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Abstract

Background and Aims: The familial Mediterranean fever (FMF) gene (MEFV) encodes pyrin, a major regulator of the
inflammasome platform controlling caspase-1 activation and IL-1b processing. Pyrin has been shown to interact with the
gene product of NLRP3, NALP3/cryopyrin, also an important active member of the inflammasome. The NLRP3 region was
recently reported to be associated with Crohn’s disease (CD) susceptibility. We therefore sought to evaluate MEFV as an
inflammatory bowel disease (IBD) susceptibility gene.

Methodology and Results: MEFV colonic mucosal gene expression was significantly increased in experimental colitis mice
models (TNBS p,0.0003; DSS p,0.006), in biopsies from CD (p,0.02) and severe ulcerative colitis (UC) patients (p,0.008).
Comprehensive genetic screening of the MEFV region in the Belgian exploratory sample set (440 CD trios, 137 UC trios, 239
CD cases, 96 UC cases, and 107 healthy controls) identified SNPs located in the MEFV 59 haplotype block that were
significantly associated with UC (rs224217; p = 0.003; A allele frequency: 56% cases, 45% controls), while no CD associations
were observed. Sequencing and subsequent genotyping of variants located in this associated haplotype block identified
three synonymous variants (D102D/rs224225, G138G/rs224224, A165A/rs224223) and one non-synonymous variant (R202Q/
rs224222) located in MEFV exon 2 that were significantly associated with UC (rs224222: p = 0.0005; A allele frequency: 32% in
cases, 23% in controls). No consistent associations were observed in additional Canadian (256 CD trios, 91 UC trios) and
Scottish (495 UC, 370 controls) sample sets. We note that rs224222 showed marginal association (p = 0.012; G allele
frequency: 82% in cases, 70% in controls) in the Canadian sample, but with a different risk allele. None of the NLRP3
common variants were associated with UC in the Belgian-Canadian UC samples and no significant interactions were
observed between NLRP3 and MEFV that could explain the observed flip-flop of the rs224222 risk allele.

Conclusion: The differences in association levels observed between the sample sets may be a consequence of distinct
founder effects or of the relative small sample size of the cohorts evaluated in this study. However, the results suggest that
common variants in the MEFV region do not contribute to CD and UC susceptibility.
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Introduction

Crohn’s disease (CD) and ulcerative colitis (UC) are multifac-

torial and heterogeneous, chronically relapsing inflammatory

bowel diseases (IBD) that are thought to result from a dysregulated

mucosal immune response to gut lumen bacterial antigens in a

genetically susceptible host [1]. A recent meta-analysis of three

large CD genome-wide association studies (GWAS) has reported

that well-established associations with CD only accounts for

approximately 20% of the genetic variance observed in CD,

suggesting that additional genetic contributions have yet to be

discovered [2]. Indeed, with the exception of variations within the

NOD2 and IL23R genes, established susceptibility alleles have been

reported to have relatively modest effects [2]. Using a candidate

gene approach, NLRP3 (Chr.1q44; GenBank AF054176; OMIM

606416) was recently identified as a novel CD susceptibility locus

[3] that had not been described in previously published GWAS

[4–9]. NLRP3 (previously known as CIAS1) is part of the

CATERPILLER (CARD (caspase recruitment domain), Tran-

scription Enhancer, R (purine)-binding, Pyrin, Lots of Leucine

Repeats) [10] gene family and mutations in some of these genes

have been shown to result in severe auto-inflammatory diseases

(AIDs) [11]. AIDs represent a spectrum of diseases characterized

by recurrent episodes of seemingly unprovoked inflammation that,

unlike autoimmune disorders, lack the production of high-titer

auto-antibodies or antigen-specific T cells [10]. Gain-of-function

mutations in NLRP3 are associated with three hereditary periodic

fever syndromes: Muckle-Wells syndrome, familial cold autoin-

flammatory syndrome, and neonatal-onset multisystem inflamma-

tory disease [10–13]. NLRP3 encodes NALP3 (also known as

cryopyrin). This protein plays a key role in controlling the

inflammasome, which is a critical molecular platform regulating

caspase-1 activation and interleukin (IL)-1b processing, two key

mediators of inflammation [12–15].

Recently, the SPRY (also known as B30.2) domain of the

protein pyrin, which is encoded by the MEFV gene (Chr.16p13.3;

GenBank NM_000243; OMIM 608107), has been reported to

interact with and modulate the activity of several inflammasome

components, including NALP3/cryopyrin, caspase-1, and, its

substrate, pro-IL-1b [16–18]. Interestingly, MEFV missense

mutations are implicated in the familial Mediterranean fever

(FMF), which is another AID [19–22].

Additional clinical and epidemiological evidence supported

MEFV as a potential IBD candidate gene. IBD and FMF share

common clinical and biologic features; they are both inflammatory

disorders characterized by the same chronic relapsing behavior,

infiltration by neutrophils at the site of injury, and abnormal

regulation of apoptosis [23–24]. Moreover, FMF affects mainly

ethnic groups surrounding the Mediterranean Sea (e.g. non-

Ashkenazi Jews, Armenians, Turks, and Arabs) and two small

cohort studies from that region have reported a higher prevalence

of IBD, with particularly severe symptoms in FMF non-Ashkenazi

Jewish patients, suggesting possible common underlying mecha-

nisms of inflammation [25–26]. Additional studies have suggested

that MEFV rare missense causative mutations have a potential

modifying effect in IBD patients [27–30].

This clinical and epidemiological evidence linking IBD to the

MEFV gene, together with the co-localization of the MEFV and

NLRP3 gene products (pyrin and NALP3, respectively) within the

same signaling pathway, suggested that MEFV could also

contribute to CD and/or UC susceptibility. We therefore explored

whether MEFV expression was regulated in IBD experimental

models of colitis and whether MEFV variants were associated with

CD and/or UC susceptibility.

