-treatment for wastewater containing compounds with large
molecular weight (Lu et al., 2016; Xie et al., 2018). HA
involves both hydrolysis and acidification procedures that
transform complex macromolecules to small molecules. The HA
process plays an important role in meeting the COD emission
requirement given that the improvement of biodegradability is
beneficial for the subsequent biological treatment system (Tian
et al., 2019). Furthermore, the HA process is suitable for the
concept of low carbon because it can generate VFAs. The VFAs
can be used as raw chemical materials for lipid production,
which can be derived into the promising fossil fuel alternative
named biodiesel (Fei et al., 2011; Tharak and Venkata Mohan,
2021). It has been reported that microbial lipids could derived by
heterotrophic microalgae such as Chlorella which could convert
the carbon source such as glucose to acetyl-CoA and finally
generate lipid (Fei et al., 2015). Compared with glucose, VFAs
with suitable ratio were more efficient and economical since
it could be generated from HA process of a variety of organic
wastes (Schneider et al., 2013).

However, low HA efficiency due to the inhibited microbial
activity limits the application of HA (Zhang et al., 2021).
The addition of exogenous substances (including Fe◦ and iron
oxides) can effectively improve the performance of the HA
process. Fe◦ is a reliable, inexpensive materials that can promote
the HA process by improving the activity of enzymes associated
with the process when added to an anaerobic system (Meng
et al., 2013; Hao et al., 2017). However, Zhao et al. (2018)
reported that biological hydrolysis and the acid-producing
process remain unaffected by the addition of Fe◦ to the waste-
activated sludge digestion system. Therefore, investigating
the effects on and mechanisms of Fe◦ addition in the HA
performance is crucial.

Iron oxides exert positive effects on the HA process.
A previous study demonstrated that Fe2O3 and Fe3O4 (Ye
et al., 2018; Zhao et al., 2018) could remarkably promotes
the HA process. The potential mechanisms are presented as
follows: iron oxides can enrich dissimilatory iron-reducing

bacteria (DIRB) to couple the oxidation of complex organics and
reduce insoluble iron oxides via the dissimilatory iron reduction
(Light et al., 2018). However, studies on the optimization
of the VFA ratio, which is important to fuel production,
are limited. Compared with iron oxides, rusty iron scraps
covering the iron oxide layer on the surface were selected
due to their low cost and excellent mass transfer. In addition,
iron shavings demonstrate advantages in recycling and reusing
because of the low utilization of iron oxides (Wang M. et al.,
2019). However, information on the coupling of rusty iron
shavings in the HA process for macromolecule bioremediation
is still limited.

Additionally, HA sludge is a highly complex ecosystem of
bacteria and fungi, which coexist within complicated networks
with a multitude of interactions. Succession, identification of
interaction between microorganisms, and keystone species of
microorganisms are important in obtaining new insights into
the HA process. However, bacterial, and fungal communities
under iron shaving simulation still remain unclear. Researchers
have recently applied redundancy analysis (RDA) to test the
correlation between environmental factors and microbes
statistically and provide evidence for the correlation between
microbial community succession and system performance
(Chen et al., 2021). Moreover, molecular ecological networks
(MENs) can describe potential interactions of complex
microbial communities and identify the keystone species in
various environments (Wang X. et al., 2019; Chen et al.,
2021).

Thus, artificial wastewater containing dextran (Mw = 200
kDa) was selected to simulate the wastewater containing
macromolecular organic matters, such as molasses
fermentation wastewater. Clean and rusty iron craps
were dosed into the HA process in this study to explore
the effects of iron craps on HA process for the pre-
treatment of wastewater containing macromolecular
organics from the aspects of HA performance. Sludge
characteristics and succession of bacterial and fungal
communities were explored from aspects of community
constructure, correlation between environmental factors
and microbes, interactions networks of different functional
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microorganisms, and fates of different iron scraps to explore the
effect mechanisms.

