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ABSTRACT

DNA methylation has a growing potential for use as
a biomarker because of its involvement in disease.
DNA methylation data have also substantially grown
in volume during the past 5 years. To facilitate ac-
cess to these fragmented data, we proposed Dis-
easeMeth version 3.0 based on DiseaseMeth version
2.0, in which the number of diseases including in-
creased from 88 to 162 and High-throughput profiles
samples increased from 32 701 to 49 949. Experi-
mentally confirmed associations added 448 pairs ob-
tained by manual literature mining from 1472 papers
in PubMed. The search, analyze and tools sections
were updated to increase performance. In particular,
the FunctionSearch now provides for the functional
enrichment of genes from localized GO and KEGG
annotation. We have also developed a unified analy-
sis pipeline for identifying differentially DNA methy-
lated genes (DMGs) from the original data stored in
the database. 22 718 DMGs were found in 99 dis-
eases. These DMGs offer application in disease eval-
uation using two self-developed online tools, Methy-
lation Disease Correlation and Cancer Prognosis
& Co-Methylation. All query results can be down-
loaded and can also be displayed through a box plot,
heatmap or network module according to whichever
search section is used. DiseaseMeth version 3.0 is
freely available at http://diseasemeth.edbc.org/.

INTRODUCTION

As an important epigenetic modification, DNA methyla-
tion is closely related to disease (1). DNA methylation is im-
plicated in the repression of genes, and is associated with ac-
tively transcribed gene bodies (2). Global DNA hypomethy-

lation and local hypermethylation of CpG regions are com-
mon in the carcinogenic process (3). DNA methylation can
also be used to uncover cancer heterogeneity. In non-small
cell lung cancer (NSCLC) KLK10 was found to act as a
functional tumor suppressor gene, and epigenetic inactiva-
tion of KLK10 is a common event contributing to NSCLC
pathogenesis and, therefore, may be used as a potential
biomarker (4). In a study of nine esophageal squamous cell
carcinoma cell lines, it was found that the methylation level
of the CPNE5 promoter region significantly affected sur-
vival and recurrence (5). In 2019, Liang et al. found that in
five pairs of single-egg twins with discordant Autism Spec-
trum Disorder (ASD), SH2B1 had abnormal methylation,
which may related to the cause of ASD (6). These studies
demonstrate that DNA methylation markers have great ap-
plication prospects as methods for clinical diagnosis and
treatment in the future.

The integration and mining of DNA methylation data
generated by high-throughput microarray and sequenc-
ing technologies helps researchers discover new candi-
date disease biomarkers. Current measurement techniques
for detecting genomic DNA methylation include ap-
proaches to detect gene-specific and genome-wide methy-
lation levels. Gene-specific DNA methylation level quan-
titative approaches, such as methylation-specific PCR
(MSP) (7), bisulfite sequencing PCR(BSP) (8) and Methy-
Light (9) are widely used in low throughput research.
For example, PTEN promoter methylation has been
found to be significantly associated with age, clinical
stage and Her-2 negativity in breast cancer using MSP.
Genome-wide DNA methylation detection technologies are
varied, and include Illumina Infinium HumanMethyla-
tion27 BeadChip (10), Illumina Infinium HumanMethyla-
tion450 BeadChip (11), Illumina Infinium HumanMethy-
lation850 BeadChip (12), reduced representation bisulfite
sequencing(RRBS) (13), whole-genome bisulfite sequenc-
ing(WGBS) (14) and Methylated DNA Immunoprecipita-
tion sequencing(MeDIP-seq) (15). In 2020, the WGBS tech-
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nique was used in sperm from a Type 2 diabetes melli-
tus (T2DM) population to identify 10 differentially DNA
methylated genes, providing evidence for the first time to
explain the complex mechanism of T2DM susceptibility in
offspring (16).

In recent years, the increase in data has led to the prolif-
eration of a wide variety of methylation-related databases
including: MethBank3.0 (17), MethMotif (18), MethHC2.0
(19) and NGSMethDB (20). In 2018, MethBank3.0 was up-
dated on the basis of 2015 predecessor, integrating consen-
sus reference methylation and single-base resolution methy-
lation. It focuses on humans, other animals, and Plant de-
velopment, and is equipped with online tools to predict the
age of human methylation. In 2019, Benoukraf and col-
leagues published the MethMotif database (18), from ChIP-
seq (21) and WGBS datasets to calculate cell type-specific
CpG methylation information and the location of transcrip-
tion factor binding sites corresponding to mining Inher-
ent connection. NGSMethDB was updated in 2017 to in-
clude data on differentially methylated monocytosines and
homologous methylated genomic regions of different ani-
mals. The database MethHC 2.0 was published in 2021. It
focuses on the abnormal methylome of human diseases (es-
pecially cancer) and provides RNA expression profiles to
support survival analysis based on genes and miRNAs. Fur-
thermore, we developed DiseaseMeth (22) in 2012 and up-
dated it to version 2.0 in 2017 (23). These two databases are
the useful source for understanding the molecular mecha-
nisms of human diseases.