Results

1. MEFV expression is increased in IBD experimental
models of colitis and in colonic mucosa from IBD patients

To further support our candidate gene selection, we first

evaluated MEFV expression in different models of experimental

colitis. Mefv expression is significantly increased in trinitrobenzene

sulfonic acid (TNBS)-induced (fold change = 4.1061.02;

p,0.0003) (Figure 1A) and in dextran sulfate sodium (DSS)-

induced (fold change = 131.74644.14; p,0.006) (Figure 1B)

colitis mice models as compared to colonic tissues from control

mice (arbitrary baseline = 1). In human tissue biopsies, MEFV

expression is significantly increased in ulcerated colonic mucosa

from CD patients compared to healthy controls (fold

change = 6.3565.45; p,0.02) (Figure 1C), but not from UC

patients (fold change = 2.5061.90; p,0.27) (Figure 1D). However,

stratification by severity of disease, as defined by the presence of

endoscopic lesions (CD) and Mayo sub-endoscopic criteria (UC),

shows that MEFV expression is upregulated in both severely

affected CD (fold change = 12.5865.11; p,0.001) (Figure 1C)

and UC (fold change = 6.2361.97; p,0.008) (Figure 1D) patients

compared to healthy controls.

2. MEFV mutations in exon 10 do not contribute to CD
and UC susceptibility

FMF is thought to be secondary to missense mutations in

MEFV. Although these mutations are found throughout the gene,

five sequence alterations in MEFV represent the majority of FMF

chromosomes, four of which are clustered in exon 10 (i.e. M680I/

rs28940580, M694V/rs61752717, M694I/rs28940578, and

V726A/rs28940579) [11,20–22]. This exon was sequenced in 47

CD patients, 47 UC patients and 94 controls. Only three

individuals (2 CD and 1 UC patients) carrying three different

mutations (R652H/rs28940581, M694V/rs61752717, and V726A/

rs28940579 respectively) were observed. None of the exon 10

variants could link IBD with MEFV. The low frequency of these

observed mutations confirms previous reports studying the

prevalence and association of these mutations in IBD patients

[25–30].

3. Common SNPs located in MEFV 59 region are
significantly associated with IBD in the Belgian
exploratory sample set

We subsequently sought to evaluate MEFV common variants for

their association with IBD. We first investigated a 98 kb region

spanning chromosome 16p13.3 (3220975–3318978) (NCBI Build

35, hg17), including MEFV (14.6 kb). A pairwise tagging approach

[31] was used to select single nucleotide polymorphisms (SNPs),

using data from HapMap Public Release #22 (r2$0.8) (minor

allele frequency (MAF) $0.05). The SNP panel was enriched with

SNPs located in functional domains, as well as with SNPs selected

from dbSNP Build126 in regions with lower coverage. A total of

30 informative SNPs in the MEFV region were genotyped in 440

Belgian CD trios and 137 UC trios (Table 1).

MEFV and IBD Susceptibility
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As previously reported [32], we observed two regions of high

linkage disequilirium (LD) separated by a recombination ‘‘hot-

spot’’ within MEFV intron 2 (Figure 2). The 59 haplotype block

includes the promoter to MEFV intron 2 region, three known

genes (ZNF263, TIGD7, ZNF75A), and one hypothetical gene

(AK096958). The 39 haplotype block spans MEFV intron 2 to the

39 UTR region of MEFV, as well as the region encompassing the

promoter to intron 4 of ZNF200 (Figure 2).

The analysis of Belgian CD trios revealed only nominally

significant associations with the major alleles (i.e. allele frequency in

controls .50%) of four SNPs, three of which are located in the

haplotype block encompassing the region covering the MEFV

promoter to intron 2 and its 59 flanking region (rs182674(A):

p = 0.029; rs224217(G): p = 0.052; rs224231(G); p = 0.039;

rs6501170(T): p = 0.016; the risk nucleotides are indicated in

brackets) (Figure 2A, Table S1).

The analysis of Belgian UC trios revealed significant associa-

tions (lowest p = 0.0007 for rs224217) with eight SNPs

(i.e. rs1149483(C), rs224243(T), rs224231(A), rs224230(A),

rs224226(G), rs224225(C), rs182674(G), and rs224217(A)) located

in that same 59 haplotype block also associated with CD

(Figure 2B, Table S1). We note that the risk alleles differ for

those SNPs associated with both CD and UC. Contrary to the CD

associations, the UC associations remained significant after

allowing for the total number of tests performed (pcorrected = 0.018

based on 1000 random permutations in 2 diseases; see Methods).

Figure 1. Level of MEFV mRNA expression in inflamed colitis tissues compared to healthy controls. (a, b) MEFV expression was assessed
by quantitative real-time PCR in (a, b) healthy mice colons (n = 7), in colons from (a) TNBS-induced (n = 8) and (b) DSS-induced (n = 4) colitis mice
models, as well as in (c, d) healthy human (n = 25), (c) CD (n = 16) and (d) UC (n = 17) colonic specimens. MEFV expression appeared to correlate with
disease severity in both CD (c: 9 CD with mild inflammation and 7 CD with severe inflammation) and UC (d: 6 UC with mild inflammation, 7 UC with
moderate inflammation and 4UC with severe inflammation) samples. (a–d) Expression was normalized to 18S gene expression and each bar
represents the mean value6S.D. (*) = p,0.05 compared to healthy colonic specimens, considered as the arbitrary baseline = 1.
doi:10.1371/journal.pone.0007154.g001
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These associations with UC were also significant across the two

Belgian Centers (rs224217: p = 0.038 [Center 1: Leuven];

p = 0.0008 [Center 2: Liege]) described in Table 1.

4. Sequencing of coding and promoter regions of genes
located in the associated 59 haplotype block

Following the identification of the association signals with CD

and UC in the 59 haplotype block, we sequenced the exons and

promoter regions (i.e. 2 kb upstream) of all genes located within

this region to exclude the involvement of other genes (i.e.