Materials and methods

Preparation of iron scraps

Two kinds of iron scraps were used in this study: clean
and rusty iron scraps. Iron scraps (38CrMoAl) with a spirally
curved shape and a length of about 30 cm were collected from
a mechanical factory. The iron scraps are cut into 3 cm-long
pieces to increase the specific surface area and improve mass
transfer rate. Li et al. (2019) soaked the collected iron scraps
in 1 mol/L NaOH solution for 24 h to remove oil stains,
washed them with deionized water to use, immersed them in
0.1 mol/L HCl solution for 0.5–1 h to remove the surface rusty
layer, and then washed them again with deionized water to use
immediately. Meanwhile, rusty iron scraps were placed in a
humid environment until the surface layer is covered in rust.

Seed sludge and artificial wastewater

The original sludge was obtained from Quyang Wastewater
Treatment Plant (Shanghai, China). Sludge (250 mL) with
4 g/L of MLSS was inoculated into three reactors after 2
weeks of acclimation. The main parameters of the artificial
wastewater used in the system were as follows: a mixture of
glucose and dextran corresponding to 1,000 mg/L of chemical
oxygen demand (COD) was used as the organic carbon source,
127 mg/L of NH4Cl and 29.2 mg/L of K2HPO4 were added to
obtain a COD/N/P ratio (mass ratio) of 150:5:1, and 500 mg/L
of NaHCO3 was used as the buffer to maintain a pH level
close to 8.0. The trace element composition is consistent with
Supplementary Table 1.

Setup and operation of reactors

Three polymethyl methacrylate cylindrical sequential batch
reactors (SBRs) with a working volume of nearly 500 mL
(ϕ100 mm× 150 mm) were used. Similar to the method of Zhao
et al. (2018), 10 g/L of clean iron scraps prepared in section
“Preparation of iron scraps” were placed at the bottom of the
reactor labeled RClean to avoid exposure of iron scraps to air and
prevent oxidation. Rusty iron scraps (10 g/L) were placed in the
middle of the reactor labeled RRusty to allow exposure of iron
scraps to air during water replacement and maintain the rusty
layer continuously.

All reactors were operated at room temperature in the
sequencing batch mode of a 12-h cycle consisting of filling

(0.1 h), stirring (10 h), settling (0.5 h), decanting (0.1 h), and
idling (1.3 h). Influent was added from the top of reactors,
while effluent was controlled using a valve at the side of the
reactor for analysis.

Analytical methods and data analysis

Analytical methods
Water quality parameters (COD and TP) and sludge

properties [mixed liquid (MLSSs) and mixed liquid
volatile (MLVSSs) suspended solids] were measured using
standard methods (APHA, 1998). The pH level was
monitored using a pH meter (PHSJ-3F). Tian et al. (2021)
determined the concentrations of Fe2+ using phenanthroline
spectrophotometry. Molecular weights and their distributions
were examined via gel chromatography (Aglient 1260). Volatile
fatty acids (VFAs) were assessed through gas chromatography
(GC, Aglient GC-6890N/FID). Dehydrogenase activity (DHA)
was explored using TTC spectrophotometry (TU-1810)
according to Wang et al. (2021).

EPS was extracted using the cation exchange resin, and the
content of polysaccharide (PS) and protein (PN) was tested
through Lowry and phenol–sulfuric acid methods. The 3D-
EEM spectra of EPS samples were measured with a HORIBA
fluorescence spectrometer.

The morphology and surface elements of iron scraps and
the sludge were examined using scanning electron microscopy
(SEM) and energy dispersive spectroscopy (EDS). The microbial
community was tested with the 16S rRNA gene high-
throughput sequencing Illumina MiSeq platform. RDA was
conducted via Caonon 4.5.

Data analysis
Hydrolysis efficiency (HE) can be expressed as follows:

HE(%) =

(1− Percentage of Mw > 100 kDa / (50%)) × 100% (1)

where 50% is the percentage of Mw > 100 kDa in the influent.
Acidification efficiency (AE) can be expressed as follows:

AE (%) = CODVFAs/CODInfluent × 100% (2)

where CODInfluent is the concentration of influent COD
(mg/L) and CODVFAs is the concentration of effluent VFAs
(mg/L COD). COD equivalents of each VFA are acetate, 1.07;
propionate, 1.51; and butyric acid, 1.82 (Wang Y. et al., 2022).

