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Abstract
In this brief communication, which complements the EEG reference review (Yao et al. in Brain Topogr, 2019), we provide 
the mathematical derivations that show: (1) any EEG reference admits the general form of a linear transformation of the ideal 
multichannel EEG potentials with reference to infinity; (2) the average reference (AR), the reference electrode standardiza‑
tion technique (REST), and its regularized version (rREST) are solving the linear inverse problems that can be derived from 
both the maximum likelihood estimate (MLE) and the Bayesian theory; however, REST is based on more informative prior/
constraint of volume conduction than that of AR; (3) we show for the first time that REST is also a unipolar reference (UR), 
allowing us to define a general family of URs with unified notations; (4) some notable properties of URs are ‘no memory’, 
‘rank deficient by 1’, and ‘orthogonal projector centering’; (5) we also point out here, for the first time, that rREST provides 
the optimal interpolating function that can be used when the reference channel is missing or the ‘bad’ channels are rejected. 
The derivations and properties imply that: (a) any two URs can transform to each other and referencing with URs multiple 
times will not accumulate artifacts; (b) whatever URs the EEG data was previously transformed with, the minimum norm 
solution to the reference problem will be REST and AR with and without modeling volume conduction, respectively; (c) the 
MLE and the Bayesian theory show the theoretical optimality of REST. The advantages and limitations of AR and REST 
are discussed to guide readers for their proper use.

Keywords  The family of unipolar references · Average reference · REST reference · Maximum likelihood estimate · No 
memory property

Introduction

This brief communication provides the detailed mathemati‑
cal demonstrations as well as some new findings that com‑
plement the EEG reference review (Yao et al. 2019). That 

review provides an overview of the state of the art of propos‑
als for the EEG reference. When discussing current issues, 
it was evidently necessary to summarize the novel statistical 
approaches to the reference problem which is best described 
as the estimation of the potential at infinity. We thus build 
the family of unipolar references (URs), derive a novel maxi‑
mum likelihood estimator (MLE), formulate a few notable 
properties and compare them to the related Bayesian esti‑
mators for this linear inverse problem first described in (Hu 
et al. 2018c).

The Origin of EEG Reference Electrode Problem

The reference electrode and all the active electrodes over 
the scalp can record the linearly superimposed activities 
from all the neural sources. This means that the reference 
signal recorded by the reference electrode is correlated with 
the signals recorded by the active electrodes. Although an 
infinity reference is practically impossible, a lead field with 
the infinity reference is mathematically obtainable. By the 
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quasi-static approximation of the Maxwell equation (Gulra‑
jani 1998), the EEG potential � with the infinity reference 
related to the neural source currents � is

Here �∞ , known as the lead field matrix, expresses the 
forward model computed with the infinity reference, � is 
the ideal EEG potential with the infinity reference, � is the 
equivalent neural source currents (Plonsey and Heppner 
1967). The EEG potentials are the attenuated and mixed 
neural activities resulting from the heterogenous conductivi‑
ties of head compartments, e.g. skin, skull, brain etc. The 
volume conduction model (1) is widely accepted in the EEG 
field and holds true regardless of the reference particularly 
adopted—changing the reference only implies modifying 
the lead field.

Previous Attempts and Recent Progress

Previous notable attempts to design an optimal reference 
have been to carry out online recording with respect to a 
cephalic reference electrode e.g. Cz, Fz, Oz and FCz, etc. 
and subsequent offline computation of a different reference 
(re-referencing). Examples are such as the linked mastoids 
(LM) (Gibbs et al. 1936; Faux et al. 1990), the average ref‑
erence (AR) (Goldman 1950; Offner 1950), the reference 
electrode standardization technique (REST) (Yao 2001), and 
its regularized version (rREST) (Hu et al. 2018c). All of 
these are URs (Hu et al. 2018b), meaning that all the active 
electrodes are referenced to a unique reference signal. By 
contrast, other also proposed the non-URs, such as the bipo‑
lar reference recordings (Berger 1929; Niedermeyer and Da 
Silva 2005) and the scalp Laplacian (Hjorth 1975; Pascual-
marqui et al. 1988; Perrin et al. 1989).

