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Abstract Growth cones navigate axonal projection in response to guidance cues. However, it is

unclear how they can decide the migratory direction by transducing the local spatial cues into

protrusive forces. Here we show that knockout mice of Shootin1 display abnormal projection of the

forebrain commissural axons, a phenotype similar to that of the axon guidance molecule netrin-1.

Shallow gradients of netrin-1 elicited highly polarized Pak1-mediated phosphorylation of shootin1

within growth cones. We demonstrate that netrin-1–elicited shootin1 phosphorylation increases

shootin1 interaction with the cell adhesion molecule L1-CAM; this, in turn, promotes F-actin–

adhesion coupling and concomitant generation of forces for growth cone migration. Moreover, the

spatially regulated shootin1 phosphorylation within growth cones is required for axon turning

induced by netrin-1 gradients. Our study defines a mechano-effector for netrin-1 signaling and

demonstrates that shootin1 phosphorylation is a critical readout for netrin-1 gradients that results

in a directional mechanoresponse for axon guidance.

DOI: https://doi.org/10.7554/eLife.34593.001

Introduction
Axon guidance is a critical step for the formation and regeneration of neuronal networks. More than

a century ago Ramón y Cajal identified the growth cone at the tip of extending axons, and proposed

that it senses extracellular chemical cues and produces force for axon guidance (Cajal, 1890;

Sotelo, 2002; Vitriol and Zheng, 2012). Accumulating evidence indicates that growth cones are

indeed guided by extracellular molecules (Huber et al., 2003; Lowery and Van Vactor, 2009;

Kolodkin and Tessier-Lavigne, 2011) and generate traction forces (Chan and Odde, 2008;

Koch et al., 2012). Furthermore, analyses with microfluidic devices have shown that growth cones

can navigate in response to extremely shallow gradients of diffusible and substrate-bound chemical

cues in the microenvironment (Baier and Bonhoeffer, 1992; Rosoff et al., 2004; Xiao et al., 2014).

Netrin-1 is one of the best-characterized axon guidance molecules (Ishii et al., 1992;

Serafini et al., 1994; Lai Wing Sun et al., 2011). Extracellular gradients of netrin-1 elicit growth

cone attraction in vitro (Kennedy et al., 1994; Serafini et al., 1994; Hong et al., 1999;

Bhattacharjee et al., 2010; Fothergill et al., 2014). Mice lacking netrin-1 or its receptor deleted in

colorectal cancer (DCC) show impaired projection and guidance of axons in the ventral spinal com-

missure and forebrain commissures (Serafini et al., 1996; Fazeli et al., 1997; Bin et al., 2015;

Yung et al., 2015). The intracellular signaling pathways involved in netrin-1–induced axonal chemo-

attraction have been extensively analyzed. For example, stimulation of DCC by netrin-1 activates
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Cdc42 and Rac1 and their downstream kinase Pak1, thereby inducing growth cone expansion and

axon extension (Li et al., 2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005; Briançon-

Marjollet et al., 2008; Demarco et al., 2012). The actin regulatory proteins ENA/VASP and

N-WASP are also required for netrin-1–induced growth cone expansion (Lebrand et al., 2004;

Shekarabi et al., 2005). In addition, a number of signaling molecules, including phospholipase Cg,

Ca2+, cAMP, phosphatidylinositol-3 kinase (PI3K), ERK1/2, focal adhesion kinase (FAK) and Src, are

reported to be involved in netrin-1–induced axonal chemoattraction (Song and Poo, 2001;

Lowery and Van Vactor, 2009; Lai Wing Sun et al., 2011; Moore et al., 2012; Gomez and Letour-

neau, 2014; Sutherland et al., 2014). However, despite the significant progress in identifying the

signaling pathways, little is known about how the netrin-1 signal, as a spatial cue, is converted into

the directional force required for axon guidance. Moreover, a molecular understanding of how shal-

low gradients of chemical cues are read out to guide axons is lacking (Quinn and Wadsworth,

2008; Hegemann and Peter, 2017).