AK096958, ZNF263, TIGD7, ZNF75A) aside from MEFV. A total

of 10 UC patients, 10 CD patients and 10 healthy controls were

sequenced, and 9 synonymous and 9 non-synonymous variants

were identified. A detailed description of all observed coding

variants can be found in Table 2.

5. Augmenting the sample size: MEFV common SNPs do
not contribute to CD and UC susceptibility

5.1 The Belgian samples. To further validate the Belgian

association results, we first augmented the sample size by

genotyping additional unrelated Belgian cases and controls (239

CD, 96 UC and 107 shared controls), and combining them with

the 440 CD and 137 UC trios previously genotyped. The cases

and controls were genotyped for 12 of the 30 exploratory set of

SNPs, which were chosen using a pairwise tagging approach [31]

to remove the redundancy among the genotyped markers, given

the high level of LD between them. Additionally, all Belgian case-

control and trio samples were genotyped for the non-synonymous

variants observed in the sequencing experiment, which are

described in Table 2.

Increasing the sample size in the combined Belgian CD case-

control-trio analyses did not reveal more significant associations

between the 12 tagging SNPs and CD (Table 3). Moreover, no

significant associations were observed between all non-synony-

mous coding SNPs described in Table 2 and the combined CD

Belgian sample set (Table 3).

In the combined Belgian UC case-control-trio analyses, the

association significance levels observed with the 12 tagging SNPs

were similar to the ones observed in the analysis focussing solely on

trios (Table 4). The UC association analysis of the non-

synonymous variants from Table 2 revealed no significant

associations with C310S (previously genotyped rs220379), as well

as with the rare coding variants R26Q (3 carriers), V534I/

rs34236132 (11 carriers), and N248H (8 carriers). Similarly, no

significant associations with coding variants located in the 39 end

region of MEFV were detected. However, significant associations

were observed with three synonymous variants located in MEFV

exon 2 (D102D/rs224225(C), G138G/rs224224(G), A165A/

rs224223(A)) and UC in the Belgian combined sample set

(p = 0.0015) (Table 4); these three variants are in perfect LD with

each other (r2 = 1.00) and in high LD with tagging SNP rs224217

(r2 = 0.85) (Figure S1). Additionally, the non-synonymous SNP

R202Q/rs224222 was also significantly associated with UC

(p = 0.0005; A allele frequency: 32% cases, 23% controls) in the

Belgian samples. The variant rs224222 is in low LD with the three

synonymous variants of exon 2 (r2 = 0.38) and with the tagging

SNP rs224217 (r2 = 0.33) (Figure S1).

To assess the reproducibility of these results, we subsequently

evaluated the association of the same 12 tagging SNPs and the 4

coding SNPs located in MEFV exon 2 region (i.e. rs224225,

rs224224, rs224223, and rs224222) in additional samples from

Canada (256 CD trios, 91 UC trios) and Scotland (495 UC, 370

controls) (Table 1).

5.2 The Canadian samples. In the Canadian CD sample

set, only the minor allele of tagging SNP rs224230, located in the

59 flanking region of MEFV, was significantly associated with CD

(p = 0.044; G allele frequency: 40% cases, 33% controls) (Table 3).

None of the 16 SNPs were consistently replicated across the

Belgian and Canadian CD sample sets, or in the combined

analysis of the Belgian-Canadian CD samples (Table 3),

supporting the exclusion of the MEFV region as a risk factor

contributing to CD susceptibility.

In the Canadian UC sample set, analysis of individual tagging

SNPs uncovered one nominally significant association in the

MEFV 59 region (rs220379: p = 0.046; G allele frequency: 81%

cases, 70% controls) and one association with coding SNP

rs224222 (p = 0.012; G allele frequency: 82% cases, 70% controls)

in exon 2 (Table 4). Contrary to the association in the Belgian

samples where the A allele of rs224222 was associated with UC

susceptibility, the G allele is associated with UC in the Canadian

samples, and no associations were observed with the three

synonymous variants of exon 2 (Table 4). None of these results

replicated the initial significant findings observed in the Belgian

exploratory UC sample set (Table 4, Figure 2B, Table S1).

5.3 The Scottish samples. In the third UC case-control

cohort from Scotland (Edinburgh) (Table 1), only the A allele of

tagging SNP rs224215 located in MEFV intron 2 was significantly

associated with UC (p = 0.041; A allele frequency: 63% cases, 58%

controls). None of the associations observed in the Belgian and

Canadian UC analyses were replicated in the Scottish sample set

(Table 4). No SNPs were significantly associated in the combined

analysis of all Belgian-Canadian-Scottish UC samples (Table 4).

6. Rare variants in MEFV exon 2
Interestingly, sequencing of exon 2 in all cohorts, primarily as a

means to genotype the four exon 2 coding variants (i.e. rs224225,

rs224224, rs224223, and rs224222), revealed 15 new rare non-

Table 1. Subjects examined as part of the MEFV candidate
gene study.

Number of subjects

IBD CD UC Control

Exploratory Combined Belgian Cohort

1- Leuven Trios 389 286 103 N/A

2a- Liege Trios 188 154 34 N/A

2b- Liege C/C1 335 239 96 107

Total Exploratory Cohort 912 679 233 107

Replication Cohorts:

Canadian Combined Cohort

3- Québec Trios2 170 133 37 N/A

4- Toronto Trios3 177 123 54 N/A

Total Canadian Cohort 347 256 91 N/A

Scottish Cohort

5- Edinburgh (Scottish) C/C1,4 495 0 495 370

Total Replication Cohort 842 256 586 370

1C/C refers to case control sample set.
2Includes 27 CD trios and 13 UC trios of Jewish ancestry.
3Includes 24 CD trios and 10 UC trios of Jewish ancestry; includes also 15 non-
European probands, which were excluded from the analysis.