It is not difficult to discern that the reference signal of 
online recording reference electrode or the offline re-ref‑
erences (LM, AR) is just a linear combination to the ideal 
EEG potentials � referenced at infinity. In recent years, AR 
and REST have been the two of the most widely adopted 
references. The justification of AR is that if the head is mod‑
eled as a layered spherical sphere with the neural currents 
spreading in a isotropic way, the discrete integral of the 
potentials over the head surface will be zero (Bertrand et al. 
1985). REST is a method to approximately reconstruct the 
potentials � , by making use of the forward head model and 
the equivalent sources model shown in (1) (Yao 2001). A 
more recent development is rREST which also deals with 
the denoising problem via the generalized cross validation 
criterion (Hu et al. 2018c). It is shown as well in the same 
paper that the use of a population average lead field yields 
better results than the use of spherical lead field. With this 
variety of URs to pick from, it is evident that a unified model 

(1)� = �∞�

is needed to analyze interrelations between reference proce‑
dures as well as to compare their properties.

Remaining Problems and Proposals

REST is based on the fact that EEG activities are ulti‑
mately generated by the same neural sources no matter 
what reference is used. The introduction of REST has 
stimulated an increasing number of comparative studies on 
how different references affect experimental data analysis 
(Bonfiglio et al. 2013; Tian and Yao 2013; Kugiumtzis and 
Kimiskidis 2015; Chella et al. 2016; Mumtaz and Malik 
2018). However, we felt that purely empirical compari‑
sons may be incomplete. Several questions remained unan‑
swered. For instances, how can one formulate in a single 
model all the reference transformations? What this type 
of model reveals about the connections among the various 
references? Are all the URs dependent on each other? Is 
REST an UR which drags along the remaining impacts of 
previous use of other references? What are the common 
properties of the URs? Is it possible to achieve the unbi‑
ased estimator to the ideal infinity reference? What are 
the statistical interpretations for AR and REST? Are AR 
and REST valid from the view of mathematical statistics? 
These questions came to the forefront during drafting the 
accompanying review of the EEG reference problem (Yao 
et al. 2019).

In responding to these questions, we found that UR 
transformations always reduce the rank by 1 of multichan‑
nel EEG potentials referenced to infinity. Thus, estimating 
the ideal potentials of full rank from the singular reference 
transforming matrix is an underdetermined or rank defi‑
cient linear regression problem (Mardia et al. 1979; Mag‑
nus and Heinz 2007). This is therefore an inverse problem 
of a different nature but related to the source localization. 
Fortunately, the required tools to attack this problem have 
already been developed related to Moore–Penrose pseu‑
doinverse of modified matrices by rank one subtraction 
(Meyer Jr. 1973; Trenkler 2000; Baksalary et al. 2003).

In this brief communication, we propose the general 
form of the EEG reference problem, demonstrate that 
REST is a special type of UR, generalize the family of pos‑
sible URs, summarize the notable properties of them and 
derive the AR and REST from the MLE and the Bayesian 
theory (Table 1). 
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Demonstration

General Form of the Reference Problem

In practice one can never observe φ, because the infinity 
reference is practically unachievable. What one observed 
is, instead, the referenced data � , that may be either the UR 
recordings �r or the non-UR recordings e.g. the currents 
by bipolar recordings and the current source density by the 
scalp Laplacian. Each type of referenced data is a linear 
transformation via pre-multiplication of the transforming 
matrix �o with the EEG potentials φ plus the sensor noise 
� . Thus, the general form of the reference problem is:

where �o is a non-stochastic matrix of observations, φ is 
the ideal potentials with infinity reference supposed to be 
a deterministic fixed but unknown vector, and � is the non-
observable random sensor noise disturbances. Apparently 
the estimation to φ in solving the EEG reference problem (2) 
is an underdetermined linear regression problem.

Without loss of generality, � and � are considered to have 
the multivariate normal distribution. If the sensor noise has 
an independent identical distribution (IID) across channels, 
the covariance of sensor noise in the referenced data will be 
��o�o

= �
2�o�

�
o
 because the referencing effect is taken on the 

noise as well during recording (Pascual-Marqui et al. 1994).

(2)� = �o(� + �) = �o� + �
◦

The Family of Unipolar References (URs)

Although �o can be either the 1st derivative in the bipolar 
recordings or the 2nd differential operator in the scalp Lapla‑
cian. Both however quantify differently the EEG signals from 
potentials, henceforth we will concentrate on taking �o with 
the UR operator �r and the UR transforming is thus

Unipolar reference (UR) is regarded if all the electrodes 
are referenced to a unique physical reference or a unique 
virtual reference. The physical reference is usually the 
electrode (e.g. Cz, Fz, Oz and FCz) placed on the scalp or 
body surface during online recording setup. The virtual 
reference is a linear combination of the recordings from all 
the electrodes, usually obtained during offline processing 
after the EEG data acquisition. Typical examples of virtual 
references are the LM, AR and REST.