Shootin1, recently renamed shootin1a (Higashiguchi et al., 2016), is a brain-specific protein

involved in axon outgrowth (Toriyama et al., 2006; Sapir et al., 2013). At the leading edge of

growth cones, actin filaments (F-actins) polymerize and disassemble proximally, thereby undergoing

retrograde flow (Forscher and Smith, 1988; Katoh et al., 1999). Shootin1a interacts with F-actin

retrograde flow via cortactin (Weed and Parsons, 2001) and couples the F-actin flow with extracel-

lular adhesive substrates (Shimada et al., 2008; Kubo et al., 2015) through the cell adhesion mole-

cule L1-CAM (Rathjen and Schachner, 1984; Kamiguchi et al., 1998). We previously reported that

Pak1 (Manser et al., 1994), upon activation by netrin-1, phosphorylates shootin1a (Toriyama et al.,

2013); this in turn enhances shootin1a interaction with F-actin flow, thereby producing traction force

on the substrate (Toriyama et al., 2013; Kubo et al., 2015). However, whether shootin1a mediates

eLife digest Neurons communicate with each other by forming intricate webs that link cells

together according to a precise pattern. A neuron can connect to another by growing a branch-like

structure known as the axon. To contact the correct neuron, the axon must develop and thread its

way to exactly the right place in the brain. Scientists know that the tip of the axon is extraordinarily

sensitive to gradients of certain molecules in its surroundings, which guide the budding structure

towards its final destination.

In particular, two molecules seem to play an important part in this process: netrin-1, which is a

protein found outside cells that attracts a growing axon, and shootin1a, which is present inside

neurons. Previous studies have shown that netrin-1 can trigger a cascade of reactions that activates

shootin1a. In turn, activated shootin1a molecules join the internal skeleton of the cell with L1-CAM,

a molecule that attaches the neuron to its surroundings. If the internal skeleton is the engine of the

axon, L1-CAMs are the wheels, and shootin1a the clutch. However, it is not clear whether shootin1a

is involved in guiding growing axons, and how it could help neurons ‘understand’ and react to

gradients of netrin-1.

Here, Baba et al. discover that when shootin1a is absent in mice, the axons do not develop

properly. Further experiments in rat neurons show that if there is a little more netrin-1 on one side of

the tip of an axon, this switches on the shootin1a molecules on that edge. Activated shootin1a

promote interactions between the internal skeleton and L1-CAM, helping the axon curve towards

the area that has more netrin-1. In fact, if the activated shootin1a is present everywhere on the axon,

and not just on one side, the structure can develop, but not turn. Taken together, the results

suggest that shootin1a can read the gradients of netrin-1 and then coordinate the turning of a

growing axon in response.

Wound healing, immune responses or formation of organs are just a few examples of processes

that rely on cells moving in an orderly manner through the body. Dissecting how axons are guided

through their development may shed light on the migration of cells in general. Ultimately, this could

help scientists to understand disorders such as birth abnormalities or neurological disabilities, which

arise when this process goes awry.

DOI: https://doi.org/10.7554/eLife.34593.002
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Figure 1. Shootin1 knockout mice display abnormal projection of forebrain commissural axons. (A) A representative sagittal section of a P0 mouse

brain immunolabeled with shootin1a antibody (green) and counterstained with DAPI (blue). (B) Coronal sections of E16.5 mouse brains double-

immunolabeled with anti-shootin1a (green) and anti-L1-CAM (magenta) antibodies. The arrow and arrowhead indicate the corpus callosum and anterior

commissure, respectively. (C) Coronal sections of the forebrain of wild-type and Shootin1 knockout mice at P0 stained for Nissl substance. (D) Serial

Figure 1 continued on next page
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axon guidance in vitro and in vivo remains unknown. In addition, how shootin1a associates with the

substrates through L1-CAM is uncharacterized (Kubo et al., 2015).

Here, we combined gene knockout, protein interaction assays, force microscopy, speckle imaging

and microfluidics to define a gradient-reading and mechano-effector machinery for netrin-1–induced

axon guidance. We show that shootin1a is expressed at high levels in developing forebrain commis-

sural axons and that Shootin1 knockout mice display abnormal guidance of these axons, a pheno-

type similar to that of Netrin-1 knockout mice. Notably, very small spatial differences in netrin-1

concentration elicited highly polarized directional phosphorylation of shootin1a within growth cones.

Netrin-1–elicited shootin1a phosphorylation promoted direct interaction between shootin1a and L1-

CAM, thereby generating traction force for growth cone motility. Furthermore, disturbance of the

spatially regulated shootin1a phosphorylation within growth cones inhibited axon turning, but not

axon outgrowth, induced by netrin-1 gradients. Our data demonstrate that shootin1a, through its

spatially regulated phosphorylation within growth cones, mediates the gradient reading and mecha-

noresponse for netrin-1–induced axon guidance.