According to Chen et al. (2021), RDA was applied to reveal
the correlations between the environmental factors and bacterial
and fungal community by using CANOCO 4.5. Co-occurrence
networks were built using molecular ecological network analysis
(MENA) to understand the interaction among microorganisms.
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Results and discussion

Influence of different types of iron
scraps on hydrolysis–acidification
performance

Effects of different iron scrap addition on the
hydrolysis process

The hydrolysis process plays an important role in
decomposing complex macromolecular organic substrate
(e.g., PN and PSs) into soluble monomer or dimer (Shi et al.,
2022) and is regarded as a rate-limiting step in anaerobic
digestion due to the difficulty of the process (Liu et al., 2012).
The distribution of molecular weight in the influent and effluent
was analyzed in this study to evaluate the hydrolysis process
(Figure 1A). The percentage of MW > 100 kDa of the control
group was about 49.08%, which is significantly higher than
that of RRusty (23.39%) and RClean (29.06%) systems. Hence,
the HE of RRusty (53.22%) and RClean systems (41.88%) was
significantly higher than that of the control group (2.00%).
These results indicated that the iron scrap addition enhances
the hydrolysis of macromolecule organics by changing them
into small-molecule organics and rusty scraps are more effective
than clean iron scraps.

Effects of the addition of iron scrap on the
acidification process

Saccharides with small molecular weight were generated
and then converted into VFAs in the hydrolysis of PSs. VFAs
are a critical factor that were detected in systems (Figure 1B).
Average VFAs concentrations in control, RRusty, and RClean
system effluents during the operation period were 271.21,
308.87, and 307.70 mg/L, respectively. The dominant VFAs
were acetate, propionate, and butyrate in this work which is
consistent with the report of Liu et al. (2012). AE of the control
group was the lowest at 32.9%, followed by RClean (35.1%)
and RRusty (36.8%) systems. This finding indicated that iron
scraps are beneficial for the acidification process, especially
for rusty iron scraps. Notably, VFAs components were slightly
different in systems. Average ratios of propionate in VFAs of
control, RRusty, and RClean systems during the HA process were
24.21, 11.52, and 11.23%, respectively. The acetate ratio of these
three systems increased from 70.85 to 82.50% and 85.85%.
The VFAs ratio for control was approximately 14:5:1 while
RRusty, and RClean systems were 14:2:1 and 29:4:1, respectively,
which were closer to the optimal VFAs ratio (8:1:1) of lipid
generation (Fei et al., 2015) given that the increase in the
acetate ratio was beneficial to fuel production (Liu et al., 2016).
These results suggested that the addition of iron scraps can
enhance the acetate generation and optimize the VFAs ratio
for fuel production. Previous studies reported that iron oxides
can enhance the acetate production in the acidification process

by promoting the dissimilatory iron reduction (Zhao et al.,
2018; Xu et al., 2020). Hence, the enhancement of acetate
production in the RRusty system in this work was likely due
to the promotion of the dissimilatory iron reduction process
by rusty iron scraps. Zhao et al. (2018) demonstrated that the
acidification process in the RClean system remains unaffected by
Fe◦. By contrast, the acidification process was also promoted in
this work. Fe◦ dosing is beneficial for the generation of butyrate
and acetate because of the increasingly reductive environment
(Feng et al., 2014; Dai et al., 2022). However, the production
of butyrate did not improve in the RClean system in this
work. Thus, compared with the reductive environment, the
homoacetogenesis process might be the main reason. It was
suggested that corrosion of clean iron scraps provides hydrogen
(Eq. 3) to homoacetogens, which can use H2 to produce acetate
through the homoacetogenesis process during acidification
(Eq. 4) (Dong et al., 2022). Moreover, the consumption of H2

promoted the conversion of propionate to acetate by reducing
the H2 content (Meng et al., 2013). Therefore, the generation of
propionate reduced and the generation of acetate increased in
the system with clean iron scrap addition in this study.

2H2O+ Fe→H2 + Fe2+
+ 2OH− (3)

2CO2 + 4H2→CH3COOH + 2H2O (4)

Organic removal performance
COD removal efficiency is a main factor that can effectively

evaluate the biological treatment process (Wang et al., 2008).
The average COD removal efficiency was 32.62, 40.20, and
39.26% for the control, RRusty, and RClean systems, respectively.
Compared with that of the control group, the COD removal
efficiency of RRusty and RClean systems increased by 7.58 and
6.64%, respectively. This finding indicated that the addition
of iron scraps improves the removal of organic pollutants in
the HA system (Figure 1C). Wang et al. (2008), Chen et al.
(2012), and Wu et al. (2015) reported that the COD removal
efficiency of the HA process is approximately 10.9, 26.9, and
30% when treating petrochemical, jean-wash, and sweet potato
starch wastewaters, respectively. These results suggested that the
addition of iron scraps promotes the COD removal and rusty
iron scraps are beneficial for the HA performance.

