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Abstract
 Synaptic dopamine (DA) release induced by amphetamine or otherRationale:

experimental manipulations can displace [ C]raclopride (RAC*) from
dopamine D2-like receptors. We hypothesized that exogenous levodopa might
increase dopamine release at striatal synapses under some conditions but not
others, allowing a more naturalistic assessment of presynaptic dopaminergic
function. Presynaptic dopaminergic abnormalities have been reported in
Tourette syndrome (TS).

 Test whether levodopa induces measurable synaptic DA release inObjective:
healthy people at rest, and gather pilot data in TS.

 This double-blind crossover study used RAC* and positron emissionMethods:
tomography (PET) to measure synaptic dopamine release 4 times in each of 10
carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of
levodopa on one day and placebo on another (in random order). Five subjects
had TS and 5 were matched controls. RAC* binding potential (BP ) was
quantified in predefined anatomical volumes of interest (VOIs). A separate
analysis compared BP  voxel by voxel over the entire brain.

 DA release declined between the first and second scan of each dayResults:
(p=0.012), including on the placebo day. Levodopa did not significantly reduce
striatal RAC* binding and striatal binding did not differ significantly between TS
and control groups. However, levodopa’s effect on DA release differed
significantly in a right midbrain region (p=0.002, corrected), where levodopa
displaced RAC* by 59% in control subjects but  BP  by 74% in TSincreased
subjects.

 Decreased DA release on the second scan of the day isDiscussion:
consistent with the few previous studies with a similar design, and may indicate
habituation to study procedures. We hypothesize that mesostriatal DA neurons
fire relatively little while subjects rest, possibly explaining the non-significant

effect of levodopa on striatal RAC* binding. The modest sample size argues for
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effect of levodopa on striatal RAC* binding. The modest sample size argues for
caution in interpreting the group difference in midbrain DA release with
levodopa.
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Introduction
Dopamine (DA) release from neurons has often been conceptual-
ized as occurring via two separable mechanisms: tonic, referring 
to low levels of DA in extrasynaptic spaces that may be more 
accessible to microdialysis, and phasic, referring to synaptic DA 
release at synapses following presynaptic action potentials1. Pha-
sic dopamine release is crucial to dopamine’s role in changing 
behavior2, including in learning sequences of movements3. Normal 
tonic dopamine release but abnormal phasic dopamine release has 
been postulated to occur in several disease states, including drug 
abuse4 and Tourette syndrome (TS)5–8.

The radioligand [11C]raclopride (hereinafter RAC*) binds to 
dopamine D

2
-like (D

2
, D

3
 and D

4
) receptors loosely enough to be 

displaced by physiological increases of dopamine at the synapse. 
This property has been exploited to detect changes in synaptic 
DA release induced by experimental manipulations including the 
administration of amphetamine9. However, amphetamine also has 
some disadvantages in this context—primarily, that it does not really 
produce phasic dopamine release in the usual, temporal, sense of 
the word. Rather, it causes prolonged, substantial dopamine release 
regardless of environmental demands. Scientific questions about 
DA release in the absence of amphetamine might be better tested 
with a pharmacological stimulus that could potentially increase 
the magnitude of DA release, but under tighter endogenous con-
trol. Additionally, amphetamine can induce symptomatic effects 
including euphoria10 and transiently increased tic severity11; these 
effects can themselves alter brain activity, complicating interpre-
tation of the results. Ideally, a pharmacological challenge drug to 
test phasic dopamine release would not produce effects noticed by 
the subject.

The present study provides preliminary data for a novel approach 
to testing presynaptic dopamine release using levodopa, the body’s 
natural synthetic precursor to dopamine. Exogenous levodopa 
boosts dopamine synthesis almost immediately in both parkinso-
nian and healthy brains [reviewed in 12]. The extra dopamine is rap-
idly released at the synapse in people with DA deficiency13, and 
there is evidence that this happens also in the non-parkinsonian 
brain. In people, including in people with tics, levodopa produces 
dose-dependent yawning, mild sleepiness, and effects on working 
memory—i.e., CNS-mediated effects14–16. Additional evidence for 
levodopa-induced synaptic DA release in the non-parkinsonian 
brain is reviewed in 12. When given after an adequate dose of carbi-
dopa, which prevents conversion to dopamine but does not cross the 
blood-brain barrier, systemic levodopa administration essentially 
delivers dopamine selectively to the brain, as confirmed by the 
fact that it does not alter quantitative whole-brain blood flow17–19, 
as dopamine would if it were being delivered systemically or pro-
duced outside the brain. In fact, with adequate carbidopa pretreat-
ment, volunteers usually cannot tell whether they are receiving 
levodopa or a placebo12,16.

We used PET and RAC* to measure synaptic dopamine release 
in response to a standardized levodopa infusion (after carbidopa) 
in 10 subjects. Since no previous data were available on levodopa 
effects on RAC* PET, we included before- and during-levodopa 
RAC* PET scans as well as before- and during-placebo scans. Half 

of the subjects had a chronic tic disorder and the other half were 
matched control subjects without tics, to generate preliminary data 
in each population. The original hypotheses were that levodopa 
would stimulate striatal dopamine production in the controls, but 
may affect people with TS differently.

Methods
Participants
This study was approved by the Human Studies Committee of 
Washington University School of Medicine (IRB, protocol # 03-0347, 
the WUSM Radioactive Drug Research Committee (protocol # 
497F), and the U.S. Food and Drug Administration (Investigator 
IND #69,745 for i.v. levodopa). All subjects provided written con-
firmation of informed consent before study participation.

Diagnostic assessment included psychiatric and neurological exam-
ination by a movement-disorders-trained neuropsychiatrist (KJB) 
and a validated semistandardized psychiatric diagnostic interview 
[SCID-IV; 20]. Tic subjects met DSM-IV-TR criteria for Tourette’s 
Disorder. Control subjects with no history of tics were matched 
one-to-one for age, sex and handedness (with one ambidextrous 
TS subject matched to a right-handed control). Exclusion criteria 
included any lifetime neurological or Axis I psychiatric disorder 
(except that TS, ADHD and OCD were allowed in tic subjects, and 
migraine and specific phobia were allowed in either group), current 
serious general medical illness, medication history of dopamine 
antagonists or other drugs likely to affect the dopaminergic system, 
current use of any neuroactive medication, lactation, possibility of 
pregnancy, or contraindication to levodopa or MRI.

Clinical features were characterized by the Diagnostic Confidence 
Index (0=no features of TS; 100=all enumerated features of classic 
TS; scores in the original clinical validation sample ranged from 5 
to 100, mean=61, S.D.=20)21; the YGTSS, an expert-rated measure 
of tic severity over the previous week (motor tic scale 0–25, vocal 
tic scale 0–25, impairment scale 0–50, higher scores indicating a 
higher symptom burden)22,23; the revised Tic Symptom Self-Report 
(TSSR) scale, a self-report scale including scores of 0–3 for each 
of 18 motor tics and 16 vocal tics, with 3 indicating tics were “very 
frequent and very forceful” over the preceding two weeks24,25; the 
ADHD Rating Scale, an expert-rated measure of current severity of 
Attention-Deficit/Hyperactivity Disorder (ADHD) based on DSM-
IV criteria (range 0–54, higher scores indicating a higher symp-
tom burden)26; and the Y BOCS, an expert-rated measure of current 
obsessive-compulsive disorder (OCD) severity (range 0–40, higher 
scores indicating a higher symptom burden)27,28.

Overview of subject participation
Each subject had 4 RAC* PET scans: two scans on each of two days 
at least a week apart (Figure 1). After oral carbidopa and the base-
line PET scan, an infusion of levodopa or saline placebo was begun 
by vein at an individualized dose intended to produce a steady-
state levodopa plasma concentration of 600ng/mL. After allowing 
30 minutes to approach steady-state levodopa concentration, a sec-
ond scan was done while the infusion continued. The order (levo-
dopa on day 1 and placebo on day 2, or the reverse) was assigned 
randomly to each subject, and subjects and PET staff were blind to 
drug assignment during all scans.
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The room was darkened and subjects were instructed to lie quietly 
in the scanner with eyes closed throughout each scan. Study staff 
asked subjects every 5 or 10 minutes if they were comfortable and 
made sure they were awake.

Levodopa infusion
Subjects took 200mg carbidopa by mouth at least 1 hour before lev-
odopa infusion began. A dose of levodopa estimated to fill each sub-
ject’s volume of distribution at a target concentration of 600ng/mL 
was infused over 10 minutes, followed until the second PET scan 
of the day was completed by a maintenance infusion at a rate esti-
mated to compensate for elimination. In prior work, these infusion 
rates produced a mean blood level across subjects of ~625ng/mL 
after 25 minutes of infusion16. On average, that concentration pro-
duces substantial motor benefit in early Parkinson disease29,30, yet 
this infusion method is well enough tolerated that subjects cannot 
reliably distinguish the levodopa and saline infusions12,16.