Results

Shootin1a is localized at high levels in axonal tracts of developing
mouse brain
To assess a role for shootin1a in axon guidance, we first analyzed its localization in the developing

mouse brain. Consistent with a previous report (Toriyama et al., 2006), immunoblot analyses

detected a low level of shootin1a in embryonic day (E) 13.5 mouse brains (Figure 1—figure supple-

ment 1A). The expression increased remarkably between E13.5 and E16.5, remained high through

postnatal days (P) 0–12, and then decreased to a low level in the adult. Immunohistochemical analy-

ses with shootin1a-specific antibody detected shootin1a localization widely in P0 brain, with high lev-

els of immunolabeling in the axonal tracts, such as the corpus callosum, anterior commissure,

Figure 1 continued

horizontal sections of the ventral forebrain of wild-type and Shootin1 knockout mice at P0 stained for Nissl substance. (E) Coronal sections of wild-type

and Shootin1 knockout mouse brains at P0 immunolabeled with anti-L1-CAM antibody (green). Ectopic axonal projections were observed in the

neocortex (arrowheads). In the knockout mice, the prominent axonal tracts observed in the intermediate zone of the neocortex of wild-type mice

(arrows) were undetectable and ectopic axonal projections were observed (arrowheads). Lower panels show enlarged views of the rectangles. (F)

Coronal sections of wild-type and Shootin1 knockout mouse brains at P0. DiI crystals (magenta) were placed into the neocortex (asterisks) to label

callosal axons. An arrowhead indicates incomplete contralateral projections of callosal axons. (G) Horizontal sections of wild-type and Shootin1

knockout mouse brains at P0 immunolabeled with anti-L1-CAM antibody (green). In Shootin1 knockout mice, the bundling of the commissural axons

was disrupted (arrowheads). (H) Horizontal sections of wild-type and Shootin1 knockout mouse brains at P0. DiI crystals (magenta) were placed in the

anterior piriform cortex (asterisks) to label the anterior limb of the anterior commissure. Defasciculation and misprojection of the commissural axons are

indicated by the arrow and arrowhead, respectively. Dashed lines indicate the anterior limb of the anterior commissure. Abbreviations: AC, anterior

commissure; ACa, anterior limb of the anterior commissure; ACp, posterior limb of the anterior commissure; CC, corpus callosum; F, fimbria; Fx, fornix;

KO, Shootin1 knockout mouse; MCP, middle cerebellar peduncle; Spt, Septum; VMH, ventromedial hypothalamic nucleus; WT, wild-type mouse. Scale

bars: 500 mm.

DOI: https://doi.org/10.7554/eLife.34593.003

The following source data and figure supplements are available for figure 1:

Figure supplement 1. Expression and distribution of shootin1a in mouse brain and phenotype of Shootin1 knockout mice forebrain.

DOI: https://doi.org/10.7554/eLife.34593.004

Figure supplement 1—source data 1. Quantitative analyses of the thickness of the corpus callosum, hippocampal commissure and anterior commis-

sure related to Figure 1—figure supplement 1D.

DOI: https://doi.org/10.7554/eLife.34593.005

Figure supplement 2. Distribution of shootin1a in mouse spinal cord and phenotype of Shootin1 knockout spinal cord.

DOI: https://doi.org/10.7554/eLife.34593.006

Figure supplement 2—source data 1. Quantitative analyses of the thickness of the ventral spinal commissure related to Figure 1—figure supplement

2C.

DOI: https://doi.org/10.7554/eLife.34593.007

Figure supplement 3. Generation of Shootin1 knockout mice.

DOI: https://doi.org/10.7554/eLife.34593.008
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hippocampal commissure, fornix, fimbria and middle cerebellar peduncle (Figure 1A and Figure 1—

figure supplement 1B). We also detected high levels of shootin1a immunoreactivity that colocalized

extensively with that of the axonal marker L1-CAM (Chung et al., 1991; Klingler et al., 2015) in the

corpus callosum and anterior commissure at E16.5 (Figure 1B). However, we could not detect shoo-

tin1a immunoreactivity in the ventral commissure of the spinal cord at E12 (arrow, Figure 1—figure

supplement 2A) when high levels of both netrin-1 and DCC are expressed (Keino-Masu et al.,

1996; Kennedy et al., 2006; Bin et al., 2015; Dominici et al., 2017).