Self-buffering capability of systems
Stable pH is an important factor in controlling the

production of VFAs during fermentation (Lee et al., 2014). The
stable neutral condition contributes to the high hydrolysis–
acidification efficiency during the anaerobic digestion process
of swine manure (Lin et al., 2013) and kitchen waste (Wang
et al., 2016). The influent pH stabilized between 7.5 and 8.5 but
the effluent pH of the three reactors differed throughout the
operation period (Figure 1D). The effluent pH in the control
group fluctuated between 4.81 and 6.46, with an average of 5.42,
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FIGURE 1

HA performance: (A) distribution of molecular weight; (B) VFAs concentration; and (C) COD removal, and (D) pH values in control, RRusty, and
RClean systems.

while that in the RRusty system varied between 6.12 and 6.90,
with an average of 6.51, and that in the RClean system changed
between 6.23 and 6.76, with an average of 6.53. This finding
indicated that systems with additional iron scraps exhibit better
pH self-buffering capability than systems without iron which
was similar to the conclusion reported by Zhang Y. et al. (2020).

Regarding as RRusty, Dong et al. (2016) and Zhang Y. et al.
(2020) reported that hematite and ferrihydrite reduction can
act as a pH buffer against acidification in RRusty systems due
to the VFA accumulation from the consumption of protons
(Eq. 5). Thus, the stability of pH and the enhanced self-
buffering capability in the RRusty system was due to the iron
oxides reduction.

8Fe(III)+ 24H+ + 8e−→8Fe2+
+ 24H2O (5)

In terms of RClean, iron scraps can be approximated as iron
carbon micro-electrolysis material due to the existence of carbon
in it. Fe◦ and carbon served as the sacrificial anode and cathode,
respectively, and many microcurrent batteries spontaneously

form with a series of chemical reactions (Eqs. 6, 7) (Chen
et al., 2011; Hwang et al., 2019; Li et al., 2021). Thus, the
balance between the continuous consumption of protons and
acidification maintained the stability of pH in the RClean system.

Anode : Fe− 2e− = Fe2+ (6)

Cathode : 2H+ + 2e−→H2 (7)

Strengthening effects of different iron
scraps on hydrolysis–acidification
sludge

Characterization of sludge surface
Sludge samples from control and iron scrap addition

groups were characterized via SEM-EDS to examine surface
changes and determine the elemental composition of sludge.
Supplementary Figure 1 shows the SEM images and EDS
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spectra of sludge samples from control, RRusty, and RClean
systems. A mixture of cells with bacilli and coccus-shaped
morphology clearly coexisted. Moreover, EPS were observed
and tiny particles deposited on the surface of cells, particularly
in SEM images of RRusty (Supplementary Figure 1C) and RRusty

(Supplementary Figure 1E) systems. Notably, EPS can serve
as a potential flocculating agent for heavy metal precipitation,
including Fe (Siddharth et al., 2021). The EDS analysis showed
that the spectra in Supplementary Figures 2D,F reveal peaks
for C, O, Fe, and P in sludge samples from RRusty and RClean
systems. C and O are major components of cells (Zacarías-
Estrada et al., 2020). Considering the peaks for Fe and P
elements, the TP removal efficiency, and the solution TFe
concentration (Supplementary Figure 2) were detected, the TP
was removed simultaneously in HA systems by the formation of
precipitates (P–Fe).