The reference operator in (3) has a common structure 
(Hu et al. 2018b) for the family of URs as,

where �r consists of the linear combination weights of all 
the electrodes. The family of URs is tabulated in the Table 2 
with �r ∈ {�RR, �LM , �AR, �REST} . Note that the nonzero entries 
(i.e. 1 and 0.5) of �RR and �LM correspond to the indices of 
a unique physical reference electrode (Cz, Fz, Oz, or FCz 
etc.) and the two mastoids/earlobes, respectively (Hu et al. 
2018b). The electrodes of two mastoids/earlobes are usually 

(3)�r = �r� + �r

(4)�r = �Nc
− ���

r

Table 1   Mathematical notations

N
c

The number of channels N
s

The number of neural sources
ℝ

m×n The real matrices of m rows by n columns rk The matrix rank operator
r The unipolar references (URs) �

r
∈ ℝ

Nc×Nc The UR transforming operator
� ∈ ℝ

Nc×1 The instantaneous EEG potentials with infinity refer‑
ence

�∞ ∈ ℝ
Nc×Ns The lead field matrix with infinity 

reference
�
r
∈ ℝ

Nc×1 The unipolar referenced EEG potentials over all 
channels

� ∈ ℝ
Ns×1 The brain neural source currents

�
r
∈ ℝ

Nc×1 The vector of linear coefficients for URs � ∈ ℝ
Nc×1 A vector of ones

�+ The Moore–Penrose inverse of matrix � �
Nc

The identity matrix
�� The transpose operator of matrix � � The covariance matrix

Table 2   The family of unipolar 
references Unipolar references �

r
= �

r
� + �

r
 , �

r
= �

Nc
− ���

r
 , �

r
∈ {�

RR
, �

LM
, �

AR
, �

REST
}

Online recording references Cz, Fz, Oz and FCz, etc. (RR) �
RR

= [0,… , 0, 1, 0,… , 0]�

Offline re-references Linked mastoids (LM) �
LM

= [0,… , 0, 0.5, 0,… , 0, 0.5, 0,… 0]�

Average reference (AR) �
AR

= �
/

N
c

REST �
REST

= �+�
∞

�+
∞
�
/

[���+�
∞

�+
∞
�]
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labeled as A1-A2, M1-M2, or referring to TP9 and TP10 in 
the fixed electrode layouts.

Among the family of URs, AR is one of the most widely 
used methods to estimate the potentials � with infinity 
reference as

It is justified that for a perfect layered spherical head, 
with neural currents spreading in an isotropic way, the 
integral of the potential over the head surface is zero (Ber‑
trand et al. 1985; Yao 2017). Thus, the averaged potential 
over all electrodes may tend to zero and would be suitable 
as the reference signal.

REST employs the equivalent source technique to trans‑
form one reference recording to another as

where �r = �∞�
+
r
 is the reference standardization matrix 

depending on the reference �r implicitly ‘embedded’ in the 
EEG data �r , and the equivalent source is approximately 
estimated as �̂ = �+

r
�r (Yao 2001). Since �r is transforming 

the referenced data �r , REST was described as a transforma‑
tion of data already subject to a previous reference such as 
AR. This was in apparent contrast to LM and AR which both 
transform the ideal potentials � at infinity. To allow a closer 
look of REST, it requires an explicit expression on how it 
transforms the ideal potentials � at infinity (Hu et al. 2018b). 
The unipolar form of �REST is derived next.