Levodopa plasma concentration
Levodopa plasma concentration was measured by a validated 
method31.

Radiotracer preparation
[11C]raclopride was prepared by O-[11C]methylation of (S)-O- 
desmethylraclopride HBr (ABX Advanced Biochemical Com-
pounds, Radeberg, Germany) using a modification of previously 
reported procedures32,33. Carbon-11 was produced as 11CO

2
 using the 

Washington University JSW BC 16/8 cyclotron and the 14N(p,α)11C 
nuclear reaction. The 11CO

2
 was converted to 11CH

3
I using the micro-

processor-controlled PETtrace MeI MicroLab (GE Medical 
Systems, Milwaukee, WI), and immediately used for [11C]methylation 
of (S)-O-desmethylraclopride. Product [11C]raclopride was puri-
fied via semipreparative HPLC, and reformulated in a 10% ethanol/
normal saline solution. The radiochemical purity exceeded 95%, 
and the specific activity exceeded 500 Ci/mmol, as determined 
by analytical HPLC. The mass of raclopride was ≤13.9 µg per 
injected dose.

Image acquisition
RAC* was given i.v. over an interval of 30 seconds (median dose 
14.8mCi, interquartile range 11.0–18.9mCi). PET images were 
acquired on a Siemens ECAT 961 camera beginning with arrival of 

radiotracer in the head and continuing for 60 minutes using image 
frames of increasing duration. An MP-RAGE sequence was used 
to acquire a 3-dimensional T1-weighted image of the brain with 
acquisition time ~400 sec and voxel dimensions 1.25×1×1mm3.

Image alignment
The PET images were realigned within each subject and then to 
the subject’s MRI using a rigid-body alignment method with low 
measured error, optimized for dynamic PET images34–37.

VOI analysis
Nine subcortical volumes of interest (VOIs) were defined for 
each subject from that subject’s MRI by a high-dimensional semi-
automated method of known high test-retest reliability38 (Figure 2). 
These VOIs corresponded to the thalamus and the left and right 
putamen, caudate, nucleus accumbens, and globus pallidus. An 
additional VOI was created from the average (weighted by region 
volume) of 22 FreeSurfer-labeled gray matter regions comprising 
frontal cortex (11 left- and 11 right-hemisphere VOIs). This large 
frontal VOI produced adequate counting statistics for modest noise 
in the time-activity curve (Figure 3). A cerebellum VOI was traced 
on each subject’s MR image. All VOIs were transferred to each 
subject’s realigned PET images using the optimized MRI-to-PET 
transformation matrix computed in the alignment step. The cerebel-
lar VOI was trimmed if needed so that no voxel in the VOI corre-
sponded to any of the inferior-most four slices in any frame of that 
subject’s original PET images. Thus in each subject each VOI was 
identical for all four PET scans.

The binding potential BP
ND

39,40, an estimate of the quotient B
max

/K
D
, 

was computed as one less than the distribution volume ratio (DVR), 
which was derived for each of the nine subcortical VOIs and the 
frontal lobe VOI using the cerebellar reference region41. As we had 
no a priori hypothesis about laterality of results in any of the paired 
basal ganglia nuclei, we averaged corresponding left and right 
BP

ND
s (weighted by VOI volume) to produce for each PET scan six 

Figure 1. Study overview. 

Figure 2. Automated striatal VOIs. Atlas-based VOI outlines are 
shown on an axial section from one subject (Cd yellow, Pu light blue, 
Pl white, Th red; NA does not appear on this section).
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Figure 3. Time-activity curves. Decay-corrected time-activity curves are shown for the right putamen (filled circles), the frontal lobe VOI (+’s), 
and the cerebellar reference region (empty circles) from one subject’s pre-levodopa PET scan.

final BP
ND

 values, one each for frontal lobe cortex (FL), thalamus 
(Th), putamen (Pu), caudate (Cd), nucleus accumbens (NA), and 
globus pallidus (Pl).

The primary statistical analysis used a repeated-measures analysis 
of variance (rmANOVA) with BP

ND
 as dependent variable, diag-

nosis (tic or control) as a between-group variable, time (before or 
during the infusion) and day (placebo or levodopa) as within- 
subject variables, and region (the six VOI-based BP

ND
s) as a repeated 

measure. Exploratory analyses used an ANOVA for each region.

Whole-brain analysis
For each subject, a DVR image was computed using at each voxel 
in the brain the Logan graphical method with the cerebellar VOI 
described in the preceding section as reference region41. As a meth-
ods check, the mean across striatal VOIs of the voxelwise DVR 
value was essentially identical to the regional DVR computed using 
the standard methods described above. Analysis was limited to vox-
els in atlas space at which every subject contributed data from all 
frames of the dynamic PET acquisition.

Whole-brain comparisons used voxelwise t tests corrected for mul-
tiple comparisons in SPM 8, as follows. A t test compared DVR 
images between the TS and the control group, and clusters of con-
tiguous voxels with t exceeding the threshold corresponding to 
p<0.001 were accepted as significantly different between groups 
if cluster volume exceeded the threshold required to control False 
Discovery Rate (FDR) for the entire dataset at p<0.05.

Two comparisons were made, one based on mean baseline DVR 
images and the other based on levodopa effect ΔDVR images. Each 

subject’s two pre-infusion RAC* PET scans, one from each scan 
day, were averaged to create that subject’s mean baseline DVR 
image. The difference of the during-levodopa DVR image and the 
during-placebo DVR image in a subject was used to create that sub-
ject’s levodopa effect ΔDVR image.

Results
Subjects
Subject characteristics and adequacy of matching are reported in 
Table 1, and clinical characteristics of the TS group are reported 
in Table 2.

Levodopa levels
Levodopa plasma concentrations were ~800–1000ng/ml before the 
RAC* scan and ~500–700ng/ml after the RAC* scan, and did not 
differ significantly between groups (Table 3).

Table 1. Subject characteristics and adequacy of matching.

Measure Tic Subjects 
(N=5)

Controls 
(N=5)

Age (years; mean ± S.D.) 33.8 ± 12.9 32.8 ± 11.1

Sex, male (N) 4 4

Race, Caucasian (N) 4 4

Handedness, right (N) 4 3

OCD diagnosis (N) 1 0

ADHD diagnosis (N) 2 0

Abbreviations: OCD=Obsessive-compulsive disorder, ADHD=Attention 
Deficit Hyperactivity Disorder.
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Counting statistics in VOIs at baseline
The a priori VOIs showed higher and more reliable binding in 
striatum and pallidum, as expected. Nevertheless, the thalamus, 
GP and frontal cortex VOIs also produced good counting statistics 
(Figure 3). For every one of the VOIs the baseline BP

ND
 estimates 

were positive in all 120 scans, and were very similar between the 
two scan days (Table 4, Figure 4).

Table 4. RAC* binding in a priori VOIs at baseline. 

VOI FL Th Pl NA Cd Pu

BPND (mean) 0.15 0.32 1.11 1.80 2.13 2.79

BPND (standard 
deviation) 0.05 0.08 0.20 0.30 0.45 0.42

BPND values > 0 
(of 20 scans) 20 20 20 20 20 20

p for mean > 0 
(one-sample t test) .0000 .0000 .0000 .0000 .0000 .0000

Correlation r 
between days, 
across subjects

.70 .63 .88 .76 .94 .96

p for correlation 
(8 df, 1 tail) .012 .025 .0003 .005 .0000 .0000

Abbreviations: FL, frontal lobes; Th, thalamus; Pl, pallidum; NA, nucleus 
accumbens; Cd, caudate; Pu, putamen.

Table 2. Clinical characteristics of the Tourette syndrome 
group. The Y BOCS was completed for only 1 tic subject; the 
score was 9 on day 1 and 14 on day 2. 

Scale Scores  
(mean ± S.D.)

DCI score 36.8 ± 22.0

YGTSS 

Motor tic score 10.6 ± 3.4

Vocal tic score 7.8 ± 4.0

Impairment score 9.4 ± 9.8

TSSR score

Motor 9.3 ± 5.9

Vocal 3.2 ± 2.3

Total 12.5 ± 7.9

ADHD Rating Scale 11.6 ± 10.7

Abbreviations: DCI=Tourette Syndrome Diagnostic Confidence 
Index, YGTSS=Yale Global Tic Severity Scale, Y-BOCS=Yale-Brown 
Obsessive Compulsive Scale, ADHD=Attention Deficit Hyperactivity 
Disorder, TSSR=Tic Symptom Self Report.

Table 3. Levodopa plasma concentrations in ng/ml, mean ± SD.

