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Abstract: Background/Objectives: Duloxetine, despite being a leading treatment option
for major depressive disorder (MDD), exhibits a relatively low adequate response rate
when used as a monotherapy, and the fundamental molecular mechanisms remain largely
elusive. tRNA-derived small RNA (tsRNA) is a particularly interesting and new class
of molecules that is becoming increasingly noticeable for investigation. Methods: We
integrated small RNA sequencing with bioinformatics approaches to dissect the expression
profiles of tsRNAs and decipher their functional roles post-duloxetine treatment. Subse-
quently, molecular docking experiments were carried out to validate the potential functions.
Results: Ten tsRNAs significantly changed in the duloxetine response group after an 8-week
therapy. Correlation analyses revealed that these tsRNAs predominantly interacted with
miRNAs across multiple biological pathways and processes, such as the ECM-receptor
interaction and B cell activation. Molecular docking analysis corroborated the binding
capabilities of duloxetine with key proteins associated with ECM1 and BAFF, respectively.
Conclusions: The identified changes in tsRNAs can precisely mirror the response of du-
loxetine in MDD treatment, offering novel insights into the underlying mechanisms of
duloxetine action.

Keywords: duloxetine; functional prediction; small non-coding RNAs; tRNA-derived small
RNAs; biomarkers; ECM1; BAFF

1. Introduction
Major depression represents a heterogeneous ailment, characterized by a multiplicity

of symptoms, including cognitive impairments and diverse forms of physical disabilities.
This condition imposes significant health and social burdens on a global scale, as attested
by numerous studies [1]. Among the array of treatment modalities available, such as
psychological behavior intervention and diet and nutrition intervention, drug therapy
remains the cornerstone of treatment. Antidepressants have demonstrated pronounced
efficacy in treating moderate to severe depressive episodes; nevertheless, the individual
responses to these pharmacological interventions exhibit substantial variability. Despite
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the wide range of antidepressants in clinical use today, a staggering 30–40% of patients
fail to achieve a full therapeutic response [2,3]. The lack of response not only prolongs
patients’ suffering but also places an onerous burden on both patients and their families.
Thus, delving deeper into the factors that influence antidepressant treatment outcomes is
of paramount importance and urgency.

Duloxetine, being one of the most prevalently prescribed antidepressants, has drawn
considerable clinical attention regarding its therapeutic efficacy and has been the subject
of in-depth investigations [4,5]. Gene sequencing studies have revealed genetic variants
upstream of STAC1 that are correlated with the treatment response in patients with de-
pression, whether they were administered duloxetine or a placebo [6]. Non-coding RNAs
(ncRNAs), a category of RNA molecules that do not participate in protein translation,
function as regulatory elements, akin to molecular spinners and switches, modulating the
transcriptional activity of gene expression. Dysregulation of ncRNAs frequently disrupts
the biochemical pathways implicated in major depressive disorder (MDD) [7,8]. The iden-
tification of changes in ncRNAs in response to drugs used for treating MDD holds the
promise of uncovering biomarkers capable of predicting drug responses, thereby facilitat-
ing the efficient screening of patients who exhibit minimal or no response to traditional
medications [9].

Transfer RNAs (tRNAs), a class of ncRNAs that rank second in abundance within
cells, can be enzymatically cleaved into a diverse assortment of ncRNA fragments, typically
ranging from 18 to 40 nucleotides in length. These fragments, generated from either precur-
sor tRNAs or mature tRNAs through the action of specific endonucleases, have recently
emerged as functionally significant small non-coding RNAs, termed tsRNAs. Mounting
evidence implicates multiple tsRNA dysregulations in various human diseases [10–12].
Notably, tsRNAs have been reported to modulate pathophysiological alterations in neuro-
logical disorders, such as neurodegeneration and nerve injury, suggesting their potential
role in regulating mental disorders [13]. Current research indicates that specific tRNA-
modifying enzymes and tsRNAs could serve as promising diagnostic biomarkers and
therapeutic targets [14]. However, to date, no studies have explored the role of tsRNAs in
human depression.