Demonstration of REST as an UR

The REST operator is defined as

by post-multiplying �r with the reference �r hidden in the 
data �r (Hu et al. 2018b). The lead field referenced to the 
same UR as (4) is

Since the number of distributed neural sources is much 
larger than the number of electrodes and because of the vol‑
ume conductivities, �∞ has all independent rows namely full 
row rank, leading to �∞�

+
∞
= �Nc

 and rk(�r) = rk(�r) . Not‑
ing that �r is with full rank deficient by 1 (Hu et al. 2018c), 
thus rk(�r) = rk(�∞) − 1 which is the case (↓) of the Theo‑
rem 1.1 in (Baksalary et al. 2003). By defining � = −�+

∞
� as 

the Formula (1.3) in (Baksalary et al. 2003), we have

(5)�AR = �Nc
− ���

AR
, �AR = �

/

Nc

(6)�̂REST = �∞(�
+
r
�r) = (�∞�

+
r
)�r = �r�r

(7)�REST = �∞�
+
r
�r

(8)�r = �r�∞ = �∞ + �(−��
∞
�r)

�

(9)�+
r
�r = �∞�

+
∞
−

���

���
= �Nc

−
�+

∞
����+�

∞

���+�
∞
�+

∞
�

according to the case (↓) in the list 2.2 of the Theorem 2.1 
(Baksalary et al. 2003).

Post-multiplying �∞�
+
∞
= �Nc

 , the REST operator in (7) 
is equivalent to

Obviously, REST operator belongs to the family of URs. 
Written as �REST = �Nc

− ���
REST

 , the linear combination 
weights for REST is

Therefore, REST operator admits the same form of URs 
defined in (4). While the reference standardization matrix 
�r is dependent on the prior EEG reference, the REST 
operator �REST  is independent of the specific UR in the 
EEG data and will be identical whichever �r is adopted 
in (7) noting that �r disappears in (11). The demonstration 
of REST as a UR clarifies its relation to other references.

Properties of URs: No Memory, Rank Deficient by 1 
and Orthogonal Projector Centering

We analyzed the family of URs and naturally found some 
valuable properties of URs summarized as ‘no memory’, 
‘rank deficient by 1’ and ‘orthogonal projector centering’.

(1) No memory property
Supposing �r1 = �Nc

− ���
r1

 is the latest reference one 
intends to apply, and �r2 is the previous reference already 
applied in the EEG data, as long as ��

r1
� = 1 , one will have

where �r2 could be any UR operator.
Note that ��

r
� = 1 for �r ∈ {�RR, �LM , �AR, �REST} , this no 

memory property holds true for the family of URs includ‑
ing both online recording references e.g. Cz, Fz, Oz and 
FCz, etc. and the offline re-references such as LM, AR 
and REST.

(2) Rank deficient by 1 property
For the URs �r with �r ∈ {�RR, �LM , �AR, �REST} , it is found

which means the rank of �r are all full rank deficient by 1.
(3) Orthogonal projector centering property
The orthogonal projector onto the column space of ��

r
 

as the centering matrix (i.e. the averager reference)

The readers can refer to the appendix of (Hu et  al. 
2018c) for the proofs of ‘rank deficient by 1’ and ‘orthogo‑
nal projector centering’ properties.

(10)�REST = �∞�
+
r
�r�

+
∞
= �Nc

− �
���+�

∞
�+

∞

���+�
∞
�+

∞
�

(11)�REST = �+�
∞
�+

∞
�
/

[���+�
∞
�+

∞
�]

(12)�r1 = �r1�r2

(13)rk(�r) = Nc − 1

(14)�+
r
�r = �AR
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From the “Demonstration of REST as an UR” sec‑
tion, the lead field matrices also have the ‘iden‑
tity’ property �∞�

+
∞
= �Nc

 , the ‘rank deficient by 
1’ property rk(�r) = rk(�∞) − 1 ,  and the ‘or thog‑
onal  pro jec tor  weighted  center ing’  proper ty 
�+

r
�r = �Nc

−�+
∞
����+�

∞
∕���+�

∞
�+

∞
� . Note that the ‘rank 

deficient by 1’ and ‘orthogonal projector centering’ prop‑
erties of the URs follow trivially if the lead field matrix 
�∞ is an identity matrix. However, realistic lead fields �∞ 
are far from the identity. The biophysical assumptions are 
the cause of the difference of REST from the other URs.