Shootin1 knockout mice display abnormal projection of forebrain
commissural axons
To analyze further the roles of shootin1a in the developing brain, we generated Shootin1 knockout

mice (Figure 1—figure supplement 3). Southern blot analysis confirmed that the first exon of the

Shootin1 gene had been replaced with the b-galactosidase (LacZ) and neomycin resistance (Neor)

genes (Figure 1—figure supplement 3A and B). Immunoblot analysis demonstrated a complete

loss of shootin1a protein (Figure 1—figure supplement 3C); shootin1a immunoreactivity was unde-

tectable in Shootin1 knockout mouse brain sections (Figure 1—figure supplement 3D). Shootin1

knockout mice were born but 13.3% of them died during P0-P20 (n = 98). Coronal and horizontal

sections of Shootin1 knockout brains revealed dysgenesis of the corpus callosum, anterior commis-

sure and hippocampal commissure with a penetrance of 69.2% (n = 26) (Figure 1C and D and

Figure 1—figure supplement 1C); their thicknesses were significantly reduced by Shootin1 knock-

out (Figure 1—figure supplement 1D). We also observed multiple defects in the brain of Shootin1

knockout mice, including agenesis of the septum (Figure 1C); the detailed analyses of these pheno-

types will be reported separately.

To analyze the commissure structures in detail, we visualized axon bundles using anti-L1-CAM

antibody. In addition to decreased thickness of the axonal tracts at the midline of the corpus cal-

losum (yellow line, Figure 1E), the prominent axonal tracts observed in the intermediate zone of the

neocortex of wild-type mice (arrows, Figure 1E) were undetectable in Shootin1 knockout mice. In

contrast, ectopic axonal projections toward the cortical plate were observed in Shootin1 knockout

mice (arrowheads, Figure 1E). Consistent with the L1-CAM immunolabeling, DiI tracing also showed

incomplete contralateral projections of callosal axons (arrowhead, Figure 1F). In the anterior com-

missure, L1-CAM immunolabeling showed a decrease in the thickness of the axon bundle that

crosses the midline (yellow line, Figure 1G) as well as disruption of the anterior and posterior limbs

of the commissure (arrowheads, Figure 1G). DiI tracing of the anterior limbs of the anterior commis-

sure demonstrated defasciculation (arrow, Figure 1H) and misprojection (arrowhead, Figure 1H) of

the axons. Consistent with the undetectable level of shootin1a expression in the ventral commissure

of the spinal cord (arrow, Figure 1—figure supplement 2A), we could not observe noticeable

defects of the spinal cord commissure axons in Shootin1 knockout mice (Figure 1—figure supple-

ment 2B and C).

Shallow gradients of netrin-1 elicit highly polarized shootin1a
phosphorylation within growth cones
Extracellular gradients of netrin-1 induce growth cone attraction in vitro (Serafini et al., 1994;

Hong et al., 1999; Bhattacharjee et al., 2010). To analyze the growth cone response under netrin-1

gradients, we prepared a device with microjet arrays that can generate gradients of diffusible mole-

cules in the culture medium (Bhattacharjee et al., 2010) (Figure 2A). The substrates for neuronal

culture, glass coverslips, were coated sequentially with polylysine and L1-CAM-Fc as reported

(Shimada et al., 2008; Toriyama et al., 2013; Kubo et al., 2015). To estimate the soluble netrin-1

gradients, we used bovine serum albumin (BSA) labeled with the fluorescent tracer Alexa Fluor 594

or Alexa Fluor 488 as a proxy for netrin-1. As the molecular weight of BSA (66.0 kDa) is similar to

that of mouse netrin-1 (68.2 kDa), we expect that the gradient of BSA mimics that of netrin-1 in the

device. As reported (Bhattacharjee et al., 2010), our device generated stable gradients of BSA in

the medium (Figure 2B and Video 1). The difference in the BSA concentrations at the source side

end and the other end of the area that expands 400 mm at the center of the linear gradient (red rect-

angle, Figure 2A), estimated by the fluorescence intensity, was 15% (Figure 2B). As the regular

growth cone width of cultured hippocampal neurons is about 10 mm (Katsuno et al., 2015), we
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Figure 2. Netrin-1 gradients induce asymmetrically localized phosphorylation of shootin1a within single growth cones. (A) A schematic diagram of the

device with microjet arrays that generates gradients of diffusible molecules in the culture medium. (B) Time-lapse fluorescence images of fluorescent

dye (Alexa Fluor 488-BSA) in the cell culture area of the device in (A, red rectangle). See Video 1. The graph (right) depicts line scans of the

fluorescence intensity across the field at 10 min (black line) and 430 min (blue line) during time-lapse imaging. A stable gradient of Alexa Fluor 488-BSA

was generated in the device. Bar: 100 mm. (C) Neurons cultured in the device were labeled with CMAC (blue) and exposed to gradients of netrin-1 and