Time Controls Tic subjects p (t test)

Peak (10' into 
infusion) 1591.5 ± 232.5 1938.8 ± 726.3 0.36

Just before 
RAC* scan 788.0 ± 152.4 992.4 ± 322.9 0.26

Just after 
RAC* scan 529.5 ± 149.2 662.8 ± 136.1 0.21

Figure 4. Stability of baseline binding between scan days in the a priori VOIs. BPNDs from the first scan of each day are plotted for all 10 
subjects, with the BPND from the pre-placebo scan on the horizontal axis and from the pre-levodopa scan on the vertical axis. For the paired 
VOIs the mean of the left and right BPND is used. The diagonal line is the line of identity. The inset shows an enlarged view of the data from the 
frontal lobe and thalamus VOIs.
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Figure 5. Change in BPND on the placebo day. For each of the a priori VOIs, mean BPND across all 10 subjects is shown before and during 
the infusion on the placebo day only. Error bars show SD. Numeric labels are p values for the main effect of time in the individual region 
ANOVAs (putamen p=.115).

Stability of RAC* binding between days and with time
This study includes a before- and after-infusion scan on each of two 
days. On one day the infusion contains levodopa, and on the other 
day it is a saline placebo. Thus each subject has three non-levodopa 
scans (the first scan of each day plus the scan during the placebo 
infusion). As expected, BP

ND
 was quite reproducible in the two pre-

levodopa scans (correlated at r = 0.99 across VOI and subject).

To our surprise, BP
ND

 increased between the 1st and 2nd scan of 
the day (main effect of time, F=10.605, df=1,8, p=0.012), and this 
change did not differ significantly between the levodopa and pla-
cebo days (time × day interaction, F=0.014, df=5,4, p=0.909). In 
other words, the two scans on the placebo day were not identical. 
Mean BP

ND
 was 2.7% to 24.0% higher during the placebo infusion, 

indicating decreased dopamine release compared to earlier on the 
same day. The change from the first to the second scan of each day 
was significant in most individual region analyses: main effect of 
time, thalamus p=0.002, frontal lobe p=0.032, caudate p=0.039, pal-
lidum p=0.048, and nucleus accumbens p=0.052 (multivariate time 
× region interaction F=4.173, df=5,4, p=0.096). Figure 5 shows the 
BP

ND
 for each VOI from both scans on the placebo day only.

Effect of levodopa on RAC* binding
Since the pre- and on-placebo scans differed, the appropriate com-
parison for the on-levodopa RAC* scan is the on-placebo scan. 
Therefore we assessed the effect of levodopa by comparing the 
BP

ND 
in the on-LD and on-placebo scans. In the VOI analysis, there 

was no significant effect of LD (day × time interaction, F=0.014, 
df=1,8, p=0.909).

Comparison of RAC* binding between TS and control groups
TS vs control at baseline. For the ANCOVA across all regions, 
RAC* binding did not differ significantly between tic and control 
subjects (main effect of diagnosis, F=0.744, df=1,8, p=0.413; tic 
vs control). Nevertheless, baseline RAC* binding was numerically 

higher in TS by 13–17% in the three striatal VOIs and by 5–7% in 
the frontal lobe and thalamus VOIs. The whole-brain analysis iden-
tified no significant regional differences in baseline RAC* binding 
between TS and control subjects.

TS vs control: time effect (change from first to second scan). 
There was a trend for the change in BP

ND
 during the infusion to 

be smaller in tic subjects (time × diagnosis interaction F=4.211, 
df=1,8, p=0.074). Each of the three striatal regions showed a similar 
effect when analyzed individually (0.05 < p < 0.10). Figure 6 shows 
the VOI BP

ND
 values before and during the placebo infusion, by 

diagnosis.

TS vs control: effect of levodopa on RAC* binding. In the a priori 
VOIs, the effect of LD did not differ overall in tic subjects (day 
× time × diagnosis interaction, F=1.308, df=1,8, p=0.286), and 
the 4-way interaction (day × time × diagnosis × region) was not 
significant (F=1.577, df=5,4, p=0.340). Although not statistically 
significant, pallidal and thalamic BP

ND
 tended to decrease in con-

trol subjects but increase in the tic subjects (Figure 7).

The whole-brain analysis identified a similar but statistically sig-
nificant effect in two clusters, where RAC* binding decreased 
with levodopa in controls, consistent with increased dopamine 
release during the levodopa infusion, but RAC* binding increased 
in the TS group. The first cluster included 38 voxels in midbrain 
(1.0 ml, FDR corrected p=0.002), with a peak t value of 9.0 
(8 df) at atlas coordinate (1.5, −21, −15) and extending laterally 
in approximately the right substantia nigra/ventral tegmental area 
(Figure 8a). A second significant cluster of 19 voxels (0.5 ml, cor-
rected p=0.023) occurred in parahippocampal gyrus, with peak 
t=7.92 at (22.5, −39, −6) (Figure 8b). The mean change in BP

ND
 

with levodopa in these regions is shown in Figure 8c. In both these 
clusters, the BP

ND
 on placebo was positive in all subjects (p < 0.001, 

binomial distribution), consistent with nontrivial RAC* binding. 

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
Frontal Lobe

scan 1

0.032
0.002

0.048

0.052

0.039
scan 2

Thalamus Pallidum Caudate PutamenNucleus
Accumbens

Page 7 of 16

F1000Research 2015, 4:23 Last updated: 24 MAR 2015



Figure 6. Change in [11C]raclopride binding on placebo day, by diagnosis. Mean BPNDs from the a priori VOIs, before and during the 
infusion on the placebo day only. Error bars show SD. The p values shown are for the time × diagnosis interaction in the individual region 
ANOVAs.

Figure 7. Levodopa-induced change in BPND, by diagnosis. Mean BPND for the a priori VOIs is shown during the levodopa and placebo 
infusions; the error bar indicates SD. The day × time × diagnosis interaction and the day × time × diagnosis × region interaction were not 
significant. The daggers indicate a trend in the thalamic and pallidal VOIs for BPND to decrease with levodopa in the control group but 
increase with levodopa in the tic group (regional ANOVA, day × time × diagnosis interaction, pallidum p=0.050, thalamus p=0.098).

The highest t value in the whole-brain comparison, 11.62, occurred 
in Brodmann’s area 13, but the cluster volume was only 0.1 ml, not 
significant by FDR correction (Figure 8d).

Discussion
Change in striatal BPND on the placebo day
BP

ND
 increased from before to during the placebo infusion in the 

striatum, thalamus and frontal lobe VOIs, especially in control 

subjects (Figure 5, Figure 6). Surprisingly little information 
describes within-day stability of RAC* binding, though several 
studies compare binding across time intervals of days to months42–45. 
Mawlawi et al.46 scanned 10 subjects twice each on the same day 
using a bolus-plus-constant-infusion method, and found no sig-
nificant mean change from the first to the second scan. However, 
Alakurtti and colleagues47 found that mean BP

ND
 increased from the 

first to the second scan of the day in striatal and thalamic regions, 
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Figure 8. RAC* binding on levodopa vs. placebo, by diagnosis. Differences in the RAC* binding response to levodopa between TS and 
control subjects, thresholded at uncorrected p = 0.001, in color, laid over the MRI template image in grayscale. a, b: Significant clusters, with 
blue lines crossing at the peak t value in midbrain (a, three views) and in parahippocampal gyrus (b). A third statistically significant cluster 
was centered at the posterior edge of the occipital lobe, but both the location and the observation that in this cluster the BPND on placebo was 
negative in half the subjects suggests that this cluster likely does not reflect specific binding. c: Levodopa-induced change in BPND, TS vs. 
control, in the clusters shown in A and B. R., Right; PHG, parahippocampal gyrus. Asterisks indicate that mean BPND differs significantly from 
zero. d: The blue lines cross at the voxel with the highest t value in the whole-brain SPM analysis of levodopa effect ΔDVR images (t=11.62, 8 df).

with the change (about +5%) reaching statistical significance in 
medial and lateral thalamus.

The observation in the present study that BP
ND

 increased from the 
first to second scan of the day is consistent with this background, 
and is relevant to RAC* challenge PET studies in general, because 
essentially all such studies use a before- vs. after-intervention 
design. Slifstein et al. [48, p. 357] argue that the existence of pla-
cebo-induced DA responses make the before-after model more 
appropriate for amphetamine challenge studies. However, our 
results and those of Alakurtti et al.47 suggest that BP

ND
 increases 

from the first to the second scan even without active intervention. 
This does not invalidate the results of most before-after RAC* stud-
ies, since amphetamine challenge decreases striatal RAC* BP

ND
 by 

a large fraction, and to a lesser extent so do many cognitive and 
behavioral interventions in such studies, including studies of the 
placebo effect. However, the present results suggest that before-
after RAC* studies may be less sensitive to manipulations that 
would decrease dopamine release.