To provide users with a better information resource, Dis-
easeMeth was updated to version 3.0 in this study. It not
only focuses on DNA methylation data for all human dis-
eases up to January 2021 but also allows for the mining of
characteristics of diseases hidden in the data based on DNA
methylation profiles. The DiseaseMeth version 3.0 database
contains two types of data: experimental DNA methylation
genes with disease associations discovered by manually min-
ing PubMed, and a high-throughput dataset of 162 diseases
in the GEO (24) or TCGA (25) database. Furthermore, the
tools Methylation Disease Correlation and Cancer Prog-
nosis & Co-Methylation were developed in DiseaseMeth
version 3.0 to provide for personalized and comprehen-
sive analyses. In summary, DiseaseMeth version 3.0 intel-
ligently aggregates a large amount of fragmented disease
DNA methylation information in public databases and lit-
eratures. It also provides a comprehensive analysis database
to explore the key role of DNA methylation in human dis-
eases.

DiseaseMeth version 3.0 design

Here, we present DiseaseMeth version 3.0, a comprehen-
sive and curated database that integrates human DNA
methylation disease data and metadata from publicly avail-
able datasets. Our platform provides the DNA methyla-
tion profile of a disease and allows further mining and
analyses of that information (Figure 1). It covers a variety
of statistical results, including difference analysis, correla-
tion analysis, survival analysis, and network analysis. By
optimizing the storage and query methods of its MySQL
database, access to DNA methylation information for any

disease gene is accelerated. Moreover, a wider, user-friendly
interface has been developed to support the main func-
tions of DiseaseMeth version 3.0, including search, in-
teractive exploration, visualization, and download mecha-
nisms. The methylation levels of different genes between dis-
ease samples and normal samples in any diseases can also
be shown. Specifically for cancer, the methylation level of
patients at different stages, as well as patient prognosis
and co-methylation module data, can be revealed. Data
can be downloaded for free by anyone at the database
website.

Data expansion

DiseaseMeth version 3.0 contains DNA methylation infor-
mation updated from 1 October 2015 to 31 January 2021,
and is based on DiseaseMeth version 2.0. Data sources in-
clude public databases and literatures. 4708 samples in 247
related high-throughput datasets were collected from the
GEO and TCGA databases. Literature data were searched
manually in PubMed resulting in 2210 pairs of associa-
tions. In total, 162 disease types and 49 949 samples are
recorded in DiseaseMeth version 3.0. Moreover, associa-
tions between disease and gene have increased from 679 602
to 1 485 099. The genome-wide dataset contains seven dif-
ferent techniques of DNA methylation detection. The de-
tails are shown in Table 1.

Search section update

Four search approaches are provided in DiseaseMeth ver-
sion 3.0: GeneSearch, DiseaseSearch, FunctionSearch, and
AdvancedSearch. On the GeneSearch page, the gene sym-
bol (gene name/transcript ID) or genome location can be
input to obtain the methylation level of that particular gene
in the database’s disease samples. The output will be dis-
played as a table and a heatmap. The DNA methylation level
of the gene is represented by the heatmap, which can show
differences in DNA methylation levels of particular genes
in all included diseases. The disease type can be queried on
the DiseaseSearch page, and corresponding DNA methy-
lation levels of DMGs for the selected disease are repre-
sented in heatmap. Additionally, we developed a new Func-
tionSearch. Based on GO (26) and KEGG (27), the bio-
logical processes and pathways of DMGs are annotated.
Functional enrichment information for all DMGs is local-
ized in DiseaseMeth version 3.0. If any diseases of interest
are input, functional enrichment results are promptly dis-
played. Furthermore, additional query parameters includ-
ing gene symbol, GO term, and pathway ID, can be used as
more precise query requirements. The AdvanceSearch page
allows for even more specific queries. One or more qualified
entry, that is, gene name/transcript ID, genome location,
disease type, and technology, can be input to help users ob-
tain desired datasets rapidly.

Standard pipeline to determine and analyze differential DNA
methylation genes

For ease of use and to reveal more information, we have
built a unified process, standardized pipeline to analyze
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Figure 1. The overall framework of DiseaseMeth3.0 database.