Alexa Fluor 488-BSA (green) for 30 min. They were then fixed and immunolabeled with an antibody that recognizes shootin1a phosphorylation at

Ser249 (red). The right panels show the fluorescent signals of CMAC and phospho-shootin1a in the growth cone located in the corresponding dashed

rectangle. Yellow lines and dotted lines indicate the boundary and center line of the growth cone, respectively. A higher level of phospho-shootin1a

immunolabeling was observed on the netrin-1 source side. Bar: 10 mm. (D) Quantification of relative phospho-shootin1a immunolabeling levels

(phosopho-shootin1a immunoreactivity/CMAC staining) in the netrin-1 source side (high side) and control side (low side) of single growth cones. n = 12

growth cones. Data represent means ± SEM; ***p<0.01 (unpaired Student’s t-test).

DOI: https://doi.org/10.7554/eLife.34593.009

The following source data and figure supplements are available for figure 2:

Source data 1. Quantification of relative phospho-shootin1a immunolabeling levels related to Figure 2D.

DOI: https://doi.org/10.7554/eLife.34593.014

Figure supplement 1. Netrin-1 gradients produced on the substrate.

DOI: https://doi.org/10.7554/eLife.34593.010

Figure supplement 1—source data 1. Quantitative analyses of the netrin-1 attached to the glass coverslips related to Figure 2—figure supplement

1B.

DOI: https://doi.org/10.7554/eLife.34593.011

Figure 2 continued on next page
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estimate that gradient steepness (the percentage change in concentration) (Rosoff et al., 2004) of

netrin-1 that covers growth cones located in the red rectangle area (Figure 2A) is about 0.4%.

A previous study reported that netrin-1 attaches to polylysine–coated substrates, thereby mediat-

ing chemotropic axon guidance (Moore et al., 2012). To examine whether the present assay system

produces netrin-1 gradients on the substrate, we next analyzed the attachment of netrin-1 to sub-

strates coated with L1-CAM. As reported (Moore et al., 2012), incubation of glass coverslips with

netrin-1 (200 or 300 ng/ml) led to netrin-1 attachment on the polylysine–coated substrate within 15

min, and the attachment further increased after incubation for 7 hr (Figure 2—figure supplement

1A and B). Netrin-1 also attached to the L1-CAM–coated substrate in a manner dependent on the

incubation time (Figure 2—figure supplement 1A and B). We also confirmed that our device produ-

ces a netrin-1 gradient attached to the substrate in a manner dependent on the incubation time and

that the difference in concentration across the growth cone is about 0.6% at 10 min and 0.8% at 430

min (Figure 2—figure supplement 1C), which is similar to that of BSA (Figure 2B). However, the

amount of attached netrin-1 was 39% of that on polylysine after 420 min incubation (Figure 2—fig-

ure supplement 1A and B), suggesting that at least 61% of the applied netrin-1 is not attached to

the substrate under our conditions. Together, these results indicate that gradients of both soluble

and substrate-bound netrin-1 are produced in our culture system.

We previously reported that netrin-1 induces Pak1–mediated phosphorylation of shootin1a at

Ser101 and Ser249 in axonal growth cones (Toriyama et al., 2013). Using the microjet device, we

examined the localization of netrin1–elicited shootin1a phosphorylation in growth cones. Hippocam-

pal neurons cultured in the device for 1.5–2 days were labeled with the fluorescent volume marker 7-

amino-4-chloromethylcoumarin (CMAC) and exposed to a netrin-1 gradient for 30 min. The neurons

were then fixed and immunolabeled with an antibody that recognizes shootin1a phosphorylation at