4Includes 1 UC case of Jewish ancestry; includes also 14 cases and 11 controls of
non-European descent, which were excluded from the analysis.

doi:10.1371/journal.pone.0007154.t001
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Figure 2. Exploratory phase association results of the SNP panel screened in the combined Belgian CD and UC trios sample sets.
Shown above are the SNPs with their positions in the genes and the LD structure between them. SNPs in red are exonic. The upper left portion of the
coloured matrix is D’ and the lower right portion is r2. Data for the first SNP is represented on the left column and the bottom row of the matrix. In the
lower panel are reported the results from association analysis of the Belgian CD (a), and the Belgian UC (b) samples. Level of significance can be
found on the scale located at the bottom left of the figure. P value of individual alleles are reported, where the symbols represent the associated
allele (. = T, N= C, m = A, ¤ = G) and the color scheme represents the value of the LD measures and the allele frequency.
doi:10.1371/journal.pone.0007154.g002
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synonymous and 8 synonymous variants (Table S2). Four of them

are located on predicted CpG dinucleotides, demonstrating the

high potential variability of the MEFV exon 2 region. Although

these rare variants alone cannot explain the rs224222 associated

region, it is interesting to note that of the 8 UC parents carrying a

rare mutation, 7 out of 8 transmitted the mutation to affected

probands (binomial exact test p = 0.07); 3 of these 8 UC parents

transmitted the rs224222 risk allele ‘‘A’’ to UC probands

(p = 1.000). Furthermore, 5 UC sporadic cases compared to 3

unaffected individuals carry a rare mutation, and 4 out of the 7

CD parents carrying a rare mutation transmitted the rare allele to

affected probands (p = 1.000).

7. No epistatic interactions are observed between NLRP3
and MEFV in the CD and UC combined Belgian-Canadian
sample set

Based on the identification of six common SNPs in the NLRP3

region contributing to CD susceptibility [3] and reports that the

NLRP3 and MEFV gene products interact with each other and are

involved in similar pathways, we sought to evaluate whether

possible gene-gene interaction between the MEFV tagging SNPs

and the NLRP3 six common SNPs could have masked an MEFV

contribution to CD susceptibility. Using the Belgian-Canadian 639

CD trios, 239 CD cases, and 107 healthy controls commonly

genotyped in this study and the NLRP3 study [3], stratified

analyses of MEFV variants conditional on each individual’s

genotypes at NLRP3 variants did not provide evidence of

associations under the possibility of epistasis (Figure S2).

In addition, we also evaluated the association of these six NLRP3

SNPs in the Belgian and Canadian UC sample sets and

subsequently assessed whether gene-gene interactions in the

combined Belgian-Canadian UC samples could explain the flip-

Table 2. Coding variants uncovered in the MEFV 59

haplotype block.

Base Change1
Amino Acid
Change dbSNP#2 Gene Location

c.77G.A R26Q Novel TIGD7 exon1

c.1600G.A V534I rs34236132 ZNF263 exon 6

c.929G.C C310S rs220379 ZNF263 exon 6

c.742A.C N248H Novel AK096958 exon1

c.306T.C D102D rs224225 MEFV exon 2

c.414A.G G138G rs224224 MEFV exon 2

c.442G.C E148Q rs3743930 MEFV exon 2

c.495C.A A165A rs224223 MEFV exon 2

c.605G.A R202Q rs224222 MEFV exon 2

c.942C.T R314R rs224213 MEFV exon 3

c.1105C.T P369S rs11466023 MEFV exon 3

c.1223G.A R408Q rs11466024 MEFV exon 3

c.1422G.A E474E rs224208 MEFV exon 5

c.1428A.G Q476Q rs224207 MEFV exon 5

c.1530T.C D510D rs224206 MEFV exon 5

c.1648C.G P550A Novel MEFV exon 7

c.1764G.A P588P rs1231122 MEFV exon 9

c.2118G.A P706P rs2234939 MEFV exon 10

1According to the cDNA coding sequence, with +1 from the A of the initiating
ATG. Reference sequences are NM_033208 (TIGD7), NM_005741 (ZNF263),
NC_000016 (AK096958), and NM_000243 (MEFV).

2dbSNP: www.ncbi.nlm.nih.gov/SNP
doi:10.1371/journal.pone.0007154.t002

Table 3. Association results of tagging SNPs and MEFV exon 2 coding SNPs in CD sample sets.