In the present study, we sought to investigate tsRNAs as prospective biomarkers for
antidepressant response by employing small-RNA sequencing on matched specimens from
patients with MDD. These patients were participants in a placebo-controlled, randomized
trial evaluating duloxetine treatment, with samples collected both prior to treatment initia-
tion and eight weeks after the commencement of therapy. Our findings demonstrate that the
levels of ten tsRNAs are differentially regulated in relation to antidepressant response and
are involved in modulating genes associated with crucial biological processes, including
extracellular matrix (ECM)-receptor interaction, the transforming growth factor-β (TGF-β)
signaling pathway, fatty acid biosynthesis, thyroid hormone synthesis, the Hippo signaling
pathway, the plasma membrane signaling receptor complex, and humoral immune re-
sponse. Further molecular docking analysis confirmed the binding potential of duloxetine
and key proteins, verifying the pathways involved in the drug response of duloxetine
involved in the above tsRNA.

2. Materials and Methods
Dataset: The miRNA-seq sequencing and miRNA expression files were collected

from GSE97154 [15]. This study is a double-blind clinical trial that is registered at
www.ClinicalTrials.gov (11984A NCT00635219). A total of 258 patients (males n = 80;
females n = 178) were enrolled and diagnosed with MDD. Participants were randomly
designated to obtain either a placebo or 60 mg of duloxetine. Peripheral blood samples

www.ClinicalTrials.gov
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were collected at the beginning of the study and following the treatment period. For
inclusion criteria, patients were aged from 19 to 74 and were diagnosed with MDD and a
major depressive episode (MDE) lasting more than three months, having a severity score
on the Montgomery–Asberg Depression Rating Scale at baseline of no less than 22. For
exclusion criteria, patients had undergone at least two prior antidepressant (AD) treatments,
experienced electroconvulsive therapy within the six weeks preceding the study or had
a major depressive episode (MDE) along with bipolar disorder, psychotic features, or a
recent substance use disorder. The percentage change of Montgomery–Asberg Depression
Rating Scale (MADRS) scores was calculated (from week 0 to week 8 therapy) to quantify
the therapy response. The responder/non-responder were categorized according to a great
decrease in Montgomery–Asberg Depression Rating Scale scores from week 0.

Sequencing data analysis: All sequencing data were sequenced on the HiSeq2500
Illumina sequencer (Illumina, San Diego, CA, USA). The Cutadpt 2.1 was utilized, and
low-quality reads were filtered [16]. The expression data of tsRNAs were obtained after
clean reads were aligned to the mature-tRNA genome using MINTmap(v2.0) [17]. Missing
values were imputed by MetImp 1.2 [18].

Statistical analysis: We conducted a comparison of treated patients (week 8) and
baseline (week 0) using the student t-test. Correlation analysis between the single vectors
was performed using the Spearman correlation. For two matrix correlation analysis, the
Spearman correlation first analyzed the correlation analysis between the single tsRNA with
single miRNA, and then miRNAs with p < 0.001 were selected for the matrix Mantel test.
DIANA tools were used for miRNA pathway analysis [19]. R software (version 4.0.2) was
employed for all analyses.

Target Prediction: The RNAhybrid algorithm was employed to forecast the potential
binding mRNAs’ targets, using a screening criteria of energy <−25 kcal/mol) (https:
//bibiserv.cebitec.uni-bielefeld.de/, accessed on 28 January 2024). Shingo was applied to
analyze cellular components and biological processes, as well as identify potential functions
(http://bioinformatics.sdstate.edu/go/, accessed on 28 January 2024).

Molecular docking: The crystal structure of the key protein (ECM1 and BAFF) was
obtained in the Protein Data Bank (PDB, https://www.rcsb.org/), respectively. The 3D
structures of duloxetine were downloaded from PubChem (https://pubchem.ncbi.nlm.nih.
gov/). The Autodock 4.0 was applied to perform molecular docking and calculate binding
affinity. Each calculation generated 50 structures, and the molecular docking output was
prioritized according to the frequency of possible ligand-binding sites and free-energy
score. The docking results of ECM1 proteins and duloxetine were visualized by PyMOL
2.2.0 software.