Derivation of AR and REST from the Maximum 
Likelihood Estimate

The actual purpose in searching for the best reference is 
to estimate potentials at infinity rather than to identify the 
reference signal. The unipolar reference model in (3) is 
written as the block form

where �r− ∈ ℝ
(Nc−1)×Nc is a ‘fat’ matrix, �r ∈ ℝ

Nc×1 , 
�r− ∈ ℝ

(Nc−1)×1 are vectors, and vr is a scalar.
Since �r is rank deficient by 1, discarding one row 

yields a matrix of full row rank. Specifically, if �r is the 
recording reference, �r corresponds to the physical refer‑
ence electrode; if �r is the liked mastoids/earlobes ref‑
erence, �r corresponds to either of the electrodes at two 
mastoids/earlobes. Thus, the UR model reduces to

where the covariance of �r− is ��r−�r−
= �

2�r−�
�
r−

.
It is apparent that without the constraint, estimating 

� ∈ RNc×1 from �r− ∈ R(Nc−1)×1 is underdetermined.
The constraint of the average reference (AR) is

the physical meaning of which is the discrete integral as zero 
of electric potentials over a layered spherical and isotropic 
conductor surface (Bertrand et al. 1985). The estimation to 
� is a linear regression problem with this constraint. Mak‑
ing use of theorem 6 in the page 303 of (Magnus and Heinz 
2007), the best linear unbiased estimator to (16) is

w i t h  � = ��
r−
(�r−�

�
r−
)−1�r− + ���  .  D u e  t o 

��
r−
(�r−�

�
r−
)−1 = �+

r−
 and �+

r−
�r− = �AR , � is written as

And its inverse is solved by the Formula (2.2) in (Bak‑
salary et al. 2003) as

(15)
[

�r−
vr

]

=

[

�r−

��
r

]

� + εr

(16)�r− = �r−� + �r−

(17)��� = 0

(18)�̂ =
(

� − �−1���
/

���−1�
)

�−1��
r−
(�r−�

�
r−
)−1�r−

� = � + ���∕[���∕(��� − 1)]

Substituting (19) into (18), it is simplified as

which is the AR if the sensor noise tends to zero or one 
neglects the noise. This shows that AR can be derived by 
constraining the sum over all electrodes as zero and the best 
linear unbiased estimator to the infinity reference would be 
the AR if the given constraint holds true and sensor noise 
is negligible.

In the case of REST, taking the singular value decomposi‑
tion (SVD) of the lead field as �∞ = ���� , (16) is expressed 
as

Defining � = �r−�� and β = ��� , (21) is

The constraint for REST is

where M means the Mahalanobis distance. This means 
REST doesn’t depend on the particular inverse solution but 
rather on the parameter β = ��� . The constraint REST poses 
is to minimize the term structured by the forward model 
(lead field) and true neural sources. However, since � is an 
orthonormal matrix, the minimum norm of β equals to the 
minimum Euclidean norm of � when the neural source � has 
a priori IID covariance.

Solving (23) but subject to (22), it is

Taking the equivalent source ��� = �
2�Ns

 and given 
�r− = �r−���

� , �∞�
�
∞
= ��2�� , (24) multiplicated with 

�� becomes

when � tends to zero or the sensor noise is neglected, 
�̂ = �∞�

+
r−
�r− becomes REST. REST assumes potentials 

generated by a lead field for which a minimum norm con‑
straint may be imposed.

Note that �∞ is with one additional channel to �r− indi‑
cating the interpolation function of REST. This function can 
recover the full recordings over all channels from the record‑
ings with the reference channel missing or even be generalized 
to interpolate bad channels that have been rejected.

(19)�−1 = � − (��� − 1)���
/

������

(20)�̂ = �AR�
+
r−
�r− = �AR�

+
r−
(�r−� + εr−) = �AR(� + ε)

(21)�r− = �r−���
�� + �r−

(22)�r− = �β + �r−�

(23)min‖�‖2
M

(24)�̂ = ����
�(�𝛴���

� + �r−����
�
r−
)−1�r−

�̂ = �∞ ⋅��
r−

(

�r−�
�
r−

+
𝜎
2

𝛼2
�r−�

�
r−

)−1

�r−
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Derivation of AR and REST from the Bayesian Theory

All references are the linear combination of the ideal potentials 
with infinity reference. It turns a linear transformation through 
the lead field of actual neural source activity. Therefore esti‑
mating �̂o is the solution to a linear undetermined inverse 
problem. And it is essential to work with the brain sources. 
Any estimator of the potentials at infinity is the maximum a 
posterior (MAP) estimator with the Bayesian theory

where p(�|
|

�,�o, � ) is the posterior given the likelihood 
p(�|

|

�,�o, � ) and priors p(�),p(�) . With the tuning param‑
eter � , (25) can be converted by (Mardia et al. 1979) into

Solving the formula (26) derives the MAP estimator to 
the potentials at infinity as

which is the general solution to the EEG reference problem 
using the Bayesian theory. Specifying the reference transfor‑
mation matrix �o as �r , the difference between �̂o estimators 
is only in the prior covariance ��� assumed for the potentials 
at infinity.