Belgian CD1 Canadian CD2 Combined CD3

SNP
Position
dbSNP130 Allele4

Frequency
Cases

Frequency
Controls P value Allele4

Frequency
Cases

Frequency
Controls P value Allele4

Frequency
Cases

Frequency
Controls P value

rs250470 3318978 T 0.27 0.26 0.5166 C 0.72 0.72 1.0000 T 0.27 0.26 0.8085

rs6501170 3317583 T 0.86 0.83 0.1133 T 0.87 0.82 0.0533 T 0.86 0.83 0.0345

rs220379/C310S 3279436 G 0.77 0.76 0.6680 G 0.76 0.71 0.1839 G 0.76 0.74 0.4105

rs190081 3263570 T 0.76 0.76 0.9732 T 0.75 0.71 0.1718 T 0.76 0.74 0.6941

rs224243 3259194 C 0.55 0.53 0.5570 T 0.42 0.42 0.8846 C 0.56 0.55 0.9843

rs224241 3257037 T 0.77 0.75 0.2282 T 0.76 0.73 0.3169 T 0.77 0.74 0.4385

rs224230 3248358 A 0.66 0.66 0.7677 G 0.40 0.33 0.0439 G 0.36 0.34 0.4493

rs224225/D102D 3244763 T 0.52 0.51 0.8556 T 0.57 0.55 0.6298 T 0.53 0.52 0.7611

rs224224/G138G 3244655 A 0.51 0.51 0.7661 A 0.57 0.55 0.6298 A 0.53 0.53 0.6568

rs224223/A165A 3244574 C 0.52 0.51 0.7818 C 0.57 0.55 0.6298 C 0.53 0.53 0.6832

rs224222/R202Q 3244464 A 0.27 0.26 0.4749 G 0.75 0.70 0.0885 G 0.74 0.72 0.8518

rs224217 3241758 G 0.53 0.51 0.8638 G 0.57 0.56 0.8290 G 0.54 0.53 0.7177

rs224215 3241361 G 0.39 0.39 0.7628 G 0.38 0.37 0.6582 G 0.39 0.38 0.5770

rs1231124 3234679 A 0.48 0.44 0.0822 A 0.49 0.42 0.0563 A 0.48 0.43 0.0549

rs442387 3226119 G 0.54 0.52 0.2781 G 0.56 0.51 0.1526 G 0.55 0.51 0.1015

rs401298 3220975 A 0.40 0.40 0.8400 A 0.41 0.37 0.2182 A 0.40 0.39 0.4608

1Includes 440 CD trios, 239 CD cases, and 107 healthy controls.
2Includes 256 CD trios.
3Includes 696 CD trios, 239 CD cases, and 107 healthy controls.
4Alleles shown are the alleles seen more frequently in the cases than in the controls.
doi:10.1371/journal.pone.0007154.t003
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flop phenomenon observed with rs224222, where different alleles

were associated with UC in the Belgian and Canadian samples.

No significant associations were observed between the six

NLRP3 SNPs and UC in the Belgian, Canadian, and combined

Belgian-Canadian sample sets when using the commonly geno-

typed 228 UC trios, 96 UC, and 107 healthy controls (Table S3),

nor were any significant interactions found between rs224222 and

SNPs in NLRP3 (Figure S3). Hence, multi-locus effects between

the two genes do not explain the observed flip-flop. Additionally,

the levels of association for the MEFV SNPs conditional on each

individual’s genotypes at NLPR3 are in the same order of

magnitude than the unconditional levels of association (Figure

S3), indicating that epistasis between the two genes is not a

mechanism that would be a regulator of the risk of MEFV on UC.

Discussion

Genes, such as MEFV, in which mutations lead to severe

systemic inflammatory diseases, like the AIDs, play a critical role

in the control of inflammation and may represent potential

candidates for the onset of chronic inflammatory disorders like CD

and UC. To further support our candidate gene selection, we

integrated results from mice and human colonic expression studies

of MEFV. We found Mefv expression to be significantly increased

in both TNBS-induced colitis mice model, which mimics CD-like

intestinal inflammation, and in DSS-induced colitis mice model,

which mimics UC-like intestinal inflammation. Gene expression

was also increased in inflamed colonic tissues from both CD and

UC patients, correlating with severity of inflammation. Fine

mapping of the MEFV region revealed two haplotype-blocks with

a previously reported recombination hotspot located in MEFV

intron 2 [32]. In our exploratory phase, we report associations of

variants located in the MEFV 59 region with both CD and UC in

Belgian samples, yet we failed to subsequently validate these

associations in the Canadian and Scottish additional sample sets.

The up-regulation of MEFV gene expression in the CD and UC

patients, as well as in the mouse models, can be explained by the

broad involvement of pyrin, the MEFV encoded protein, in the

regulation of the inflammasome molecular platform and the

inflammatory process [12–18]. Previously published studies [25–

28] have excluded the involvement of the MEFV gene in CD

pathogenesis by looking at specific rare FMF missense causative

mutations clustered in exons 2 and 10 in a relatively small number

of CD cases. Unlike these previous reports, we carried out a

thorough genetic screening of the MEFV region in two large CD

sample sets and observed no association between common variants

in the MEFV region and CD. Also, given that common variants in

the NLRP3 region have previously been associated with CD [3]

and that the gene products of NLRP3 and MEFV (i.e. NALP3 and

pyrin, respectively) are known to interact together in the

inflammasome molecular platform [16–18], we also perform

gene-gene interaction analysis between common variants in the

MEFV and NLRP3 region to assess whether such interactions could

have masked the MEFV contribution to CD pathogenesis. Since

no interactions were observed when looking at the large Belgian-

Canadian CD sample set and no common variants were

consistently associated with CD in the MEFV region, we conclude

that common variants in the MEFV region are unlikely to

contribute to CD susceptibility, which is in agreement with

previous studies looking at rare FMF causative mutations [25–28].

Upon the observation of significant associations between SNPs

located in the 59 block region of MEFV and UC in the exploratory

phase, we excluded possible coding risk variants and non-MEFV

genes located in this 59 block by sequencing all the exonic and

promoter regions of the five genes in the region and genotyping

the uncovered non-synonymous variants. Only coding SNPs

within MEFV exon 2 (i.e. rs224225, rs224224, rs224223, and

rs224222) were significantly associated with UC in the Belgian

samples. However, none of the synonymous variants were

associated with UC in the Canadian samples, and we observed

opposite rs224222 allele association with UC in the Belgian and

Canadian cohorts, suggesting that rs224222 was unlikely to be a

causative variant contributing to UC susceptibility.

Such flip-flop associations observed with rs224222 in samples of

similar ethnical origins are often regarded as spurious findings,

leading to a number of different possible explanations for such

observations, like a difference in genetic background and environ-

ment [33–34]. For example, when attempting to replicate the

association of a non-causal allele in LD with the causative variant in

two different populations, as it is the case with our Belgian and

Canadian sample sets, a difference in LD patterns between the

populations could result in inconsistent associations observed across

sample sets [33–34]. This is not our case, as the Belgian and

Canadian UC sample sets displayed very similar LD patterns in the

MEFV region (data not shown). This inverse association could also

indicate the presence of interactions with another risk locus [33].

Complex traits usually result from the interplay of several genetic risk

loci and environmental factors. Lin et al. have shown that performing

single marker analysis without considering the possibility of other

genetic risk loci or environmental risk factors correlating with the

candidate locus, or the possibility of a multi-locus effect, could also

lead to flip-flop associations [33]. To assess this latter possibility, since

we knew that the MEFV and the NLRP3 gene product interacted

with each other, we genotyped the six SNPs in the NLRP3 region

that had been previously associated with CD [3] in both the Belgian

and Canadian UC sample sets and performed gene-gene interaction

analysis using these six NLRP3 SNPs and the 16 SNPs genotyped in

the MEFV region (i.e. 12 tagging SNPs and 4 coding SNPs in MEFV

exon 2 region). As no significant interactions were observed between

NLRP3 variants and rs224222, the basis behind the inverse allele

associations observed with rs224222 remains unresolved.