Table 1. Samples from all DNA methylation sequence platforms in DiseaseMeth version 3.0

Sample

Techniques of DNA methylation detection Dataset Disease V 2.0 V 3.0 Total

Whole-Genome Bisulfite Sequencing 16 16 47 209 256
Reduced Representation Bisulfite Sequencing 17 16 35 462 497
Methylated DNA Immunoprecipitation Sequencing 5 5 296 296
Illumina GoldenGate DNA methylation Beadchip 11 12 1265 1265
Illumina Infinium HumanMethylation27 BeadChip 79 44 9016 45 9061
Illumina Infinium HumanMethylation450 BeadChip 252 126 15 948 12790 28 738
Illumina Infinium HumanMethylation850 BeadChip 52 46 3730 3730

DNA methylation data. Using combined Illumina Infinium
HumanMethylation27 BeadChip, Illumina Infinium Hu-
manMethylation450 BeadChip, and Illumina Infinium Hu-
manMethylation850 BeadChip data from array techniques,
we analyzed the data using the following steps (Figure 2A):

i) Downloaded the raw data and reference platform data
from public databases.

ii) Uniformly represented the DNA methylation level as a
� value.

iii) Integrated DNA methylation data from different
batches or different databases with the R package ‘sva’
(28) to eliminate batch effects.

iv) Used the KNN algorithm (29) to fill in missing val-
ues to ensure that high-quality probes with rich methy-
lation levels are used to ensure more accurate results
through differential analyses.

v) Used the R package ‘ChAMP’ (30) and ‘minfi’ (31) to
analyze and identify DNA methylation differential
sites and regions. Our standard for identification is that
the difference in the � value mean between two sets of
samples is greater than 0.2, and the corrected P-value
is <0.05.

vi) Retained the intersection of differentially methylated
sites located in promoter regions (TSS1500, 5′UTR,
1stExon, and TSS200)(Figure 2C).

vii) Defined the average value of probe methylation levels
of all the promoter regions corresponding to each gene
as its methylation level.

For DNA methylation sequencing data, including WGBS
and RRBS, we analyzed the data using the following steps
(Figure 2B):

i) Downloaded the original sequencing data of the corre-
sponding subsequence platform.

ii) Used Bismark (32) to map bisulfite treated sequencing
reads to Genome Reference Consortium Human Build
38 (GRCh38) and

1. extract the methylation value.
2. iii) Used SMART2 (33) to mine differential DNA

methylation regions between disease and control sam-
ples.

3. iv) Retained the intersection of differentially methylated
regions located in promoter regions (TSS1500, 5′UTR,
1stExon and TSS200).

4. v) Calculated the DNA methylation level of genes with
the average value of differentially methylated regions.

An analyze section was developed in DiseaseMeth ver-
sion 3.0 to deepen the exploration of genes obtained
through the above pipeline. In this section, differences in
DNA methylation levels of a query gene in various diseases
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Figure 2. The pipeline to identify specific differential DNA methylation gene. (A) Algorithm to determine differential DNA Methylation genes from array
sequencing platform. (B) Algorithm to determine differential DNA Methylation genes from whole-genome sequencing platform. (C) The threshold of
determining differential DNA methylation regions. (D) Differential analysis between case and control. (E) Association between disease and methylation
of gene. (F) Methylation profile. (G) Gene–gene relationship analysis. (H) Disease–disease relationship analysis.
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can be displayed intuitively in the form of a table, and the
differences in DNA methylation levels between two sets of
samples can be visualized in the form of box plots (Figure
2D) and heatmaps (Figure 2F). Primary results in the re-
sult table include probe ID, significance P value, and cor-
rected P value, along with the very important result, that
of which gene symbol corresponds to the probe. Chromo-
some location information for the probe is located above
these results (Figure 2E). When selecting multiple diseases
in Analyze section, users can enter a list of gene symbols to
obtain the DNA methylation correlations of the common
differential genes between the diseases (Figure 2G), as well
as correlations between diseases, expressed in the form of
tables and correlation heatmaps (Figure 2H). In total we
identified 22 718 genes in 99 diseases with significant differ-
ential DNA methylation from all of our collected array and
high-throughput sequencing data.

Tools development and update

Because DNA methylation can provide biomarkers to refine
the human disease blueprint, DiseaseMeth version 3.0 pro-
vides two independently developed tools: Methylation Dis-
ease Correlation and Cancer Prognosis & Co-Methylation.

As research deepens, diseases in different tissues might
show similar global DNA methylation patterns (34,35).
Therefore, we developed a network analysis tool across dis-
eases, Methylation Disease Correlation, to explore the cor-
relation between diseases mediated by DNA methylation
(Figure 3A). This tool allows a user to obtain the correlation
across diseases by calculated Jaccard similarity test using
the intersections and mergers of DMGs pairwise for all 99
diseases with 22 718 DMGs. If there is a significant associa-
tion between two diseases (P < 0.05, Jaccard > mean ± sd),
then those two diseases are connected to form a disease
association network. For diseases in the network that are
linked in one step to a disease, the Jaccard coefficients of
any two of these diseases can be screened (Jaccard > 0.6) to
form the complete whole disease association network medi-
ated by DNA methylation (WDAN).