3. Results
3.1. Differential tsRNA Expression After Duloxetine Therapy
3.1.1. The Workflow of the Study

The study began by obtaining sequencing data in fastq format from the GSE97154
dataset. The sequencing reads were then processed to remove adapters, ensuring high-
quality data for subsequent analysis. The workflow of the study is shown in Figure 1.

https://bibiserv.cebitec.uni-bielefeld.de/
https://bibiserv.cebitec.uni-bielefeld.de/
http://bioinformatics.sdstate.edu/go/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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3.1.2. Differential tsRNA Expression Identification

From the processed data, transfer RNA-derived small RNAs (tsRNAs) were extracted
for further investigation. After we extracted the tsRNA expression data from small-RNA-
sequencing blood samples, we compared the expression of tsRNAs after and before therapy
(week 8 to week 0). A 5% false discovery rate (FDR) using the Benjamini–Hochberg cor-
rection for multiple testing was applied in differential analysis. The findings indicate a
differential expression of ten tsRNAs in the duloxetine response group after an 8-week
treatment period (Table 1) and two tsRNAs in the placebo non-responsive group (Table 2).
We analyzed each group’s overlap through the Venn diagram and found that tRF-36-
D4ZWRNU3KQ9MV1B overlapped in the duloxetine response and placebo non-responsive
groups (Figure 2). We further analyzed the expression of ten tsRNAs significantly changed
in the duloxetine response group before and after treatment and found that ten tsRNAs clus-
ter into two principal classes in the heatmap (Figure 2). These tsRNAs with p value < 0.05
were calculated in a paired student t-test and listed (Supplementary Table S1).
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Table 1. Duloxetine response Signiant tsRNAs (FDR < 0.001).

Name Sequence p Values Fold Change FDR

tRF-20-9LON4VN1 TGGTAGAATTCTCGCCTGCC 2.65 × 10−9 0.567917175 1.08 × 10−6

tRF-31-PNR8YP9LON4VD GCATTGGTGGTTCAGTGGTAGAA
TTCTCGCC 2.02 × 10−8 0.655811181 2.73 × 10−6

tRF-19-VBY9PY11 TAGAATTCTCGCCTGCCAC 1.75 × 10−8 0.542665077 2.73 × 10−6

tRF-50-PNR8YP9LON4VN1EH6KK8
GCATTGGTGGTTCAGTGGTAGAA
TTCTCGCCTGCCACGCGGGAGGC
CCGG

4.47 × 10−8 0.684414445 4.53 × 10−6

tRF-32-PNR8YP9LON4V3 GCATTGGTGGTTCAGTGGTA
GAATTCTCGCCT 2.62 × 10−6 0.744936648 0.000178

tRF-20-WB8689SV TCGAATCCCATCCTCGTCGC 2.98 × 10−6 1.259833712 0.000178

tRF-36-D4ZWRNU3KQ9MV1B AAGTGTTTGTGGGTTTAAGTCCC
ATTGGTCTAGCCA 3.08 × 10−6 1.489983712 0.000178

tRF-20-VBY9PYKH TAGAATTCTCGCCTGCCACG 4.19 × 10−6 0.705437268 0.000213

tRF-33-86V8WPMN1E8Y0E TCCCATATGGTCTAGCGGTTAGG
ATTCCTGGTT 2.02 × 10−5 1.319922659 0.00082

tRF-43-7673FEWS3V2VR0PSDZ GTTCAGTGGTAGAATTCTCGCCT
GCCACGCGGGAGGCCCGGGT 1.85 × 10−5 1.493597202 0.00082

Table 2. Placebo non-response Signiant tsRNAs (FDR < 0.001).

Name Sequence p Values Fold Change FDR

tRF-34-10I9BZBZOS4YE2 AGGAGATTTCAACTTAACTTGAC
CGCTCTGACCA 1.82 × 10−7 1.617784657 7.38 × 10−5

tRF-36-D4ZWRNU3KQ9MV1B AAGTGTTTGTGGGTTTAAGTCCC
ATTGGTCTAGCCA 5.62 × 10−7 1.697292931 0.000114

Genes 2025, 16, x FOR PEER REVIEW 6 of 16 
 

 

 

Figure 2. Venn diagram of each group and duloxetine treatment response tsRNA expression analy-
sis. Unsupervised hierarchical clustering of all significant tsRNA markers for duloxetine treatment 
response. Each row is tsRNA, and the column is the patient sample. 