Possible pathophysiological interpretation. The increase in BP
ND

 
during the placebo infusion is most likely associated with passage 
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of time rather than a placebo effect per se, especially as placebo 
administration is more likely to increase dopamine release48–50. The 
presumed decrease in dopamine release during the placebo infusion 
could indicate that control subjects accommodate to the scanner 
environment over the course of the study day.

Effect of levodopa infusion on RAC* binding
Levodopa effect on RAC* binding in striatum. Striatal RAC* binding 
was not substantially changed by levodopa. Initially this result came 
as a surprise to the authors, because levodopa was given expressly 
with the expectation that it would increase synaptic dopamine lev-
els. Briefly, support for this expectation includes the following. 
First, in Parkinson disease there is overwhelming evidence both by 
clinical observations and by RAC* PET imaging that exogenous 
levodopa substantially increases striatal dopamine release51–53. But 
there is also evidence in subjects without dopamine deficiency: 
intravenous levodopa is rapidly taken up from the bloodstream into 
the brain and converted into dopamine, and several studies show 
that it then boosts synaptic dopamine release [reviewed in 12]. For 
instance, exogenous levodopa produces clear sedative and cognitive 
effects in healthy people54–56. Thus the authors originally expected 
that exogenous levodopa would decrease striatal RAC* binding.

However, further reflection and reading have motivated a differ-
ent view whereby the results support the original goal of choos-
ing a pharmacological challenge agent that would stimulate phasic 
dopamine release, but under endogenous control. Recall that the 
concern with stimulants as challenge agents was that they cause a 
substantial release of dopamine at the striatal synapse regardless 
of current environmental demands; this approach may produce 
a ceiling effect for dopamine release that does not reflect typical 
endogenous control. A sensible hypothesis to explain the results of 
the present study would be that a research subject lying awake in 
a quiet, darkened room without specific cognitive demands has no 
need for substantial phasic release of dopamine, and thus even if 
exogenous levodopa has added dopamine to presynaptic vesicles, 
they are not released at a substantial rate at the synapse. A levodopa-
raclopride study of a motor task in healthy individuals provides 
direct experimental support of this hypothesis57. That study was 
properly designed with two sessions, placebo on one day and levo-
dopa on another, with randomized order. Levodopa increased stri-
atal dopamine release during performance of a motor task, but not 
at rest. Since in the present study all subjects were at rest during all 
scans, the results are consistent with those of Flöel and colleagues57.

TS and control group comparisons
The tic and control subgroups have only five subjects each, and 
differences between the tic and control groups in the a priori VOIs 
were not statistically significant, so there is little need to comment 
further on these results. Previous drafts of this report included such 
discussion58.

The whole-brain analysis comparing RAC* binding with levo-
dopa vs. placebo did identify statistically significant differences 
(Figure 8a–c). In midbrain (approximately substantia nigra/VTA) 

and in parahippocampal gyrus, levodopa stimulated dopamine 
release in controls but reduced it in TS subjects in. A similar pat-
tern, though not statistically significant, was observed in orbital 
cortex (Brodmann’s area 13), thalamus and globus pallidus (Figure 7 
and Figure 8d).

One expects exogenous levodopa to increase dopamine release in 
the substantia nigra, as occurred in the control subjects. D

2
 and D

3
 

dopamine receptors are present in the substantia nigra and their 
activation inhibits spike firing, dopamine synthesis and dopamine 
release by nigral dopaminergic cells59. We hypothesize that levo-
dopa increased dopamine stimulation of these inhibitory D2-like 
receptors in control subjects, and this may have prevented levo-
dopa from stimulating nigrostriatal dopamine release into the 
striatum.

Subjects with TS, however, showed an increase in substantia nigra 
RAC* binding with levodopa, consistent with a decrease in nigral 
dopamine release. Nigral dopamine release has been related to 
reward and novelty in humans. Healthy adults with higher novelty 
seeking scores had lower D2-like binding ([18F]fallypride) in SN, 
consistent with greater dopamine release60. Functional MRI studies 
have also demonstrated substantia nigra signal related to stimulus 
novelty or to the Novelty Seeking trait61–63. Healthy adults receiving 
a sweet vs salty taste had BOLD activation in this region64. Despite 
this information, it is not clear how to relate a decrease in levodopa-
stimulated dopamine release in substantia nigra to the pathophysi-
ology of TS. Explaining the similar difference in nigral levodopa 
response in TS in parahippocampal gyrus and orbital cortex is no 
easier, though dopaminergic effects on D2-like binding in hippoc-
ampus have been documented in Parkinson disease65 and dopamine 
agonists evoke changes in orbital cortex activity66. The trend for 
a similar effect in thalamus is consistent with a [11C]FLB-457 
PET study in which amphetamine provoked thalamic dopamine 
release in control subjects but not in TS67. Overall, these results 
are consistent with an abnormality of presynaptic dopaminergic 
pharmacology in TS, but the limitations of this comparison must 
be acknowledged.

Limitations
Higher-affinity radioligands, such as [18F]fallypride or [11C]FLB 
457, have advantages for measuring cortical D2Rs, e.g. in the fron-
tal lobe where D2Rs appear at much lower concentrations than in 
the striatum. There are two primary concerns with RAC* outside 
the striatum [reviewed thoroughly in 9]. The first concern is a reli-
ability issue: since the concentration of D2-like receptors is low 
in cortex compared to striatum, the counting statistics are poor for 
cortical VOIs of similar volume, and this renders the computed 
BP

ND
s suspect. For instance, some regional RAC* BP

ND
s are neg-

ative or close enough to zero that displacement studies produce 
results that are hard to interpret. In the present study, FreeSurfer-
defined cortical regions allowed the creation of a large, reliably 
defined frontal lobe VOI, in which PET time-activity curves were 
low in noise (Figure 3), allowing statistically reliable estimates of 
BP

ND
 that were uniformly positive (Table 4, Figure 4). Similarly 
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RAC* displacement in thalamus has shown adequate counting 
statistics and reliability in previous studies47,68.

The second concern with RAC* in extrastriatal regions is one of 
validity or interpretation. RAC* binding in cortex includes some 
nonspecific binding33, so a fair question is to what extent specific 
binding in cortex represents dopamine D2-like receptors. D2 and 
D4 receptors are expressed in human prefrontal cortex, though at 
relatively low concentrations compared to striatum69. On the other 
hand, at least one study’s results suggest that raclopride may have 
superior sensitivity to fallypride for measuring dopamine release in 
some cortical regions70. The validity concern is less worrisome in 
human thalamus, which contains predominantly D

3
 rather than D

2
 

receptors71, and in substantia nigra, where D
2
 and D

3
 receptors are 

well characterized. Other authors have interpreted substantia nigra 
RAC* displacement as indicating synaptic dopamine release9.

Finally, comparing TS and control subgroups of only five subjects 
each provides insufficient power to identify some true group dif-
ferences (type II error). More importantly, the small sample size 
lowers confidence in how representative the statistically significant 
differences are of the overall population of adults with TS.

Future directions
These results suggest that a natural next step for research in TS is 
to test whether dopamine release in TS differs during a dopamine-
releasing cognitive (or other) task. Levodopa may augment the 
task-evoked release or interact with it differently in people with 
versus without tics. Along these lines, a cognitive-pharmacological 
interaction fMRI study in TS found that LD changed the BOLD 
responses to a working memory task72. A newer levodopa infusion 
method produced roughly twice as high a levodopa plasma concen-
tration as the infusion used in this study12, and may produce greater 
dopamine release.

Dataset 1. PET images and clinical data

http://dx.doi.org/10.5256/f1000research.5672.d42172 

The spreadsheet in OpenDocument file format provides the clinical 
data and links each PET scan to the subject scanned and the 
condition (i.e., before or during the placebo or levodopa infusion). 
Also 40 PET files are provided with the filename extension .v, one 
for each dynamic PET scan. These files are in ECAT file format; 
users of other imaging file formats will find useful information at 
the following web site: http://www.turkupetcentre.net/petanalysis/
format_image_ecat.html

Data availability
F1000Research: Dataset 1. PET images and clinical data, 10.5256/
f1000research.5672.d4217274

Consent
All subjects provided written confirmation of informed consent 
before study participation.

Author contributions
Designed study: KJB

Authorized User, i.e. responsible for appropriate human administra-
tion of radiopharmaceuticals: MAM

Analyzed data: KJB, MLP, JMK, TH, LW, MAM

Contributed research tools: JMK, LW, MAM

Searched and summarized relevant literature: MLP

Wrote the manuscript: KJB

Reviewed drafts and approved the final draft: KJB, MLP, JMK, TH, 
LW, MAM

Competing interests
Author KJB received honoraria for educational presentations from 
a grant from the US CDC to the Tourette Syndrome Association. 
There are no other potential conflicts of interest.

Grant information
Data collection was supported by the Tourette Syndrome Asso-
ciation and manuscript preparation was supported in part by NIH 
grants K24 MH087913 and R21 MH098670.  