Although we have not mapped a causative variant in MEFV

exon 2, we observed that this exon is enriched with rare mutations

that tend to be transmitted to patients, indicating not only the

allelic heterogeneity of that region but also its biological

importance. However, the distribution of the rs224222 risk allele

was not significantly skewed in carriers of these rare mutations.

Of interest, several other groups have reported the contribution

of MEFV and SNPs in the same 59 region to the susceptibility of

UC and other chronic inflammatory disorder. For example, the

alleles of the 4 coding variants of MEFV exon 2 (rs224225,

rs224224, rs224223 and rs224222: CGAA/G) that are significantly

associated with UC in this study have also been associated with

FMF causative rare mutations in Mediterranean populations [32].

A study conducted in a Greek population, focusing precisely on

MEFV exons 2 and 10, reported an association between UC and a

MEFV exon 2 haplotype [29]. Yet, the FMF causative mutations

were reported to be associated with the other alleles of the exon 2

coding variants (i.e. rs224225, rs224224, rs224223, rs224222:

TACG) in this population. This latter difference in association

could be a consequence of a distinct founder effect or of the

relatively small sample size evaluated in their study, which

comprised only 25 UC patients, 28 patients with rheumatoid

arthritis, and 65 healthy individuals [29]. In agreement with our

preliminary UC association results, another study reported the

association of six SNPs in the MEFV region with juvenile

idiopathic arthritis [35]. Among these SNPs, three of them (i.e.

rs224217, rs224225, rs224223) located in the MEFV 59 region

MEFV and IBD Susceptibility
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were also associated in our study. Although of modest size, these

studies point towards the same MEFV region as being involved in

inflammatory processes.

Despite the above-mentioned studies, our UC exploratory

association results need to be interpreted with caution. Indeed, the

associations were observed in two relatively small UC sample sets

(totaling 228 Belgian-Canadian trios, 96 UC cases and 107 healthy

controls), and no associations were replicated in our largest UC

sample set from Scotland (495 UC cases and 370 controls).

Additionally, in the combined analyses of all sample sets, we

observed no SNPs significantly associated with UC. Overall, given

the lack of consistent replication across all our screened sample sets

and the lack of SNP associations in the largest sample set (i.e.

combined analysis of all samples), we conclude that MEFV is

unlikely to contribute to UC susceptibility.

In addition to the size of the sample sets, another possible

explanation for the lack of replication may originate from a

difference in demographic and clinical characteristics of the UC

samples studied. Although no specific genotype-phenotype asso-

ciations were detected (data not shown), it is worth mentioning

that while the mean age of onset of the probands of Belgian and

Canadian UC trios is closer to 25 years old, the average age is

approximately 40 for the Liege and Scottish UC cases (Table 5).

Unlike CD where distinct categories of age of onset have been

established by the Montreal classification (i.e. below 16, between

17–40, and above 40 years old) [36], such standards do not

currently exist for UC. It is possible that UC patients with later age

of onset have different risk factors involved than those individuals

with earlier disease presentation. Such a difference in patients’ age

of onset could perhaps explain the lack of replication. Other

differences in clinical subtype distribution in each case group, both

UC and CD, may have also contributed to the lack of replication;

unfortunately, no definitive conclusions may be reached since

detailed information for some of the Centers that provided the

samples is incomplete (Table 5).

This is also the first report evaluating the six NLRP3 variants

associated with CD [3] in a UC sample set. Interestingly, as is the

case for the NOD2 mutations associated uniquely to CD [37], no

Table 5. Demographic and clinical characteristics.

Belgian
CD Trios

Canadian
CD Trios

Liege CD
Cases1

Belgian UC
Trios

Canadian
UC Trios

Liege UC
Cases1

Scottish
UC Cases

Scottish
Healthy Controls

Total Number of individuals 440 256 239 137 91 96 495 370

Demographic

Gender

Male 176 (40) 114 (47.9) 83 (34.7) 64 (46.7) 36 (45.6) 62 (64.6) 246 (51.7) 137 (50.2)

Female 264 (60) 124 (52.1) 156 (65.3) 73 (53.3) 43 (54.4) 34 (35.4) 230 (48.3) 136 (49.8)

Clinical

Age at diagnosis mean6s.d. (range) 25.067.67
(10–50)

20.6469.93
(2–43)

31.93613.79
(3–75)

28.8269.41
(11–58)

22.94611.67
(3–54)

40.23615.07
(5–72)

38.28616.37
(9–81)

-

Smoking (%) 190 (48.1) - 112 (49.3) 17 (16.5) - 31 (32.6) 231 (50.4) -

Unavailable data 45 - 12 34 - 1 37 -

Surgery (%) 213 (51.1) - 103 (43.1) 24 (20.2) - 9 (9.4) 87 (18.5) -

Unavailable data 23 - - 18 - - 25 -

Type of CD (%)

1- Inflammatory (non-stricturing,
non-penetrating)

140 (51.9) - 124 (54.1) - - - - -

2- Stricturing 51 (18.9) - 59 (25.8) - - - - -

3- Penetrating 79 (29.3) - 46 (20.1) - - - - -

4- Unavailable data 170 - 10 - - - - -

Extent CD (%)

1- Terminal ileum 90 (30.0) - 94 (39.3) - - - - -

2- Colon 129 (43.0) - 86 (36.0) - - - - -

3- Ileocolon 48 (16.0) - 47 (19.7) - - - - -

4- Upper GI 33 (11.0) - 12 (5.0) - - - - -

5- Unavailable data 140 - - - - - - -

Extent UC (%)

1- Ulcerative proctitis - - - 28 (23.7) - 19 (20.7) - -

2- Left sided UC (distal UC) - - - 39 (33.1) - 38 (41.3) - -

3- Extensive UC (pancolitis) - - - 51 (43.2) - 35 (38.0) - -

4- Unavailable data - - - 19 - 4 - -

Extra-intestinal manifestation (%) 102 (38.9) - 57 (28.1) 11 (21.2) - 14 (17.1) 102 (28.6) -

Unavailable data 178 - 36 85 - 14 138 -

1Phenotypic information is not available for healthy controls from Liège.
doi:10.1371/journal.pone.0007154.t005
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associations between the NLRP3 variants and UC were observed.