Extracellular polymeric substances
On the basis of section “Characterization of sludge surface,”

the measured EPS content in all bioreactors at the end
of experiments is listed in Supplementary Table 2. EPS
concentrations were 49.24 and 49.31 mg/gVSS in RRusty and
RClean systems, which was higher than those in the control
system by 6.3 and 6.5%, respectively. Erdim et al. (2019) and
Zhang D. et al. (2020) reported that microorganisms increase
the production of EPS in response to nanoscale zero-valent iron.
These results suggested that the addition of iron can increase the
production of EPS. Notably, EPS secreted by microorganisms
plays an important role in the structural stability of the sludge
(Liang et al., 2021) and the PN content in RRusy (17.39 mg/gVSS)
and RClean (17.38 mg/gVSS) systems were higher than that in
the control system14.09 mg/gVSS. A previous study showed
that the increase of PN content can enhance the flocculation
ability of EPS and subsequently improve the stability of the
system (Siddharth et al., 2021). Therefore, improved stability in
RRusty and RClean systems described in section “Organic removal
performance and Self-buffering capability of systems” may be
due to the increased production of EPS and PN.

Enzyme activity
Microorganism activity is a key factor during biological

treatments (Boyd and Shelton, 1984; Hongwei et al., 2002), and
dehydrogenase is necessary for microbe survival (Goel et al.,
1998; Zhang et al., 2018). Average DHAs of three systems within
60 days are illustrated in Figure 2. DHA values were 21.855,
32.885, and 30.218 mg TTC (L−1

·h−1). Hence, the respective
DHA values of RRusty and RClean systems were 50.47 and 38.26%
higher than those in the control group. Tian et al. (2021) and
Wang et al. (2021) demonstrated that iron foam and Fe/C can
facilitate dehydrogenase secretion and improve the microbial
activity, respectively. These results suggested that iron dosing
enhances DHA and thus improves the microorganism activity.
Notably, Fe2+ can penetrate cells and promote the synthesis

FIGURE 2

DHA in control, RRusty, and RClean systems.

of key enzymes (Zhu et al., 2014; Ou et al., 2016). Therefore,
the enhancement of DHA in this work was mainly due to the
released Fe2+.

Microbial community analysis

Bacterial community
Shannon index was calculated to reveal community

diversities, including evenness and richness. The sample from
HA systems with additional iron scraps presented higher
bacterial community diversity than that from the control system
(Figure 3A). The improvement of ecological stability from high
biodiversity (Chen et al., 2021) suggested that the addition of
iron scraps is beneficial for the HA system.

Microbial communities of acclimated sludge obtained from
control, RRusty, and RClean systems were analyzed on day 60.
The microbial community structure at the phylum level is
shown in Figure 3B. The main phyla in these sludge samples
Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria
accounted for 86.48% (control system), 93.62% (RRusty system),
and 93.07% (RClean system) of the microbial population. The
correlation between these phyla and the HA process (Xie et al.,
2018; Yang et al., 2019) indicated that the improvement of the
HA process from the addition of iron scraps is likely due to the
enrichment of phyla.

Further genus-level analysis revealed that DIRB in this
study covers different taxa of Firmicutes, Proteobacteria, and
Actinobacteria (Esther et al., 2015). Figure 3D illustrates that
the total abundance of DIRB in the control system is 0.1%
while the addition of iron scraps in the HA system increases
the abundance of DIRB to 6.20 and 0.75% in RRusty and
RClean systems, respectively. A previous study proved that
Geobacter and Shewanella are two typical DIRBs that can
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FIGURE 3

Bacterial communities. (A) Shannon curves; (B,C) microbial community structure at the phylum and genus levels; (D) relative abundance of
dissimilatory iron-reducing bacteria (left) and homoacetogens (right) in control, RRusty, and RClean systems; and (E,F) redundancy analysis
revealed the correlation between the microbial community and environmental factors for sludge samples.

oxidize complex organic matter and reduce insoluble iron oxides
to generate solution Fe2+ via extracellular electron transfer
(EET) (Esther et al., 2015). Huang et al. (2019) has proved the
capability of EET in Aeromonas, which is the dominant DIRB
in RRusty and RClean systems, with a relative abundance of 6.0
and 0.70%, respectively, thereby indicating that types of iron
scraps significantly influence the relative abundance of DIRB.
Zhao et al. (2018) reported that iron oxides can promote the
growth of DIRB during the anerobic digestion of waste active
sludge. Therefore, the continuously generated layer of rusty iron
composed of iron oxides can also play an important role in the
enrichment of DIRB in the RRusty system. In terms of RClean
system, Tian et al. (2021) showed that sludge can facilitate iron
oxidation to generate iron oxides, thereby indicating that trace
contents of iron oxides produced by microbial corrosion may
be the main reason for the DIRB abundance of 0.75% but is
negligible compared with the RRusty system.