I confirm that the funders had no role in study design, data collection 
and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments
The authors gratefully acknowledge recruitment assistance from 
the Tourette Syndrome Association, editorial suggestions from 
Tamara Hershey, Ph.D., and technical assistance from Johanna M. 
Hartlein, R.N., M.S.N., Stephen Moerlein, Ph.D., BCNP, Susan 
Loftin, Kathryn I. Alpert, B.A., Meghan C. Campbell, Ph.D., 
Kathryn Vehe, Pharm.D., Michael P. McEvilly. These data were 
presented in part at the 14th International Congress of Parkinson 
Disease and Movement Disorders, Buenos Aires, 16 June 201073, 
and earlier drafts were circulated as preprints58.

References

1. Grace AA: Neuropsychopharmacology: The Fifth Generation of Progress. 
Dopamine. In: Davis KL, Charney D, Coyle JT, Nemeroff C, eds. Philadelphia, PA: 
Lippincott, Williams, & Wilkins, 2002; 119–132. 
Reference Source

2. Breitenstein C, Korsukewitz C, Flöel A, et al.: Tonic dopaminergic stimulation 
impairs associative learning in healthy subjects. Neuropsychopharmacology. 
2006; 31(11): 2552–2564. 
PubMed Abstract | Publisher Full Text 

3. Badgaiyan RD, Fischman AJ, Alpert NM: Striatal dopamine release in sequential 
learning. Neuroimage. 2007; 38(3): 549–556. 
PubMed Abstract | Publisher Full Text | Free Full Text 

4. Wanat MJ, Willuhn I, Clark JJ, et al.: Phasic dopamine release in appetitive 
behaviors and drug addiction. Curr Drug Abuse Rev. 2009; 2(2): 195–213. 
PubMed Abstract | Publisher Full Text | Free Full Text 

5. Singer HS, Szymanski S, Giuliano J, et al.: Elevated intrasynaptic dopamine 
release in Tourette’s syndrome measured by PET. Am J Psychiatry. 2002; 

Page 11 of 16

F1000Research 2015, 4:23 Last updated: 24 MAR 2015

http://dx.doi.org/10.5256/f1000research.5672.d42172
http://www.turkupetcentre.net/petanalysis/format_image_ecat.html
http://www.turkupetcentre.net/petanalysis/format_image_ecat.html
http://dx.doi.org/10.5256/f1000research.5672.d42172
http://dx.doi.org/10.5256/f1000research.5672.d42172
http://www.acnp.org/publications/neuro5thgeneration.aspx
http://www.ncbi.nlm.nih.gov/pubmed/16880771
http://dx.doi.org/10.1038/sj.npp.1301167
http://www.ncbi.nlm.nih.gov/pubmed/17888684
http://dx.doi.org/10.1016/j.neuroimage.2007.07.052
http://www.ncbi.nlm.nih.gov/pmc/articles/2077859
http://www.ncbi.nlm.nih.gov/pubmed/19630749
http://dx.doi.org/10.2174/1874473710902020195
http://www.ncbi.nlm.nih.gov/pmc/articles/2877500


159(8): 1329–1336. 
PubMed Abstract | Publisher Full Text 

6. Yeh CB, Lee CS, Ma KH, et al.: Phasic dysfunction of dopamine transmission in 
Tourette’s syndrome evaluated with 99mTc TRODAT-1 imaging. Psychiatry Res. 
2007; 156(1): 75–82. 
PubMed Abstract | Publisher Full Text 

7. Wong DF, Brasic JR, Singer HS, et al.: Mechanisms of dopaminergic and 
serotonergic neurotransmission in Tourette syndrome: clues from an in vivo 
neurochemistry study with PET. Neuropsychopharmacol. 2008; 33(6): 1239–1251. 
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Singer HS: The neurochemistry of Tourette syndrome. In: Martino D, Leckman 
JF, eds. Tourette Syndrome. New York: Oxford University Press. 2013; 276–300.

9. Egerton A, Mehta MA, Montgomery AJ, et al.: The dopaminergic basis of human 
behaviors: A review of molecular imaging studies. Neurosci Biobehav Rev. 
2009; 33(7): 1109–1132. 
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Drevets WC, Gautier C, Price JC, et al.: Amphetamine-induced dopamine release 
in human ventral striatum correlates with euphoria. Biol Psychiatry. 2001; 49(2): 
81–96. 
PubMed Abstract | Publisher Full Text 

11. Denys D, de Vries F, Cath D, et al.: Dopaminergic activity in Tourette syndrome 
and obsessive-compulsive disorder. Eur Neuropsychopharmacol. 2013; 23(11): 
1423–31. 
PubMed Abstract | Publisher Full Text 

12. Gordon M, Markham J, Hartlein JM, et al.: Intravenous levodopa administration 
in humans based on a two-compartment kinetic model. J Neurosci Methods. 
2007; 159(2): 300–307. 
PubMed Abstract | Publisher Full Text 

13. Tedroff J, Pedersen M, Aquilonius SM, et al.: Levodopa-induced changes in 
synaptic dopamine in patients with Parkinson’s disease as measured by 
[11C]raclopride displacement and PET. Neurology. 1996; 46(5): 1430–1436. 
PubMed Abstract | Publisher Full Text 

14. Newman RP, Weingartner H, Smallberg SA, et al.: Effortful and automatic 
memory: effects of dopamine. Neurology. 1984; 34(6): 805–807. 
PubMed Abstract | Publisher Full Text 

15. Black KJ, Mink JW: Response to levodopa challenge in Tourette syndrome. Mov 
Disord. 2000; 15(6): 1194–1198. 
PubMed Abstract | Publisher Full Text 

16. Black KJ, Carl JL, Hartlein JM, et al.: Rapid intravenous loading of levodopa for 
human research: clinical results. J Neurosci Methods. 2003; 127(1): 19–29. 
PubMed Abstract | Publisher Full Text 

17. Hershey T, Black KJ, Stambuk MK, et al.: Altered thalamic response to levodopa 
in Parkinson’s patients with dopa-induced dyskinesias. Proc Natl Acad Sci U S A. 
1998; 95(20): 12016–12021. 
PubMed Abstract | Publisher Full Text | Free Full Text 

18. Hershey T, Black KJ, Carl JL, et al.: Dopa-induced blood flow responses in 
nonhuman primates. Exp Neurol. 2000; 166(2): 342–349. 
PubMed Abstract | Publisher Full Text 

19. Hershey T, Black KJ, Carl JL, et al.: Long term treatment and disease severity 
change brain responses to levodopa in Parkinson’s disease. J Neurol 
Neurosurg Psychiatry. 2003; 74(7): 844–851. 
PubMed Abstract | Publisher Full Text | Free Full Text 

20. First MB, Spitzer RL, Gibbon M, et al.: Structured Clinical Interview for DSM-IV-
TR Axis I Disorders, Research Version, Patient Edition With Psychotic Screen 
(SCID-I/P W/ PSY SCREEN). New York: Biometrics Research, New York State 
Psychiatric Institute, 2002. 
Reference Source

21. Robertson MM, Banerjee S, Kurlan R, et al.: The Tourette syndrome diagnostic 
confidence index: development and clinical associations. Neurology. 1999; 
53(9): 2108–2112. 
PubMed Abstract | Publisher Full Text 

22. Leckman JF, Riddle MA, Hardin MT, et al.: The Yale Global Tic Severity Scale: 
initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc 
Psychiatry. 1989; 28(4): 566–573. 
PubMed Abstract | Publisher Full Text 

23. Walkup JT, Rosenberg LA, Brown J, et al.: The validity of instruments measuring 
tic severity in Tourette’s syndrome. J Am Acad Child Adolesc Psychiatry. 1992; 
31(3): 472–477. 
PubMed Abstract | Publisher Full Text 

24. Cohen DJ, Leckman JF, Shaywitz BA: The Tourette’s syndrome and other tics. 
In: Shaffer D, Ehrhardt AA, Greenhill L, eds. Diagnosis and Treatment in Pediatric 
Psychiatry. New York: MacMillan Free Press, 1984: 3–28.

25. Scahill L, King RA, Schultz RT, et al.: Selection and use of diagnostic and 
clinical rating instruments. In: Leckman JF, Cohen DJ, eds. Tourette’s syndrome 
-- tics, obsessions, compulsions: Developmental psychopathology and clinical care. 
New York: John Wiley & Sons, Inc., 1999: 310–324.