Ser249. We selected axons located near the center of the gradients (red rectangle, Figure 2A) and

that were oriented approximately perpendicular to the netrin-1 gradient. To our surprise, quantifica-

tion of the phospho-shootin1a immunoreactivity and CMAC staining revealed a highly polarized

localization of the phosphorylated shootin1a within growth cones (Figure 2C). The relative level of

the phosphorylated shootin1a (phosopho-shootin1a immunoreactivity/CMAC staining) was 71%

higher on the netrin-1 source side than on the control side (p=0.002, n = 12) (Figure 2D), and con-

trasted markedly with the shallow gradients of extracellular netrin-1 estimated by the fluorescent

tracer (Figure 2B) and antibody (Figure 2—figure supplement 1C). On the other hand, similar gra-

dients of the control molecule BSA in the medium did not elicit polarized phosphorylation of shoo-

tin1 within growth cones (Figure 2—figure supplement 2).

Netrin-1–induced shootin1a phosphorylation promotes shootin1a–L1-
CAM interaction
We reported previously that netrin-1–induced shootin1a phosphorylation at Ser101 and Ser249

enhances the coupling between F-actin retrograde flow and L1-CAM at growth cones

(Toriyama et al., 2013). However, whether shootin1 interacts directly with L1-CAM as well as

whether this interaction is regulated by the netrin-1 signaling are unclear (Kubo et al., 2015). To

clarify these points, we performed an in vitro binding assay using purified shootin1a and GST–

tagged intracellular domain (ICD) (1145-1257 a.a.) of L1-CAM. As shown in Figure 3A, shootin1a

directly interacted with L1-CAM-ICD.

To determine whether the shootin1a phosphorylation modulates the shootin1a–L1-CAM interac-

tion, we analyzed the interaction between the phosphorylated shootin1a and L1-CAM-ICD. An in

vitro binding assay with purified proteins showed that the interaction of L1-CAM-ICD with phospho-

mimic shootin1a (shootin1a-DD), in which Ser101 and Ser249 were replaced by aspartate, was stron-

ger than that with wild-type shootin1a (shootin1a-WT) (Figure 3B): the apparent dissociation

Figure 2 continued

Figure supplement 2. BSA gradients do not elicit polarized phosphorylation of shootin1 within growth cones.

DOI: https://doi.org/10.7554/eLife.34593.012

Figure supplement 2—source data 1. Quantification of relative phospho-shootin1a immunolabeling levels related to Figure 2—figure supplement

2B.

DOI: https://doi.org/10.7554/eLife.34593.013
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constant for shootin1a-DD (Kd = 46.4 ± 4.4 nM)

was 2.9-fold lower (p<0.02, n = 3 independent

experiments) than that of shootin1a-WT

(Kd = 133.5 ± 13.6 nM) (Figure 3C). In vitro phos-

phorylation and binding assays also demon-

strated that phosphorylation of shootin1a by

Pak1 promotes its interaction with L1-CAM-ICD

(Figure 3D and E). Ectopic expression of a con-

stitutively active Pak1 in HEK293T cells increased

phosphorylation of myc-shootin1a at Ser101 and

Ser249 in these cells (Figure 4A and B); this in

turn promoted the interaction between shootin1a

and L1-CAM-ICD (Figure 4A and B). Conversely,

expression of a dominant-negative Pak1

decreased shootin1a phosphorylation and inhib-

ited the interaction (Figure 4A and B). Further-

more, stimulation of neurons by netrin-1

increased the phosphorylation of shootin1a at

Ser101 and Ser249 (Figure 4C and D); this led to

a concomitant increase in the interaction

between endogenous shootin1a and L1-CAM

(Figure 4C and D). In axonal growth cones, phos-

phorylated shootin1a was highly colocalized with

L1-CAM (Figure 4E). Altogether, our data dem-

onstrate that netrin-1–induced shootin1a phos-

phorylation promotes direct interaction between

shootin1a and L1-CAM.

Shootin1a–L1-CAM interaction
mediates netrin-1–induced F-actin–
adhesion coupling and
mechanoresponse
To address the role of the shootin1a–L1-CAM

interaction, we next analyzed the shootin1a

region that interacts with L1-CAM. An in vitro

binding assay with purified proteins showed that

residues 1–125 of shootin1a (shootin1a (1-125))

were essential and sufficient to bind to L1-CAM

(Figure 5A). On the other hand, we previously

reported that another region, shootin1a (261-

377), is responsible for its interaction with cortac-

tin, which links shootin1a to F-actin flow

(Figure 5A) (Kubo et al., 2015). Consistent with

these data, when expressed in hippocampal neu-

rons, myc-shootin1a (1-125) was highly colocal-

ized with L1-CAM in axonal growth cones

(Figure 5B). As shootin1a (1-125) interacts with

L1-CAM but not with cortactin, we expected that

it can be used as a dominant negative mutant

that disrupts the shootin1a–L1-CAM interaction.