The relative abundance of homoacetogens was also observed
in this work (Figure 3D). Treponema was the dominant
homoacetogen, with a relative abundance of 0.3, 0.3, and 1.16%
in control, RRusty, and RClean systems, respectively. Treponema
used CO2/H2 to produce acetate on the basis of reaction (6)
(Yang et al., 2021). Thus, high acetate production in the RClean
system may be due to the relative abundance of Treponema.

The correlation between microbial communities and the
system metabolite was analyzed through RDA. Five parameters

of the HA system, namely, pH, HE, AE, EPS, and DHA,
were subjected to RDA together with the top 10 genera of
bacteria. As shown in Figure 3E, Paludibacter, Aeromonas,
WCHB1-32, Bacteroides, Saccharimonadales, Acinetobacter, and
Treponema all showed a positive correlation with HE, AE, and
EPS production as well as DHA given that the sharp angle
between environmental factors and the above genus, which
accounts for 4.42, 24.13, and 21.66% of control, RRusty, and
RClean systems. Moreover, Bacteroides was closely related to HE
and AE because of its excellent hydrolysis and acidification
capacity (Zhou et al., 2016). The high relative abundance of
Bacteroides in RRusty and RClean systems indicated its benefits
for the HA process (Figure 3C). The composition of VFAs,
including acetate, propionate, and butyrate, in the HA system
were subjected to RDA together with the top 10 genera of
bacteria to obtain new insights into the correlation between
VFA generation and microbes. Figure 3F shows that the
positive response of Treponema to acetate generation is due
to the homoacetogenesis process. Paludibacter, which can also
produce acetate (El-Bery et al., 2013), presents a positive
correlation to acetate. The relative abundance of Paludibacter in
HA systems with iron scraps was higher than that in the control
system by 8.7 and 12.1%, providing strong evidence for the high
production of acetate in HA systems with additional iron scraps.
Propioniciclava showed a positive response to the propionate
because it can ferment carbohydrates to produce propionic acid
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FIGURE 4

Fungal communities. (A,B) Microbial community structure at the phylum and genus levels and (C,D) correlation between the microbial
community and environmental factors for sludge samples based on redundancy analysis.

(Sugawara et al., 2011), and the decrease of relative abundance
of that can explain the low yield of propionic acid in HA systems
with additional iron scraps.

Fungal community
Basidiomycota and Ascomycota were determined in sludge

samples from HA systems (Figure 4A), their total abundance
was over 90%, and the addition of iron scraps slightly
promoted their enrichment. Chen et al. (2021) reported that
the phyla Basidiomycota and Ascomycota play key roles in the
degradation of complex organic pollutants, such as polymeric
carbohydrate substance. The abundance of the top 10 fungal
genera is presented in Figure 4B. The main fungal genus
in HA systems was Apiotrichum, which is related to the
biotransformation of complex organic substances. Its related
abundance was also enriched by 15.0 and 30.0% with the
addition of rusty and clean iron scraps, respectively. Five
parameters of the HA system, including pH, HE, acidification
efficiency AE, EPS, DHA, and VFAs, were also subjected to

RDA together with the top 10 genera of fungus. Figures 4C,D
illustrate the positive response of Apiotrichum to metabolic and
environmental factors related to HA performance. Meanwhile,
the relative abundance in three systems can provide evidence
for the enhancement of the HA performance with the addition
of iron scraps. Cladosporium showed a strong response to the
HA physicochemical property and metabolite likely because
Cladosporium is an important portion of the overall fungal
community that degrades complex organic compounds during
sludge anerobic digestion (Sun et al., 2015). However, this
phenomenon was not discussed in detail given the similar
relative abundance values of the three systems.