Given the similarities between NOD2 and NLRP3, both members

of the CATERPILLER family [10], and the above results, we

conclude that the NLRP3 association is likely to be specific to CD.

Both gene products of NOD2 and NLRP3 play central roles in

intracellular bacterial sensing and the CD associated variants of

both genes were reported to result in a loss-of-function phenotype

characterized by a decrease in secretion of IL-1b [3,38–41].

Interestingly, the autophagy genes IRGM and ATG16L1 have also

been associated specifically to CD [42–43]. These results suggest

that alterations in the intracellular sensing and processing of

bacteria may constitute a central feature specific to the

pathogenesis of CD, and that such primary defect in CD could

result in the compensatory increase in the activity of Th1 cells that

is observed in the lamina propria of patients with CD, but not in

those with UC [37,44–45]. We conclude that two of the key

regulators of the inflammasomes, NLRP3 and MEFV, do not seem

to contribute to UC susceptibility.

Several factors prompted us to hypothesize that MEFV could

equally well be implicated in CD and UC susceptibility: mutations in

both MEFV and NLRP3 cause auto-inflammatory diseases, these two

genes encode for pyrin domain containing-proteins [10] that

participate in the same shared signaling pathway (i.e. the inflamma-

some) [12–18], and the recent description of common variants in the

NLRP3 region associated with CD [3]. However, our results suggests

otherwise since we observed no consistent associations with common

variants in the MEFV region across all our screened sample sets and

no epistatic interaction between MEFV and NLRP3 variants. We

thus conclude that variants in the MEFV region are unlikely to

contribute to CD and UC susceptibility.

Materials and Methods

Ethics statement
All research involving mice were handled according to

institutionally recommended animal care guidelines and all

experiments were approved by the Animal Studies Ethics

Committee of McGill University. The McGill University Health

Centre Institutional Review Board approved the human expres-

sion study of colonic biopsy specimens and written informed

consent was obtained from all participating subjects. The local

Institutional Review Board of each Institution that sent DNA

samples approved the human genetic study, and written informed

consent was obtained from all participating subjects.

Tissue collection
Animal experiments. Male BALB/c mice (between 6 and 8

weeks of age), obtained from Charles River Laboratory (St-

Constant, Québec, Canada), were maintained under conventional

housing conditions. Colitis was either induced by rectal instillation

of 2.5 mg of trinitrobenzene sulfonic acid (TNBS) (Sigma Aldrich

Canada Ltd., Ontario, Canada) or mice were fed with 5% dextran

sulfate sodium (DSS) (MP Biomedicals, OH, USA) using modified

protocols previously reported [46–47]. Human tissue biopsies:

Colonic biopsy specimens were obtained from CD patients in

ulcerated (severe involvement) and non-ulcerated (mild

involvement) mucosa, from UC patients in inflamed areas as

defined by Mayo sub-endoscopic criteria, and from patients who

underwent colorectal cancer screening (CD n = 16; UC n = 17;

Controls n = 25).

RNA extraction and real-time quantitative PCR
Biopsies preserved in RNALater (Qiagen, Ontario, Canada)

were homogenized and total RNA was extracted using TRIZOL

(Invitrogen, Ontario, Canada). First strand cDNA was synthesized

using the cDNA Archive Kit (Applied Biosystems (ABI), CA, USA)

with MultiScribe reverse transcriptase and random primers. For

both human and mice, primers and probes were ordered from

Assay-on-demand ABI catalogue (mice Mefv: Mm00490260_gl;

human MEFV: Hs00165145_ml; 18S: 4319413E). Quantitative

real-time PCR was performed using ABI prism 7900 sequence

detection system based on the 59 nuclease assay [48], and

quantified using ABI’s comparative Ct method. Statistical analyses

were performed using the Wilcoxon Signed Ranks test to evaluate

tissue (mice and human) expression differences (SPSS, Version

11.5, USA).

Study populations
Three main sample sets, coming from 5 different Centers, were

analyzed in this study (see detailed descriptions in Tables 1 and 5),

comprising a total of 696 CD trios, 228 UC trios, 239 CD cases,

591 UC cases, and 477 controls. All patients were recruited

through specialized hospitals, academic centres, and practitioners.

Inflammatory bowel disease (IBD) specialists involved in this study

confirmed the diagnosis of CD and UC using standard criteria

further described below [36,49], and patients were excluded from

the study in the case of doubtful diagnosis. In all the participating

Centers, the diagnosis of IBD was made after fulfilling standard

clinical, radiological, endoscopic, and pathology criteria [1,36,49]

that required (1) one or more of the following symptoms: diarrhea,

rectal bleeding, abdominal pain, weight loss, fever or complicated

perianal disease; (2) occurrence of symptoms on two or more

occasions in the past or ongoing symptoms of at least 4–6 weeks’

duration; (3) evidence of inflammation, strictures or fistula from

radiological, endoscopic, and histological evaluation (with some

specific CD characteristics); (4) exclusion of all other diagnosis

besides CD.

Belgian subjects (referred to as the combined Belgian cohort,

Table 1), all of European descent, were used for the exploratory

phase of the study and these came from Center 1 (University of

Leuven, Belgium) and Center 2 (University of Liege, Belgium).