26. DuPaul GJ, Power TJ, Anastopoulos AD, et al.: ADHD Rating Scale-IV: Checklists, 
Norms, and Clinical Interpretation. New York: Guilford Publications, 1998. 
Reference Source

27. Goodman WK, Price LH, Rasmussen SA, et al.: The Yale-Brown Obsessive 
Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry. 
1989; 46(11): 1006–1011. 
PubMed Abstract | Publisher Full Text 

28. Goodman WK, Price LH, Rasmussen SA, et al.: The Yale-Brown Obsessive 
Compulsive Scale. II. validity. Arch Gen Psychiatry. 1989; 46(11): 1012–1016. 
PubMed Abstract | Publisher Full Text 

29. Harder S, Baas H: Concentration-response relationship of levodopa in patients 
at different stages of Parkinson’s disease. Clin Pharmacol Ther. 1998; 64(2): 
183–191. 
PubMed Abstract | Publisher Full Text 

30. Contin M, Riva R, Martinelli P, et al.: Levodopa therapy monitoring in patients 
with Parkinson disease: a kinetic-dynamic approach. Ther Drug Monit. 2001; 
23(6): 621–629. 
PubMed Abstract | Publisher Full Text 

31. Karimi M, Carl JL, Loftin S, et al.: Modified high-performance liquid 
chromatography with electrochemical detection method for plasma 
measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-
dihydroxyphenyl acetic acid. J Chromatogr B Analyt Technol Biomed Life Sci. 
2006; 836(1–2): 120–123. 
PubMed Abstract | Publisher Full Text 

32. Ehrin E, Gawell L, Högberg T, et al.: Synthesis of (methoxy-3H)- and (methoxy-
C-11)-labeled raclopride, specific dopamine D-2 receptor ligands. J Labelled 
Comp Radiopharm. 1986; 24(8): 931–940. 
Publisher Full Text 

33. Farde L, Pauli S, Hall H, et al.: Stereoselective binding of 11C-raclopride in living 
human brain--a search for extrastriatal central D2-dopamine receptors by PET. 
Psychopharmacology (Berl). 1988; 94(4): 471–478. 
PubMed Abstract | Publisher Full Text 

34. Perlmutter JS, Snyder AZ, Tolia VN, et al.: Does the spatial distribution of 
putaminal D2 receptors differ in patients with blepharospasm vs. hand cramp? 
Abstracts of the Society for Neuroscience. 1998; 24(): 1475. 
Reference Source

35. Black KJ, Snyder AZ, Koller JM, et al.: Template images for nonhuman primate 
neuroimaging: 1. Baboon. Neuroimage. 2001; 14(3): 736–743. 
PubMed Abstract | Publisher Full Text 

36. Eisenstein SA, Koller JM, Piccirillo M, et al.: Characterization of extrastriatal D2 
in vivo specific binding of [18F](N-methyl)benperidol using PET. Synapse. 2012; 
66(9): 770–780. 
PubMed Abstract | Publisher Full Text | Free Full Text 

37. Black KJ, Snyder AZ, Mink JW, et al.: Spatial reorganization of putaminal 
dopamine D2-like receptors in cranial and hand dystonia. PLoS One 2014; 9(2): 
e88121. 
PubMed Abstract | Publisher Full Text | Free Full Text 

38. Wang L, Lee DY, Bailey E, et al.: Validity of large-deformation high dimensional 
brain mapping of the basal ganglia in adults with Tourette syndrome. 
Psychiatry Res. 2007; 154(2): 181–190. 
PubMed Abstract | Publisher Full Text | Free Full Text 

39. Mintun MA, Raichle ME, Kilbourn MR, et al.: A quantitative model for the in vivo 
assessment of drug binding sites with positron emission tomography. Ann 
Neurol. 1984; 15(3): 217–227. 
PubMed Abstract | Publisher Full Text 

40. Innis RB, Cunningham VJ, Delforge J, et al.: Consensus nomenclature for in vivo 
imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007; 
27(9): 1533–1539. 
PubMed Abstract | Publisher Full Text 

41. Logan J, Fowler JS, Volkow ND, et al.: Distribution volume ratios without blood 
sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 1996; 
16(5): 834–840. 
PubMed Abstract | Publisher Full Text 

42. Volkow ND, Fowler JS, Wang GJ, et al.: Reproducibility of repeated measures 
of carbon-11-raclopride binding in the human brain. J Nucl Med. 1993; 34(4): 
609–613. 
PubMed Abstract 

43. Volkow ND, Wang GJ, Fowler JS, et al.: Imaging endogenous dopamine 
competition with [11C]raclopride in the human brain. Synapse. 1994; 16(4): 
255–262. 
PubMed Abstract | Publisher Full Text 

44. Hietala J, Nagren K, Lehikoinen P, et al.: Measurement of striatal D2 dopamine 
receptor density and affinity with [11C]-raclopride in vivo: a test-retest analysis. 
J Cereb Blood Flow Metab. 1999; 19(2): 210–217. 
PubMed Abstract | Publisher Full Text 

45. Yoder KK, Albrecht DS, Kareken DA, et al.: Test-retest variability of [11C]raclopride-
binding potential in nontreatment-seeking alcoholics. Synapse. 2011; 65(7): 
553–561. 
PubMed Abstract | Publisher Full Text | Free Full Text 

46. Mawlawi O, Martinez D, Slifstein M, et al.: Imaging human mesolimbic dopamine 
transmission with positron emission tomography: I. Accuracy and precision of 
D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow 
Metab. 2001; 21(9): 1034–1057. 
PubMed Abstract | Publisher Full Text 

47. Alakurtti K, Aalto S, Johansson JJ, et al.: Reproducibility of striatal and thalamic 
dopamine D2 receptor binding using [11C]raclopride with high-resolution 
positron emission tomography. J Cereb Blood Flow Metab. 2011; 31(1): 155–165. 
PubMed Abstract | Publisher Full Text | Free Full Text 

48. Slifstein M, Kegeles LS, Xu X, et al.: Striatal and extrastriatal dopamine release 
measured with PET and [(18)F] fallypride. Synapse. 2010; 64(5): 350–362. 
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 12 of 16