Indeed, shootin1a (1-125) overexpressed in

HEK293T cells bound to L1-CAM-ICD, and inhib-

ited the interaction between shootin1a and L1-

CAM-ICD (Figure 5C).

Coupling between F-actins and substrate

reduces the speed of F-actin flow in growth

Video 1. A time-lapse fluorescence movie of Alexa

Fluor 488-BSA in the cell culture area of the device in

(Figure 2A, red rectangle). See the legend for

Figure 2B.

DOI: https://doi.org/10.7554/eLife.34593.015
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Figure 3. Pak1-mediated shootin1a phosphorylation enhances the interaction between shootin1a and L1-CAM. (A) In vitro binding assay using purified

shootin1a-WT (100 nM) and purified GST-L1-CAM-ICD (100 nM). Proteins were incubated with Glutathione Sepharose 4B and GST-L1-CAM-ICD was

eluted. The eluate was then analyzed by SDS-PAGE and CBB staining; 0.2% of the input proteins were also analyzed. (B and C) In vitro binding assay

using purified shootin1a-WT or purified shootin1a-DD and purified GST-L1-CAM-ICD. Shootin1a-DD or shootin1a-WT at increasing concentrations was

incubated with GST-L1-CAM-ICD and Glutathione Sepharose 4B. GST-L1-CAM-ICD was eluted. After SDS-PAGE, the eluate was immunoblotted with

anti-shootin1 antibody or stained with CBB (B), and the bound shootin1a-DD and shootin1a-WT were then quantified (C). Data represent means ± SEM

(n = 3 independent experiments). (D and E) In vitro binding assay using Pak1-phosphorylated purified shootin1a and purified GST-L1-CAM-ICD.

Shootin1a-WT (100 nM) or Pak1-phosphorylated shootin1a-WT (100 nM) was incubated with GST-L1-CAM-ICD and Glutathione Sepharose 4B. GST-L1-

CAM-ICD was eluted. After SDS-PAGE, the eluate was immunoblotted with anti-shootin1 antibody or stained with CBB (D). Input proteins (1%) were

Figure 3 continued on next page
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cones (Suter et al., 1998; Toriyama et al., 2013). Using shootin1a (1-125) as a dominant negative

mutant, we examined whether the shootin1a–L1-CAM interaction is involved in netrin-1–induced

mechanical coupling between F-actin flow and the substrate. Hippocampal neurons expressing

mRFP-actin were cultured on coverslips coated with L1-CAM, and F-actin flow in the growth cone

was monitored by live-cell fluorescence microscopy (Figure 6A, Video 2). In neurons overexpressing

a control protein myc-GST, the fluorescent features of mRFP-actin moved retrogradely at 4.5 ± 0.1

mm/min (mean ± SE, n = 30 fluorescent features), as previously reported (Shimada et al., 2008).

Overexpression of myc-shootin1a (1-125) in hippocampal neurons increased the velocity of F-actin

flow (Figure 6A and B), suggesting that shootin1a (1-125) inhibits the F-actin–adhesion coupling.

Netrin-1 stimulation significantly decreased the velocity of F-actin flow in control growth cones,

reflecting promotion of the F-actin–adhesion coupling. On the other hand, netrin-1 accelerated the

flow in the presence of overexpressed myc-shootin1a (1-125) (Figure 6A and B); this can be

explained by the inhibition of the F-actin adhesion coupling as well as a simultaneous increase in

actin polymerization by netrin-1–induced activation of Cdc42 and Rac1 (Shekarabi et al., 2005;

Briançon-Marjollet et al., 2008). These results suggest that shootin1a–L1-CAM interaction mediates

netrin-1–induced F-actin–adhesion coupling.