Iron scrap addition altered microbial
co-occurrence networks

Iron scraps remarkably increased the network size in terms
of the total edges in networks of RRusty and RClean systems
with high amounts of edges (Figures 5D,H). The top five
nodes with high connectivity in each system were explored. The
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FIGURE 5

(A–D) Bacterial and (E–H) fungal ecological networks of sludge in (A,E) control, (B,F) RRusty, and (C,H) RClean systems. Each node represents an
OTU, and the size represents the number of lines. Different colors represent various species classifications (phylum level).

simplest network was the control network with 238 and 172
links to first neighbors (Figures 5A,E), followed by RClean (243
and 195 links) (Figures 5B,F) and RRusty (246 and 193 links)
(Figures 5C,G) systems, respectively. This finding indicated that
iron scraps increase the complexity of the microbial network.
Increasingly complex network structures of sludge samples can
be a potential factor for the enhanced HA performance among
the three systems because the biodiversity of interaction types
can effectively enhance the system stability by increasing the
resistance ability to environmental factors (Wang J. et al., 2022).
The top five highly linked nodes in each network were only
shared sometimes among the three networks, indicating that
iron scraps and its types affect the overall architecture of the
network. However, the top five highly linked nodes were all
classified as phyla Bacteroidetes, Proteobacteria, Basidiomycota,
and Ascomycota, thereby indicating the importance of these
phyla during the HA process.

The Z–P plot in Figures 6A,B shows the distinct topological
roles of different nodes in networks to obtain new insights into
the key genus of the three systems (Wang X. et al., 2019). The
majority of nodes in bacterial and fungal communities were
peripheral. The results showed that 23 bacterial and 9 fungal
nodes (except for unassigned OTUs) sink into “connectors”
and iron scraps and its types significantly affected the amount
of nodes. The details of these connectors are summarized
in Supplementary Table 3. Eight connectors detected in the
control network (control group) of the bacterial community
were OTUs 51,117, 28, 7, 78, 62, 394, and 4. OTUs 51 and 28

were related to WCHB1-32. The same number of connectors was
detected in the RRusty system (OTUs 32, 40, 37, 62, 66, 82, 67,
and 35). OTU 35 was related to Aeromonas, which is identified
as a DIRB. Few connectors were detected in the RClean system
(OTUs 4, 95, 26, 67, 69, and 13). OTU 4 belongs to the genus
Saccharimonadales. These genera showed a positive response
to HA performance, thereby demonstrating that these keystone
species play important roles in the HA process. Connectors 7,
2, and 0 for the fungal community were detected in the three
systems. Members from Ascomycota and Basidiomycota were
identified as keystone fungal taxa. The shared connector (OTU
1) was derived from Apiotrichum, which was approved to show
a relative response to HA performance, especially for acetate
generation. In conclusion, only a few connectors were shared
between the control group and HA systems with additional iron
scraps. This finding suggested that iron scraps significantly alter
key microbial populations and the network structure.

Fate of different iron scraps in the
hydrolysis–acidification process

The solution TFe (in the form of Fe2+ because of the
anaerobic environment) concentration in HA systems were
determined to investigate the fate and role of different iron
scraps in the HA process further (Supplementary Figure 2).
XRD analysis was applied to analyze chemical compositions
of the iron scrap surface (Figures 7A,B). The TFe content
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FIGURE 6

Node classification to identify putative keystone species within sludge system networks. (A) Bacterial and (B) fungi. [All nodes were divided into
four categories according to the among-module (Pi) and within-module (Zi) connectivity].

FIGURE 7

XRD images: iron scraps in (A) RClean and (B) RRusty systems before and after usage.

in the solution increased to 114.03 mg/L on the 25th day
and then decreased to a stable value of 77.64 mg/L in the
RClean system. TFe was released through micro-electrolysis, and
passivation of the iron scrap surface was responsible for the
decrease of released iron. This finding is consistent with the
XRD analysis results. Figure 7A presents the XRD results of
iron scraps in the RClean system. Fe was the main form on the
surface of clean iron scraps before usage, while FeOOH, Fe,
and C48H44Fe14N15O35S2H2O were dominant on the surface
of clean iron scraps after usage. Guo et al. (2020) and Tian
et al. (2021) reported the existence of FeOOH when iron foam
and Fe(II) coupled in the biological systems. These results
indicated that sludge can facilitate the oxidation of iron scraps.
Meanwhile, C48H44Fe14N15O35S2·H2O (PDF: 46–1543) was

identified and likely a mixture of PNs, DNA, and other biological
molecules on the surface of iron scraps.