AR is the special case of (27) with the IID prior 
��� = �

2�Nc
 . This results in the minimum norm least square 

solution:

When �2 tends to zero and substituting (3) into (28), this 
expression simplifies to

Since the ‘orthogonal projector centering’ property holds 
true for the family of URs, thus

Hence, when the priori covariance of � is IID, the minimum 
norm solution of (3) with any UR is same as the AR. It also 
confirms that AR can only be applied to the EEG data that 
has already been transformed by the other URs (Hu et al. 
2018a).

By contrast, REST is derived if the potentials � with 
infinity reference are considered to be generated by the neu‑
ral sources with a priori IID covariance. The following ver‑
sion of (2) is valid for data with any reference,

(25)p(�|
|

�,�o, � ) ∝ p(�|
|

�,�o, � )p(�)p(ε)

(26)� = �

�

� − �o�
�

�

2

M
+ �‖�‖2

M

(27)�̂o = ����
�
o
(�o����

�
o
+ 𝜎

2�o�
�
o
)+�

(28)�̂r = 𝛼
2��

r
(𝛼2�r�

�
r
+ 𝜎

2�r�
�
r
)+�r

(29)�̂
r
= �+

r
�r� + �+

r
�r

(30)�̂AR = �̂r = �AR� + �AR

(31)� = �o� + �o = �o� + �o

where �o = �o�∞ is the transformed forward model. From 
(2), with the covariance ��� of the equivalent source, the 
solution to (31) is expressed as

This is the regularized version of REST (rREST) (Hu 
et al. 2018c). If assuming the equivalent source are IID with 
the covariance ��� = �

2�Ns
 , the rREST operator reduces to

With � referenced by the URs r and �2 tends to 0 (noise free 
data), (33) turns as the classical REST (Yao 2001)

The REST assumes potentials generated by the Bayesian 
theory with the assumption of independent neural sources 
(Hu et al. 2018c). The influence of other covariance matrices 
for neural sources on REST type estimators is under study.

Discussion

In this brief communication, the general form of the EEG 
reference electrodes problem is understood as a linear 
transformation to the potentials � referenced at infinity, that 
maybe either the URs or non-URs e.g. the bipolar recordings 
and the scalp Laplacian; the common structure of URs is 
recognized with unified notations; it is the first time to show 
the interpolation function in solving the reference problem 
and demonstrate REST as an UR. This allows us to study a 
generalized family of URs. Also, valuable properties of the 
URs family are summarized to establish the interrelations.

The most surprising property is ‘no memory’ indicating 
that URs works independently without the consequences of 
the URs already applied. It also means one can always safely 
re-reference the EEG/ERP recordings with different URs 
but not worry about if re-referencing multiple times will 
accumulate artifacts. Any two of URs can be transformed to 
each other and all the URs are taking effect independently. 
Before applying a different UR, one had better check if the 
present data is with UR. Transforming from non-UR to UR 
will damage the dataset though it is no problem to transform 
the data within the family of URs. This property validates 
that an UR can erase the effects of the other URs and it is 
therefore safe to apply UR multiple times. The ‘no memory’ 
property deserves to be kept in mind in the data preprocess‑
ing by EEG-ERP researchers.

The significant property of ‘rank deficient by 1’ implies 
that the URs always reduce the full rank by 1 of the ideal 
EEG potentials referenced at infinity. The lost one rank is 
because the reference signal subtracted from all the channels 
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is a linear combination from the activities over all the chan‑
nels referenced to infinity. This property tells us the impos‑
sibility of obtaining the unbiased estimator to the ideal EEG 
potentials � if no extra constraint is introduced. However, 
different URs indeed have different biases, relying on how 
much prior information is incorporated on estimating the 
ideal potentials � referenced at infinity.

The nontrivial property of ‘orthogonal projector center‑
ing’ as the AR is proved from theorem of Moore–Penrose 
pseudoinverse in the case of rank one modification. This 
property is made full use of in the derivation of AR from 
both the MLE and the Bayesian theory. Similarly, the lead 
fields engaged in REST has the properties of ‘orthogonal 
projector weighted centering’. Together with ‘identity’ and 
‘rank deficient by 1’ properties, REST is demonstrated as an 
UR. It is by means of this ‘orthogonal projector (weighted) 
centering’ property that demonstrates that AR and REST 
does not depend any specific UR previously applied on the 
EEG data and both AR and REST can be finally derived.