F1000Research 2015, 4:23 Last updated: 24 MAR 2015

http://www.ncbi.nlm.nih.gov/pubmed/12153825
http://dx.doi.org/10.1176/appi.ajp.159.8.1329
http://www.ncbi.nlm.nih.gov/pubmed/17716877
http://dx.doi.org/10.1016/j.pscychresns.2007.01.003
http://www.ncbi.nlm.nih.gov/pubmed/17987065
http://dx.doi.org/10.1038/sj.npp.1301528
http://www.ncbi.nlm.nih.gov/pmc/articles/3696501
http://www.ncbi.nlm.nih.gov/pubmed/19481108
http://dx.doi.org/10.1016/j.neubiorev.2009.05.005
http://www.ncbi.nlm.nih.gov/pmc/articles/3797507
http://www.ncbi.nlm.nih.gov/pubmed/11164755
http://dx.doi.org/10.1016/S0006-3223(00)01038-6
http://www.ncbi.nlm.nih.gov/pubmed/23876376
http://dx.doi.org/10.1016/j.euroneuro.2013.05.012
http://www.ncbi.nlm.nih.gov/pubmed/16934332
http://dx.doi.org/10.1016/j.jneumeth.2006.07.010
http://www.ncbi.nlm.nih.gov/pubmed/8628494
http://dx.doi.org/10.1212/WNL.46.5.1430
http://www.ncbi.nlm.nih.gov/pubmed/6374497
http://dx.doi.org/10.1212/WNL.34.6.805
http://www.ncbi.nlm.nih.gov/pubmed/11104204
http://dx.doi.org/10.1002/1531-8257(200011)15:6<1194::AID-MDS1019>3.0.CO;2-H
http://www.ncbi.nlm.nih.gov/pubmed/12865145
http://dx.doi.org/10.1016/S0165-0270(03)00096-7
http://www.ncbi.nlm.nih.gov/pubmed/9751782
http://dx.doi.org/10.1073/pnas.95.20.12016
http://www.ncbi.nlm.nih.gov/pmc/articles/21757
http://www.ncbi.nlm.nih.gov/pubmed/11085899
http://dx.doi.org/10.1006/exnr.2000.7522
http://www.ncbi.nlm.nih.gov/pubmed/12810765
http://dx.doi.org/10.1136/jnnp.74.7.844
http://www.ncbi.nlm.nih.gov/pmc/articles/1738560
http://psycentre.apps01.yorku.ca/drpl/?q=node/16252
http://www.ncbi.nlm.nih.gov/pubmed/10599790
http://dx.doi.org/10.1212/WNL.53.9.2108
http://www.ncbi.nlm.nih.gov/pubmed/2768151
http://dx.doi.org/10.1097/00004583-198907000-00015
http://www.ncbi.nlm.nih.gov/pubmed/1592779
http://dx.doi.org/10.1097/00004583-199205000-00013
http://books.google.co.in/books/about/ADHD_Rating_Scale_IV.html?id=7xaKQgAACAAJ
http://www.ncbi.nlm.nih.gov/pubmed/2684084
http://dx.doi.org/10.1001/archpsyc.1989.01810110048007
http://www.ncbi.nlm.nih.gov/pubmed/2510699
http://dx.doi.org/10.1001/archpsyc.1989.01810110054008
http://www.ncbi.nlm.nih.gov/pubmed/9728899
http://dx.doi.org/10.1016/S0009-9236(98)90152-7
http://www.ncbi.nlm.nih.gov/pubmed/11802094
http://dx.doi.org/10.1097/00007691-200112000-00005
http://www.ncbi.nlm.nih.gov/pubmed/16584928
http://dx.doi.org/10.1016/j.jchromb.2006.03.027
http://dx.doi.org/10.1002/jlcr.2580240808
http://www.ncbi.nlm.nih.gov/pubmed/3131792
http://dx.doi.org/10.1007/BF00212840
http://f1000.com/posters/browse/summary/1092988
http://www.ncbi.nlm.nih.gov/pubmed/11506545
http://dx.doi.org/10.1006/nimg.2001.0752
http://www.ncbi.nlm.nih.gov/pubmed/22535514
http://dx.doi.org/10.1002/syn.21566
http://www.ncbi.nlm.nih.gov/pmc/articles/3389593
http://www.ncbi.nlm.nih.gov/pubmed/24520350
http://dx.doi.org/10.1371/journal.pone.0088121
http://www.ncbi.nlm.nih.gov/pmc/articles/3919754
http://www.ncbi.nlm.nih.gov/pubmed/17289354
http://dx.doi.org/10.1016/j.pscychresns.2006.08.006
http://www.ncbi.nlm.nih.gov/pmc/articles/2859464
http://www.ncbi.nlm.nih.gov/pubmed/6609679
http://dx.doi.org/10.1002/ana.410150302
http://www.ncbi.nlm.nih.gov/pubmed/17519979
http://dx.doi.org/10.1038/sj.jcbfm.9600493
http://www.ncbi.nlm.nih.gov/pubmed/8784228
http://dx.doi.org/10.1097/00004647-199609000-00008
http://www.ncbi.nlm.nih.gov/pubmed/8455077
http://www.ncbi.nlm.nih.gov/pubmed/8059335
http://dx.doi.org/10.1002/syn.890160402
http://www.ncbi.nlm.nih.gov/pubmed/10027776
http://dx.doi.org/10.1097/00004647-199902000-00012
http://www.ncbi.nlm.nih.gov/pubmed/20963816
http://dx.doi.org/10.1002/syn.20874
http://www.ncbi.nlm.nih.gov/pmc/articles/3077540
http://www.ncbi.nlm.nih.gov/pubmed/11524609
http://dx.doi.org/10.1097/00004647-200109000-00002
http://www.ncbi.nlm.nih.gov/pubmed/20442726
http://dx.doi.org/10.1038/jcbfm.2010.64
http://www.ncbi.nlm.nih.gov/pmc/articles/3049480
http://www.ncbi.nlm.nih.gov/pubmed/20029833
http://dx.doi.org/10.1002/syn.20734
http://www.ncbi.nlm.nih.gov/pmc/articles/2840194


49. de la Fuente-Fernandez R, Ruth TJ, Sossi V, et al.: Expectation and dopamine 
release: mechanism of the placebo effect in Parkinson’s disease. Science. 
2001; 293(5532): 1164–1166. 
PubMed Abstract | Publisher Full Text 

50. de la Fuente-Fernandez R, Stoessl AJ: The placebo effect in Parkinson’s 
disease. Trends Neurosci. 2002; 25(6): 302–306. 
PubMed Abstract | Publisher Full Text 

51. Antonini A, Leenders KL, Vontobel P, et al.: Complementary PET studies of 
striatal neuronal function in the differential diagnosis between multiple system 
atrophy and Parkinson’s disease. Brain. 1997; 120(Pt 12): 2187–2195. 
PubMed Abstract | Publisher Full Text 

52. de la Fuente-Fernandez R, Lu JQ, Sossi V, et al.: Biochemical variations in the 
synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: 
PET evidence of increased dopamine turnover. Ann Neurol. 2001; 49(3): 298–303. 
PubMed Abstract | Publisher Full Text 

53. Pavese N, Evans AH, Tai YF, et al.: Clinical correlates of levodopa-induced 
dopamine release in Parkinson disease: a PET study. Neurology. 2006; 67(9): 
1612–1617. 
PubMed Abstract | Publisher Full Text 

54. Andreu N, Chale JJ, Senard JM, et al.: L-Dopa-induced sedation: a double-
blind cross-over controlled study versus triazolam and placebo in healthy 
volunteers. Clin Neuropharmacol. 1999; 22(1): 15–23. 
PubMed Abstract | Publisher Full Text 

55. Kelly C, de Zubicaray G, Di Martino A, et al.: L-dopa modulates functional 
connectivity in striatal cognitive and motor networks: a double-blind placebo-
controlled study. J Neurosci. 2009; 29(22): 7364–7378. 
PubMed Abstract | Publisher Full Text | Free Full Text 

56. Weis T, Puschmann S, Brechmann A, et al.: Effects of L-dopa during auditory 
instrumental learning in humans. PLoS One. 2012; 7(12): e52504. 
PubMed Abstract | Publisher Full Text | Free Full Text 

57. Flöel A, Garraux G, Xu B, et al.: Levodopa increases memory encoding and 
dopamine release in the striatum in the elderly. Neurobiol Aging. 2008; 29(2): 
267–279. 
PubMed Abstract | Publisher Full Text | Free Full Text 

58. Black KJ, Piccirillo ML, Koller JM, et al.: Levodopa-stimulated dopamine release 
in Tourette syndrome. PeerJ PrePrints. 2013; 1: e30. 
Publisher Full Text 

59. Grace AA: Dopamine. In; Davis KL, Charney D, Coyle JT, Nemeroff C, eds. 
Neuropsychopharmacology: The Fifth Generation of Progress. Philadelphia, PA: 
Lippincott Williams & Wilkins, 2002: 2080. 
Reference Source

60. Zald DH, Cowan RL, Riccardi P, et al.: Midbrain dopamine receptor availability is 
inversely associated with novelty-seeking traits in humans. J Neurosci. 2008; 
28(53): 14372–14378. 
PubMed Abstract | Publisher Full Text | Free Full Text 

61. Bunzeck N, Duzel E: Absolute coding of stimulus novelty in the human 
substantia nigra/VTA. Neuron. 2006; 51(3): 369–379. 
PubMed Abstract | Publisher Full Text 

62. Krebs RM, Schott BH, Duzel E: Personality traits are differentially associated 
with patterns of reward and novelty processing in the human substantia nigra/
ventral tegmental area. Biol Psychiatry. 2009; 65(2): 103–110. 
PubMed Abstract | Publisher Full Text 

63. Krebs RM, Heipertz D, Schuetze H, et al.: Novelty increases the mesolimbic 
functional connectivity of the substantia nigra/ventral tegmental area (SN/VTA) 
during reward anticipation: Evidence from high-resolution fMRI. Neuroimage. 
2011; 58(2): 647–655. 
PubMed Abstract | Publisher Full Text 

64. O’Doherty JP, Deichmann R, Critchley HD, et al.: Neural responses during 
anticipation of a primary taste reward. Neuron. 2002; 33(5): 815–826. 
PubMed Abstract | Publisher Full Text 

65. Bohnen NI, Gedela S, Herath P, et al.: Selective hyposmia in Parkinson disease: 
association with hippocampal dopamine activity. Neurosci Lett. 2008; 447(1): 
12–16. 
PubMed Abstract | Publisher Full Text | Free Full Text 

66. Black KJ, Hershey T, Koller JM, et al.: A possible substrate for dopamine-related 
changes in mood and behavior: prefrontal and limbic effects of a D3-preferring 
dopamine agonist. Proc Natl Acad Sci U S A. 2002; 99(26): 17113–17118. 
PubMed Abstract | Publisher Full Text | Free Full Text 

67. Steeves TD, Ko JH, Kideckel DM, et al.: Extrastriatal dopaminergic dysfunction 
in tourette syndrome. Ann Neurol. 2010; 67(2): 170–181. 
PubMed Abstract | Publisher Full Text 

68. Hirvonen J, Aalto S, Lumme V, et al.: Measurement of striatal and thalamic 
dopamine D2 receptor binding with 11C-raclopride. Nucl Med Commun. 2003; 
24(12): 1207–1214. 
PubMed Abstract 

69. Meador-Woodruff JH, Damask SP, Wang J, et al.: Dopamine receptor mRNA 
expression in human striatum and neocortex. Neuropsychopharmacology. 1996; 
15(1): 17–29. 
PubMed Abstract | Publisher Full Text 

70. Slifstein M, Kegeles LS, Xu X, et al.: Striatal and extrastriatal dopamine release 
measured with PET and [(18)F] fallypride. Synapse. 2010; 64(5): 350–362. 
PubMed Abstract | Publisher Full Text | Free Full Text 