Additionally, perturbations of DNA methylation pat-
terns, such as the methylation of CGI promoters for tu-
mor suppressor genes, are frequently observed in cancer
(36). These perturbations imply a cancerogenic role. Dis-
easeMeth version 3.0 provides the Cancer Prognosis & Co-
Methylation tool to mine key DNA methylation genes in
31 types of cancer from the TCGA database by both sur-
vival analysis and gene module mining. A dropdown menu
can be used in the Cancer Prognosis & Co-Methylation tool
(Figure 3B) to select a cancer name, clinical factor T, clini-
cal factor N, clinical factor M, clinical factor stage, clinical
factor age, survival, or module. This tool illustrates differ-
ences in DNA methylation levels between different types of
genes/multi-genes using box plots to provide clinical char-
acteristics. For example, one could select clinical factor T to
see the differences in DNA methylation levels of the input
gene among T1, T2, T3 and T4. We also provide a newly
self-developed online survival analysis tool. Log-rank test
and Kaplan–Meier curves (37) reflect the difference in sur-
vival between patients with different DNA methylation lev-
els for a particular input gene. Furthermore, co-methylation

modules can be mined from the DMGs co-methylation
network. To illustrate this, we performed Pearson correla-
tion analysis across the DMGs in all of the cancers in our
database, retaining gene pairs with P < 0.01, cor > 0.6 to
form a co-methylation network of 31 cancers, respectively.
The modules were mined using the R package ‘igraph’ (38).
Due to limitations of picture clarity using a network module
with an excess of genes, only the top 250 relationship pairs
with the largest correlation coefficient are displayed. A text
version file of the module list can also be downloaded.

Discussion and future development

We have been committed to discovering key DNA methy-
lation markers in disease and providing reliable support
for extensive biomedical research in the field since the es-
tablishment of the DiseaseMeth database in 2012. There-
fore, we proposed to upgrade DiseaseMeth with substan-
tial innovations into version 3.0. A primary factor in our
decision was that the amount of methylation data had in-
creased tremendously since version 2.0. At the time of writ-
ing, the number of disease types has increased from 88
to 162. The total number of samples has increased from
32,701 to 49,949, all with high-throughput profiles. Addi-
tionally, we added FunctionSearch to the search section. It
directly and quickly provides functional annotation infor-
mation of selected diseases and genes from the localized
GO or KEGG enrichment. Importantly, we conducted a
detailed analysis of collected cancer patient clinical data to
explore the impact of DNA methylation on patient progno-
sis, and to demonstrate the methylation levels of different
pathological and clinical features of tumors. Fast and stable
visualizations are available in every section of the database,
whether it is a box plot, a heatmap, or a correlation net-
work diagram. Finally, a new independent R package sur-
vival tool was developed in DiseaseMeth version 3.0. This
new tool overcomes the limitations of personalized analy-
ses, unlike the survival analysis tool in DiseaseMeth version
2.0 that was based on PROGgene (39).

The cost of DNA methylation microarrays and high-
throughput sequencing continues to decline; methylation
sequencing may gradually become mainstream. The in-
crease in MeDIP-seq data as been relatively slow since 2015;
therefore, we did not consider it when developing our stan-
dard pipeline to determine and analyze differential DNA
Methylation genes. For DNA methylation data processing
and analysis by MeDIP-seq technology can be used Model-
based Analysis of Chip-Seq (MACS) (40) to call peaks re-
lated to gene and quantitative differentially methylated re-
gions (QDMR) (41) to identify the DMGs. Because not all
162 diseases have DMGs that intersect, and the experimen-
tal data don’t have methylation level, these were not used in
the Methylation Disease Correlation tool. As our dataset
increases in size with future development, the resulting dis-
ease networks will enable inquiry of more and more methy-
lation associations across diseases.

In the future, as more researchers focus on DNA methy-
lation, more data will be presented and more in-depth re-
search on DNA methylation mechanisms and regulation in
disease will occur. Molecular features associated with DNA
methylation such as expression, chromatin structure vari-
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Figure 3. Overview of tools in DiseaseMeth version 3.0. (A) Correlation analysis of methylation diseases. (B) Cancer prognosis & co-methylation.
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ation, and mutation are also research topics of concern.
We will continue to refine and add more information to
our platform and further reveal the impact of epigenetics
on disease. DiseaseMeth version 3.0 not only provides a
data source for studying the epigenetic regulation of disease
mediated by DNA methylation, but also comprehensively
characterizes DNA methylation as a biomarker of disease.
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DiseaseMeth version 3.0 is an open source database, which
is freely available at http://diseasemeth.edbc.org.
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