3.2. Correlation Analysis and Functional Enrichment Analysis 

3.2.1. Correlation Analysis of tsRNAs and tsRNA Expression 

To analyze the relationship between these tsRNAs, we applied Spearman correlation 
analysis. The heatmap in Figure 3 shows that these tsRNAs are divided into two catego-
ries, each of which is positively correlated internally. Following an 8-week treatment, we 
observed that among the two types of tsRNA, four were upregulated, and six were down-
regulated (box plots in Figure 3). Unlike miRNAs that are widely studied, only a few 
tsRNA functions are known. Here, we use the correlation analysis of tsRNAs and miR-
NAs, generated by previous research, and enhance the functions of these miRNAs, which 
are strongly related to tsRNAs, to predict the functions attributed to them. 

Figure 2. Venn diagram of each group and duloxetine treatment response tsRNA expression analysis.
Unsupervised hierarchical clustering of all significant tsRNA markers for duloxetine treatment
response. Each row is tsRNA, and the column is the patient sample.



Genes 2025, 16, 162 6 of 14

3.2. Correlation Analysis and Functional Enrichment Analysis
3.2.1. Correlation Analysis of tsRNAs and tsRNA Expression

To analyze the relationship between these tsRNAs, we applied Spearman correlation
analysis. The heatmap in Figure 3 shows that these tsRNAs are divided into two cate-
gories, each of which is positively correlated internally. Following an 8-week treatment,
we observed that among the two types of tsRNA, four were upregulated, and six were
downregulated (box plots in Figure 3). Unlike miRNAs that are widely studied, only a few
tsRNA functions are known. Here, we use the correlation analysis of tsRNAs and miRNAs,
generated by previous research, and enhance the functions of these miRNAs, which are
strongly related to tsRNAs, to predict the functions attributed to them.
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3.2.2. Correlation Analysis Between Significant tsRNAs and miRNAs

Figure 4A illustrates the correlation analysis between tsRNAs and miRNAs, high-
lighting specific interactions that could play crucial roles in regulating the molecu-
lar pathways implicated in MDD. This figure reveals patterns of connectivity that
suggest both direct and indirect regulatory relationships, affecting the transcriptional
landscape in response to duloxetine treatment. Particularly, we can observe that that
tRF.50.PNR8YPLON4VN1EH6KK8 and tRF.33.86V8WPMN1E8Y0E have more interaction
pathways with miRNAs, indicating their potentially influential roles in regulating or being
regulated by the expression of various miRNAs.
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3.2.3. Correlation Analysis miRNA Function Study

The results of the correlated miRNA function study are shown in Figure 4B. miR-
146a and miR-146b were correlated with thyroid hormone synthesis. The ECM-receptor
interaction was correlated with miR-425, while fatty acid biosynthesis was correlated with
miR-16, respectively.

We selected miRNAs with Mantel’s p value less than 0.01 for enrichment analysis.
Enrichment analysis revealed that these miRNAs mainly interact with ECM-receptor inter-
action together with fatty acid biosynthesis, thyroid hormone synthesis, TGF-β, and the
Hippo signaling pathway (Supplementary Table S2).

3.3. Bioinformatic Prediction of the Ten Significantly Expressed tsRNAs

The function of ten significantly expressed tsRNAs in the duloxetine response group
was studied using bioinformatic techniques. Figure 5A depicts the enrichment analysis
of the biological process. Among them, the notable enrichment and the significant terms
discovered were, respectively, the plasma membrane signaling receptor complex and the
humoral immune response in molecular function. The cellular component of tsRNA target
genes is shown in Figure 5B with the identical findings.
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3.4. Duloxetine with Its Corresponding Proteins