71. Sun J, Xu J, Cairns NJ, et al.: Dopamine D1, D2, D3 receptors, vesicular 
monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) 
densities in aged human brain. PLoS One. 2012; 7(11): e49483. 
PubMed Abstract | Publisher Full Text | Free Full Text 

72. Hershey T, Black KJ, Hartlein JM, et al.: Cognitive-pharmacologic functional 
magnetic resonance imaging in Tourette syndrome: a pilot study. Biol 
Psychiatry. 2004; 55(9): 916–925. 
PubMed Abstract | Publisher Full Text 

73. Black KJ, Koller JM, Campbell MC, et al.: Levodopa-stimulated dopamine release 
in Tourette syndrome. Movement Disorders. 2010; 25: S373. 
Reference Source

74. Black KJ, Piccirillo ML, Koller JM, et al.: PET images and clinical data. 
F1000Research. 2015. 
Data Source

Page 13 of 16

F1000Research 2015, 4:23 Last updated: 24 MAR 2015

http://www.ncbi.nlm.nih.gov/pubmed/11498597
http://dx.doi.org/10.1126/science.1060937
http://www.ncbi.nlm.nih.gov/pubmed/12086748
http://dx.doi.org/ 10.1016/S0166-2236(02)02181-1
http://www.ncbi.nlm.nih.gov/pubmed/9448574
http://dx.doi.org/10.1093/brain/120.12.2187
http://www.ncbi.nlm.nih.gov/pubmed/11261503
http://dx.doi.org/10.1002/ana.65
http://www.ncbi.nlm.nih.gov/pubmed/17101892
http://dx.doi.org/10.1212/01.wnl.0000242888.30755.5d
http://www.ncbi.nlm.nih.gov/pubmed/10047929
http://dx.doi.org/10.1097/00002826-199901000-00004
http://www.ncbi.nlm.nih.gov/pubmed/19494158
http://dx.doi.org/10.1523/JNEUROSCI.0810-09.2009
http://www.ncbi.nlm.nih.gov/pmc/articles/2928147
http://www.ncbi.nlm.nih.gov/pubmed/23285070
http://dx.doi.org/10.1371/journal.pone.0052504
http://www.ncbi.nlm.nih.gov/pmc/articles/3528678
http://www.ncbi.nlm.nih.gov/pubmed/17098331
http://dx.doi.org/10.1016/j.neurobiolaging.2006.10.009
http://www.ncbi.nlm.nih.gov/pmc/articles/2323457
http://dx.doi.org/10.7287/peerj.preprints.30
http://www.acnp.org/publications/neuro5thgeneration.aspx
http://www.ncbi.nlm.nih.gov/pubmed/19118170
http://dx.doi.org/10.1523/JNEUROSCI.2423-08.2008
http://www.ncbi.nlm.nih.gov/pmc/articles/2748420
http://www.ncbi.nlm.nih.gov/pubmed/16880131
http://dx.doi.org/10.1016/j.neuron.2006.06.021
http://www.ncbi.nlm.nih.gov/pubmed/18835480
http://dx.doi.org/10.1016/j.biopsych.2008.08.019
http://www.ncbi.nlm.nih.gov/pubmed/21723396
http://dx.doi.org/10.1016/j.neuroimage.2011.06.038
http://www.ncbi.nlm.nih.gov/pubmed/11879657
http://dx.doi.org/10.1016/S0896-6273(02)00603-7
http://www.ncbi.nlm.nih.gov/pubmed/18838108
http://dx.doi.org/10.1016/j.neulet.2008.09.070
http://www.ncbi.nlm.nih.gov/pmc/articles/2634293
http://www.ncbi.nlm.nih.gov/pubmed/12482941
http://dx.doi.org/10.1073/pnas.012260599
http://www.ncbi.nlm.nih.gov/pmc/articles/139278
http://www.ncbi.nlm.nih.gov/pubmed/20225192
http://dx.doi.org/10.1002/ana.21809
http://www.ncbi.nlm.nih.gov/pubmed/14627846
http://www.ncbi.nlm.nih.gov/pubmed/8797188
http://dx.doi.org/10.1016/0893-133X(95)00150-C
http://www.ncbi.nlm.nih.gov/pubmed/20029833
http://dx.doi.org/10.1002/syn.20734
http://www.ncbi.nlm.nih.gov/pmc/articles/2840194
http://www.ncbi.nlm.nih.gov/pubmed/23185343
http://dx.doi.org/10.1371/journal.pone.0049483
http://www.ncbi.nlm.nih.gov/pmc/articles/3504049
http://www.ncbi.nlm.nih.gov/pubmed/15110735
http://dx.doi.org/10.1016/j.biopsych.2004.01.003
http://www.researchgate.net/publication/230868113_Levodopa-stimulated_dopamine_release_in_Tourette_syndrome
http://dx.doi.org/10.5256/f1000research.5672.d42172


F1000Research

Open Peer Review

   Current Referee Status:

Version 1

 23 March 2015Referee Report

doi:10.5256/f1000research.6062.r8060

 Lars Nyberg
Umeå Center for Functional Brain Imaging, Umeå, Sweden

The most novel aspect of the study was the investigation of levodopa. This is very interesting. No
significant levodopa effects were, however, observed. The authors offer some interesting thoughts on the
reason for this null effect, most critically pointing to a need to have an active task PET design. This is a
plausible argument that may stimulate further research on this topic.

A potentially interesting methodological contribution is the observation of a difference between the 1  and
2  scan on each day of scanning.

The study is likely underpowered, in particular for any group comparison (5 TS, 5 ctrls), so the
repeated-measures analysis was most likely not very sensitive. I would treat the observed differences
between TS and control groups from the whole-brain analysis as preliminary.

I may have missed it, but I could not find information about how the PET scans were reconstructed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response (  ) 24 Mar 2015F1000Research Advisory Board Member
, Department of Psychiatry, Washington University in St. Louis, USAKevin J Black

The authors thank Prof. Nyberg for the thoughtful review. 

The [ C]raclopride PET data were collected in 3D mode and reconstructed on the Siemens ECAT
961 scanner console using filtered backprojection (ramp filter), with attenuation measured before
each emission scan using an external Ge/ Ga source.

We agree with all the reviewers that the between-group comparison is useful primarily as pilot data
because of the small group sizes. 
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 W.R. Wayne Martin
Movement Disorder Program, Division of Neurology, Movement Disorder Program, Division of Neurology,
Edmonton, AB, Canada

This is a carefully performed study that presents a novel approach to measure presynaptic dopamine
release using the administration of exogenous levodopa, coupled with raclopride PET scanning.
Preliminary data are provided using this method in a small group of controls and subjects with Tourette
syndrome. 

The authors describe a decline in dopamine release in striatum, thalamus and frontal lobe between the
first and second scan of each day in response to placebo administration in normal subjects, possibly due
to habituation to study procedures. Levodopa administration did not alter striatal dopamine release
differently in Tourette syndrome vs. controls. However, dopamine release differed significantly in the
midbrain and parahippocampal gyrus in the two conditions. Levodopa stimulated dopamine release in
controls but reduced it in Tourette subjects.

Although these are important observations, the number of subjects studied was small. Hence, these must
be considered pilot data although they are consistent with a rather complex dopaminergic role in Tourette
syndrome. Of interest for future studies would be the evaluation of task-evoked dopamine release in
response to cognitive tasks. Lastly, the observation that habituation occurs in response to placebo
infusions has important implications to the interpretation of placebo-controlled studies of dopamine
release.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 17 March 2015Referee Report

doi:10.5256/f1000research.6062.r7601

 Marie Vidailhet
Department of Research of Technology and Development, Hôpital Pitié Salpêtrière, Paris, France

The authors studies the raclopride binding (displacement) in groups of subjects (normal and Tourette
syndrome). They studied the effect of levodopa infusions and of a placebo. The subjects were studied at
rest.

Basically, they found that in Tourette syndrome, dopamine release was smaller  (reduced) than in
controls, in midbrain (approximately substantia nigra/VTA) and in parahippocampal gyrus.
 
This is an interesting paper and the methodology is adequate. The subjects are studied at rest, this may
underestimate the dynamic of dopamine release and it would have be more interesting to study this
phenomenon during a task. The groups are very small, and the effect in Tourette syndrome may also be
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underestimate the dynamic of dopamine release and it would have be more interesting to study this
phenomenon during a task. The groups are very small, and the effect in Tourette syndrome may also be
different according to the characteristics of the patient (with or without additional behavioral disorders).
Nevetherless, the study is consistent with the presence of abnormality of presynaptic dopaminergic
pharmacology in Tourette syndrome.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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We thank Professors Vidailhet and Martin for their thoughtful comments.
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