Among the family of URs, AR and REST are the two 
main contenders. This communication shows that both the 
MLE and the Bayesian theory approaches allow the deriva‑
tions of the AR and REST estimators. One approach is to 
derive AR and REST via MLE with linear and quadratic 
constraints respectively as general linear regression model 
(Magnus and Heinz 2007). AR is the best unbiased linear 
estimator given the linear constraint that the sum of the EEG 
potentials over all the channels is zero. By contrast, REST 
minimizes the quadratic constraint of a linear combination 
of equivalent sources. An alternative and more flexible 
approach follows from the Bayesian theory. AR was derived 
by assuming a priori IID covariance of multichannel EEG 
recordings; and REST was derived from the volume conduc‑
tion and a priori IID covariance of neural sources activities.

From the view of MLE, AR is theoretically correct if the 
constraint of discrete integral of potentials as zero holds true. 
This is valid no matter which UR one starts from and the 
best unbiased estimator would be AR. The integral of poten‑
tials partly relies on the electrodes coverage and density 
(Bertrand et al. 1985; Nunez 2010). However, a recent work 
showed that the performance of AR is not closely related to 
the electrode density which is different from the common 
understanding to AR based on its zero integral assumption 
and coverage is a more important factor than the electrode 
density (Hu et al. 2018b). From the view of the Bayesian 
theory, the AR is essentially solving a generalized linear 
inverse problem to estimate the potentials at infinity. With 
the prior assumption of statistical IID across multichannel 
recordings, whatever the UR is, the minimum norm estima‑
tor will be the AR. The priori of IID covariance of poten‑
tials referenced to infinity is surely false, since the volume 
conduction effect is neglected. Also, one has to be sure the 

EEG data at hand is with UR before applying AR, limiting 
its ability in the general use (Hu et al. 2018a).

From the view of MLE, the quadratic constraint indicates 
that REST does not fully depend on the source configura‑
tion but rather on the effect it produces at the scalp by the 
equivalent source that represents infinite source configura‑
tions. When one assumes that EEG data are generated by 
brain sources, then in theory rREST (REST) is an optimal 
estimate of the potentials at infinity. REST allows the pos‑
sibility that the number of channels in forward calculations 
can be more than those in estimating the equivalent source. 
With the additional channels, channels missing or rejected 
as ‘bad’ can be recovered with the interpolation function 
of REST.

It is worthwhile to emphasize that from the view of 
Bayesian theory, in REST the source distribution only enters 
the estimation as a specification of the prior; and REST is 
the MAP estimator for which the equivalent source approach 
offers the protection against sources mis-localization. The 
goal of REST is not to find the actual sources which are not 
actually necessary. rREST as the extension of REST has the 
ability of general application. The Eqs. (31)–(33) is rather 
general irrespective of which type of �o applied to � , mean‑
ing that the rREST can adapt to the non-UR recordings e.g. 
bipolar recordings, and scalp Laplacian as well.

As shown in (Hu et al. 2018c), two possible limitations of 
REST are the assumptions of noiseless data and the use of 
a spherical head model. A study with simulation and large 
dataset of EEG recordings was carried out, showing that 
unless the EEG data is with extremely high SNR, REST 
with spherical lead field can be used without the expense of 
building the realistic head models. Alternatively, an aver‑
aged lead field over a population of samples and denoising 
by the criterion of the generalized cross validation (GCV) 
should be used in the rREST practice (Hu et al. 2018c). The 
readers can refer to https​://githu​b.com/Shian​gHu/LeadF​ield-
Pipel​ine for the easy runnable pipeline of the realistic head 
models and https​://githu​b.com/Shian​gHu/Unifi​ed-EEG-refer​
ence-rREST​ for the use of rREST.

To conclude, this brief demonstration shows that all the 
common references including REST can be formulated into 
a family of URs with unified notations, some properties of 
URs e.g. ‘no memory’, ‘rank deficient by 1’ and ‘orthogonal 
projector centering’ may be valuable on helping the refer‑
ence practice, both the MLE and the Bayesian theory can 
derive the AR and REST, and together with the interpolation 
function of REST providing the novel understanding and 
the statistical evidences for their use in the future EEG and 
ERP practice.
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