According to the result of functional enrichment analysis, ECM1, an important protein
in ECM-receptor interaction, was proposed to find a potential relationship with duloxetine.
Molecular docking analysis displayed the possibility that duloxetine binds to GLU199 of
ECM1. The predicted binding energy is −4.84 kcal/mol (Figure 6A), which indicates that
there is a strong affinity between protein and ligand. By observing the protein surface model,
one can also see that the ligand is only attached to the protein surface, and a hydrogen
bond is formed between the ligand and the protein residue, which fully demonstrates the
interaction between duloxetine and the ECM1 protein.
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According to biological process enrichment analysis and cellular component enrich-
ment of tsRNA target genes (Figure 5), B cell activation is the most frequent biological
process. Hence, BAFF (B cell activating factor) is selected. Our docking results show
that the interaction free energy between BAFF and duloxetine is −4.44 kcal/mol, which
indicates that there is a strong affinity between protein and ligand. By observing the protein
surface model, we found that small molecules stick to the protein surface and zoom in
on the area. We found that the structure formed on the protein surface is similar to that
of small molecules, which is conducive to inducing small molecules to bind to it. At the
same time, we also showed the unit structure between protein and ligand and found
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that hydrogen bonds are formed between leucine at position 272 and the ligand, further
stabilizing the complex.

4. Discussion
Duloxetine, a prominent member of the class of selective serotonin and norepinephrine

reuptake inhibitors (SNRIs), has carved out a significant niche in clinical practice for the
management of major depressive disorder (MDD) [20,21], whereas SSRIs, like Fluoxetine,
Paroxetine, and Sertraline, primarily act on the reuptake of 5-HT. Our choice was based
on duloxetine’s dual serotonin-norepinephrine reuptake inhibition mechanism and its
established clinical efficacy in treating major depressive disorder (MDD) [21]. It was also
demonstrated to possess neuroprotective effects, likely via these pathways, in addition to
its capacity to modify neurotransmitter signaling [5]. At cellular level, emerging evidence
reports that alterations in autophagy, inflammation, coke death, and apoptosis pathways
can potentially influence its development and progression [22]. Given this intricate web
of cellular events and their far-reaching implications, it becomes eminently pertinent to
explore the possibility of identifying reliable biomarkers.

The employment of miRNA biomarkers to monitor patient responses in mood disor-
ders marks a transformative leap in treatment paradigms. Multiple studies have indicated
that interventions like SNRIs, SSRIs, serotonin modulation, and electroconvulsive ther-
apy (ECT) achieve their therapeutic impacts, in part, by targeting miRNAs [23], clearly
suggesting miRNAs’ potential as powerful indicators for gauging treatment efficacy.

In mice with CUMS-induced depression, miR-134 and miR-124a were markedly el-
evated in the frontal lobe and hippocampus, but these levels declined post-duloxetine
treatment [24,25]. Clinically, there are discernible differences in miRNA expression between
patients who respond to duloxetine and those who do not. Here, miR-16, miR-146a, and
miR-21p have been identified as promising markers linked to remission under duloxetine
treatment [15]. On the other hand, multiple miRNAs have been linked to either a response
to treatment or a heightened risk of major depression. These significant findings were
validated that downregulated miR-146a, miR-24, miR-425, and miR-3074 after treatment
were strongly correlated, indicating a common mode of action [15].

By delving into miRNA profiles, we meticulously examined the alterations in miRNA
expression triggered by duloxetine treatment. Our findings strongly suggest that duloxe-
tine’s therapeutic function may well be intertwined with its influence on miRNA expression
patterns, thereby affirming its role as a modulator of miRNA levels, which aligns with
existing literature [26].

Enrichment analysis unveiled that tsRNA-related miRNAs partake in critical biolog-
ical processes such as ECM-receptor interaction, thyroid hormone synthesis, fatty acid
biosynthesis, the TGF-β signaling pathway, and the Hippo signaling pathway. Meanwhile,
extensive research has explored the connections between fatty acid biosynthesis, the TGF-β
signaling pathway [27], thyroid hormone synthesis, and depression [28].

Investigations have spotlighted the fact that the extracellular matrix (ECM) serves
as a vital conduit for communication, potentially influencing behavior stress regulation
and depression [29,30], with the intertwined connection between the ECM and immune
processes [31,32]. The ECM has also been definitively shown to hold a crucial role in orches-
trating inflammatory and neuropathic pain, as corroborated by multiple studies [33–35].
Widely acknowledged in the medical field, duloxetine exhibits remarkable efficacy not
only in alleviating the depressive symptoms of patients with major depressive disorder
(MDD) but also in substantially ameliorating diverse forms of pain [36,37]. However, the
precise mechanism underlying its pain-relieving capabilities remains elusive. Our molecu-
lar docking experiments yielded a clear and potent indication of duloxetine’s interaction
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with ECM1, a key protein within the ECM framework (Figure 6A). This discovery not
only provides robust support for earlier enrichment analysis outcomes but also posits that
the therapeutic impact of duloxetine on MDD symptoms could be intertwined with its
binding to the ECM. This binding, potentially implicating immune-related pathways, offers
tantalizing clues about the drug’s latent mechanisms for pain regulation.