The replication cohorts consisted of Canadian subjects (referred to

as the combined Canadian cohort, Table 1), coming from Centers

3 and 4, and Scottish subjects from Edinburgh (Centre 5, Table 1).

Center 3 is composed of subjects collected from multiple sites in

the province of Québec (Canada), which are all of European

ancestry, and includes 34 probands of Ashkenazi Jewish ancestry

and 6 of Sephardic Jewish ancestry. Center 4 includes subjects

collected from multiple sites in Toronto (Canada). The vast

majority of probands are of European ancestry, including 34

probands of Ashkenazi Jewish ancestry, and 15 probands are of

non-European ancestry. Finally, cases and matched controls from

Center 5 were collected from multiple sites in Edinburgh

(Scotland). The majority of cases are of European ancestry,

including 1 case of Jewish ancestry, except for 14 non-European

cases and 11 non-European controls. Center 5 will be referred to

as the Scottish cohort. Overall, only samples of European origin

were included in the analysis.

Genotyping experiments
Single nucleotide polymorphism (SNP) genotyping was per-

formed using either the GenomeLab SNPstream Genotyping

System (Beckman Coulter, CA, USA) [50], the fluorescence

polarization template-directed dye-terminator (FP-TDI) system

(PerkinElmer, MA, USA) [51], or the Taqman 59 exonuclease

assay (ABI, CA, USA) (rs2242217: assay C_2394717_20) [52].

Also, since two non-synonymous variants (rs3743930, rs224222) as

well as three synonymous variants (rs224225, rs224224, rs224223)
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were observed in MEFV exon 2 during the sequencing screening

phase, genotyping of these variants was done using a sequencing

approach. All primers and probes are available in Table S4.

We used 4 quality checks to determine whether SNPs were

reliable and informative: (1) genotyping efficiency (.95%), (2)

compliance to Hardy-Weinberg equilibrium (p.0.01), (3) Mende-

lian inheritance, and (4) population minor allele frequency (.5%).

Sequencing
Sequencing was performed on an ABI 3730 DNA Sequencer

according to standard protocols. Sequence traces were assembled

and analyzed using a modified version of the PolyPhred software

package. Primer sequences are available in Table S5. The

sequences were compared to the annotated sequences (NCBI Build

36.1, hg18) of 25 exons and promoter regions of MEFV, AK096958,

ZNF263, TIGD7 and ZNF75A to identify novel variants.

Statistical analysis
To evaluate MEFV as a candidate gene for IBD, we divided the

study into an exploratory and replication phase. Mendelian errors

and departures from Hardy-Weinberg equilibrium were assessed

using MERLIN v0.9.10. Measures of pairwise LD between SNPs

(D’ and r2) were computed using Haploview v.4.1 [53]. Tests of

association were performed using the likelihood methods imple-

mented in UNPHASED v3.0.10 [54], which can analyze samples

of nuclear families, unrelated subjects, or a combination of both. It

also allows tests to be conditional on each individual’s genotype at

one marker to test for association at another, to look for

associations that may have been missed due to the possibility of

epistasis between two loci. It also tests for the presence of gene-

gene interaction (i.e. merely, the departure from log-additive

effects of two or more SNPs on the risk). Analysis was done using

the default settings; adjustment for Study Center in the combined

analysis was done using the options –confounder and –factor;

conditional analyses were done using the options –condition and –

condgenotype, and gene-by-gene interactions was tested by adding

the option –model gxg. To evaluate the significance of our results

after correcting for the number of SNPs tested, we used the options

–permutation 1000 and –permoutput, and corrected further for

the two diseases tested.

Supporting Information

Figure S1 Linkage disequilibrium structure between tagging SNPs and

MEFV exon 2 coding SNPs screened in the combined Belgian IBD sample set.

Shown above are the SNPs with their positions in the genes and

the LD structure between them. SNPs in red are exonic. The

upper left portion of the coloured matrix is D’ and the lower right

portion is r2. Data for the first SNP is represented on the left

column and the bottom row of the matrix.

Found at: doi:10.1371/journal.pone.0007154.s001 (1.61 MB TIF)

Figure S2 Conditional tests of association and tests of gene-gene

interactions between SNPs in MEFV and in NLRP3 in the combined

Belgian-Canadian CD sample set. P values for the tests are color

coded and represented. For each combination of SNPs, the upper

triangular portions of each square represent the p value for testing

the association of the MEFV SNP (horizontal axis) conditional on

each individual’s genotype at the NLRP3 SNP (vertical axis). The

lower triangular portions of each square represent the p value for

the test of statistical interaction between the two SNPs. The

unconditional tests of association for each SNP in MEFV are

shown on the line labeled ‘‘none’’. The two MEFV non-

synonymous variants C310S and R202Q are also referred to as

rs220379 and rs224222, respectively.

Found at: doi:10.1371/journal.pone.0007154.s002 (0.91 MB TIF)

Figure S3 Conditional tests of association and tests of gene-gene

interactions between SNPs in MEFV and in NLRP3 in the combined

Belgian-Canadian UC sample set. Refer to legend of Figure S2.

Found at: doi:10.1371/journal.pone.0007154.s003 (0.95 MB TIF)

Table S1 Exploratory phase association results of the SNP panel genotyped

in the combined Belgian CD and UC trios sample sets.

Found at: doi:10.1371/journal.pone.0007154.s004 (0.11 MB

DOC)

Table S2 Rare variants uncovered in MEFV exon 2.

Found at: doi:10.1371/journal.pone.0007154.s005 (0.07 MB

DOC)

Table S3 Association results of NLRP3 tagging SNPs in UC sample

sets.

Found at: doi:10.1371/journal.pone.0007154.s006 (0.04 MB

DOC)

Table S4 List of oligos and probes used to perform the genotyping

experiments.

Found at: doi:10.1371/journal.pone.0007154.s007 (0.15 MB

PDF)

Table S5 List of oligos used to amplify fragments for the sequencing

experiments.

Found at: doi:10.1371/journal.pone.0007154.s008 (0.14 MB

DOC)
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