The TFe content in the solution of the RRusty system
increased continuously likely due to the dissimilatory iron
reduction caused by DIRB rather than a pH of 5–8. The
XRD results in Figure 7B demonstrated that only diffraction
peaks of Fe2O3 are observed in rusty iron scraps before and
after usage. DIRB can successfully reduce insoluble Fe2O3

through the EET process accompanied by the consumption
of Fe2O3 and release of Fe2+ (Bose et al., 2009; Zhou et al.,
2017; Shi et al., 2019). Compared with Fe2O3 powder dosing,
rusty iron scraps installed in the middle of reactors in the
RRusty system can supplement the Fe2O3 layer in a timely
manner by exposing to air when the effluent is replaced to
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FIGURE 8

Mechanism of enhancing the HA process using different iron scraps.

avoid the consumption of Fe2O3. The existence of Fe2O3 on
the iron scrap surface after usage and the TFe concentration
can also verify the theory above. Moreover, rusty iron scraps
with relatively lower cost (∼$0.25/Kg) and larger volume were
more economical and easily recycled than Fe2O3 (Ou et al.,
2016). This finding demonstrated that rusty iron scraps can be
preferentially selected for large-scale application.

Mechanisms of enhancing the
hydrolysis–acidification process
using different iron scraps

The results of this study showed that the HA system is
enhanced when iron scraps are added given the higher HE,
AE, VFAs production and COD removal efficiency as well as
stable pH. HA enhancing mechanisms can be summarized as the
enhancement of the system stability and organic transformation
ability (Figure 8). Internal reasons for the system stability
enhancement were the improvement of EPS generation due
to the iron stimulation and the complexity of the microbial
network structure.

As for the organic transformation, On the one hand,
the generated Fe2+ can penetrate cells and promote the
synthesis of dehydrogenase which participated in the HA
process (Zhu et al., 2014). The mechanisms of Fe2+ release
was very different in the two iron scrap addition systems.
The microbial iron reduction process caused by the DIRB

abundance of 6.42% can contribute to reducing the surface-
layer Fe2O3, to generate of Fe2+ in the RRusty system.
Whereas iron–carbon micro-electrolysis likely contributed to
the generation of Fe2+ in the RClean system. On the other
hand, key functional microorganisms were enriched. The
relative abundance of bacterial and fungal microorganisms
with a positive response to the HA performance increased
significantly in HA systems with added iron scraps (sections
“Bacterial community and Fungal community”). The relative
abundance of the bacterial genus with a positive response
to the HA system was 4.42, 24.13, and 21.67%, and the
tendency of the fungal genus was the same as that of bacteria.
Notably, except for the difference between control and iron
scraps added HA systems, the reasons that RRusty was slightly
different from RClean system was also due to other special
enriched genera. The DIRB abundance of 6.42% and relative
abundance of 1.16% of homoacetogens were enriched in
RRusty and RClean systems, respectively. Aeromonas, a type
of DIRB that can participate in reducing the surface-layer
Fe2O3 and decomposing the macromolecule to small organics,
was also identified as a key stone species in section “Iron
scrap addition altered microbial co-occurrence networks.”
Although Treponema, a homoacetogen that can produce acetate
by utilizing H2 and CO2 showed a positive response to
the HA performance, it was not identified as a key stone
species and the relative abundance of it was too low. Thus,
RRusty was a more effective pretreatment system than RClean
given the macroscopic HA performance and the microscopic
microorganism community structure.
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Conclusion

This work demonstrated that the addition of both rusty
and clean iron scraps can enhance the HA performance when
considering HE, AE, VFAs ratio, and system stability. The
internal enhanced mechanisms can be summarized from the
aspects of sludge characteristics and microbial community.
Rusty and clean iron scraps enriched the microbial genera with
their positive response to HA performance, among which the
relative abundance of bacterial genera was promoted by 19.71
and 17.25%, respectively. The complexity of the interaction
network was increased to enhance the system stability because
the total edges of microbial networks were raised. As for the
difference between two iron scraps addition HA systems, others
functional microorganisms (DIRB and homoacetogens) were
also be regarded as main reasons. This study provided new and
important insights into the responses of microbial community
structures and their MENs to iron scraps in HA systems.
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