Simultaneously, we carried out an in-depth analysis of the tsRNA-miRNA function
concerning duloxetine’s effects. Pathway enrichment analysis highlighted the plasma mem-
brane signaling receptor complex and the humoral immune response as the most prominent
terms in molecular function and biological processes. Among them, the B cell activation
pathway emerges as a focal point of interest. In light of this, BAFF (B cell activating factor),
a cytokine that plays a pivotal role in activating B cells, belonging to the tumor necrosis
factor (TNF) ligand family, was chosen for molecular docking experiments with duloxetine.
The outcomes were quite revealing, demonstrating a notable binding affinity between the
two entities (Figure 6B). BAFF is closely related to autoimmunity and immune regula-
tion [38,39], thereby making its interaction with duloxetine a potentially crucial aspect in
understanding the drug’s immunomodulatory potential and therapeutic implications.

Given the findings regarding interactions with BAFF, ECM1, and TGF-β, it would be
relevant to discuss the role of neuroinflammation in depression. Duloxetine was reported
to possess anti-inflammatory (decreasing TGF-β proteins) and antioxidant properties to
regulate the expression of angiogenesis and neurotrophic factors [40], which may relate to
neuroinflammation and the broader immunological mechanisms underlying depression.
This will tie in with emerging evidence of SSRIs exhibiting properties beyond serotonin
reuptake inhibition, which could provide a more holistic understanding of their therapeu-
tic effects.

tRF-36D4ZWRNU3KQ9MV1B was retained in the analysis, and its significance was
interpreted within the broader context of depression and antidepressant mechanisms. This
overlap does not diminish its importance but rather underscores the complexity of tsRNA-
mediated regulation in MDD. Further experimental validation is suggested to unravel its
precise functional role in these overlapping conditions.

Actually, one tsRNA has been proven to serve as a key target in depression, and
the silencing of it diminishes the occurrence of ferroptosis and safeguards neurons from
injury [41]. Significant downregulation of tsRNA was evident after an 8-week treatment
course and functioned as a promising baseline predictor of a patient’s response to an-
tidepressant therapy [42]. Consistently, our results also suggest that tsRNA serves as
a predictive biomarker for the drug treatment effect of major depressive disorder, indi-
cating that specific tsRNAs present in peripheral blood show a significant response to
depressive disorders and their symptoms, and the underlying mechanism is worthy of
in-depth exploration.

The limitation of this study lies in the fact that it only explored data from public
databases without performing multi-center validation. The sequencing results need to be
further verified in other samples from multiple clinical centers in the future. Moreover, the
results of the molecular docking also demand further molecular biological experimental
validation to confirm that the drug duloxetine has the actual ability to bind to and even
regulate the receptor target. Although this study has completed the expression profile and
functional prediction, there remain questions that require further exploration. Additionally,
experimental verification both in vitro and in vivo is needed to identify the functions of
the candidate tsRNAs and also the related signaling pathways mentioned above. This
will provide valuable guidance in elucidating the antidepressant mechanism and even in
developing new indications of duloxetine.
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5. Conclusions
Our study has successfully demonstrated that the alterations in tsRNA expression

patterns can accurately reflect the response of duloxetine in MDD treatment. This not
only provides novel insights into the long—elusive molecular mechanisms of duloxetine
action but also paves the way for developing more accurate diagnostic and prognostic
tools.Moreover, the molecular docking analysis validating duloxetine’s binding with key
proteins related to ECM1 and BAFF enriches our understanding of its therapeutic mecha-
nism. These findings are expected to stimulate further research on the complex interactions
between tsRNAs and other cellular components. Such research may lead to innovative
therapeutic strategies, enhancing the effectiveness of duloxetine or other antidepressants,
thus potentially alleviating the burden of MDD.

Supplementary Materials: The following supporting information can be downloaded at https:
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predicted target mRNAs.
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