We further monitored mechanoresponses of growth cones using traction force microscopy. Hip-

pocampal neurons were cultured on L1-CAM–coated polyacrylamide gels with embedded 200 nm

fluorescent beads. Traction forces under the growth cones were monitored by visualizing force–

induced deformation of the elastic substrate, which is reflected by displacement of the beads from

their original positions. As reported (Toriyama et al., 2013), the reporter beads under the growth

cones moved dynamically, reflecting the traction force on the substrate (Figure 6C, Video 3); and

the force was increased significantly by netrin-1 stimulation (Figure 6C and D and Figure 6—figure

supplement 1A). Importantly, inhibition of the shootin1a–L1-CAM interaction by overexpressing

myc-shootin1a (1-125) significantly decreased traction forces and abolished the netrin-1–induced

increase in traction forces (Figure 6D). Overexpression of myc-shootin1a (1-125) also decreased

axon length and abolished the netrin-1–induced axon outgrowth (Figure 6—figure supplement 1B

and Figure 6E), suggesting that shootin1a–L1-CAM interaction is involved in the netrin-1–induced

generation of traction force for growth cone migration.

Netrin-1–induced axon attraction requires shootin1a
Next, we examined whether shootin1a is involved in netrin-1–induced axon guidance. Hippocampal

neurons were stimulated with a netrin-1 gradient for 7 hr; the gradient was applied approximately

perpendicularly to the extending direction of axons (Figure 7—figure supplement 1A). The right

panel (Figure 7—figure supplement 1A) depicts the migration of individual axonal growth cones.

Consistent with previous reports (Kennedy et al., 1994; Serafini et al., 1994; Bhattacharjee et al.,

2010), the majority of the axonal growth cones migrated toward the netrin-1 source (Figure 7—fig-

ure supplement 1A, Video 4). The mean axon outgrowth velocity was 24.4 ± 0.7 mm/h (Figure 7—

figure supplement 1B), and the net change in the angle of the growth cone toward the netrin-1

source was 26.4 ± 0.1˚ (n = 9) (Figure 7—figure supplement 1C). As our assay system produces gra-

dients of both soluble and substrate-bound netrin-1 (Figure 2B and Figure 2—figure supplement

1C), we assessed the abilities of soluble and substrate-bound netrin-1 to turn axons, by solubilizing

netrin-1 with heparin. As in the case of polylysine–coated substrate (Moore et al., 2012), inclusion

of 2 mg/ml heparin in the culture medium released netrin-1 from the L1-CAM–coated substrate

Figure 3 continued

also analyzed with anti-shootin1, anti-pSer101-shootin1 or anti-pSer249-shootin1 antibody. Quantitative data for bound shootin1a are shown in (E)

(n = 3 independent experiments). Data represent means ± SEM; ***p<0.01 (unpaired Student’s t-test).

DOI: https://doi.org/10.7554/eLife.34593.016

The following source data is available for figure 3:

Source data 1. Quantitative data for Kd value related to Figure 3C.

DOI: https://doi.org/10.7554/eLife.34593.017

Source data 2. Quantitative data for bound shootin1a related to Figure 3E.

DOI: https://doi.org/10.7554/eLife.34593.018
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Figure 4. Netrin-1–induced Pak1-mediated shootin1a phosphorylation enhances the interaction between shootin1a and L1-CAM. (A and B) Co-

immunoprecipitation of myc-shootin1a and FLAG-L1-CAM-ICD in HEK293T cells. Cells were transfected with vectors to express myc-shootin1a and

FLAG-L1-CAM-ICD; some of them were also co-transfected with a vector to express dominant negative Pak1 (KD) or constitutively active Pak1 (CA) as

indicated. Cell lysates were then incubated with anti-FLAG antibody. The immunoprecipitates were immunoblotted with anti-myc or anti-FLAG

Figure 4 continued on next page

Baba et al. eLife 2018;7:e34593. DOI: https://doi.org/10.7554/eLife.34593 11 of 35

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.34593


(Figure 2—figure supplement 1A and B). In contrast to the data obtained with spinal cord neurons

(Moore et al., 2012), the netrin-1 gradient induced axon turning even in the presence of heparin,

indicating that a gradient of soluble netrin-1 contributes to axon turning of hippocampal neurons

(Figure 7—figure supplement 1D, Video 5). However, the degree of netrin-1–induced axon out-

growth and turning was reduced in the presence of heparin (Figure 7—figure supplement 1B and

C). These data are consistent with a previous report (Mai et al., 2009) that netrin-1 attached to the

substrate induces axon turning of cultured hippocampal neurons. Thus, we conclude that gradients

of both soluble and substrate-bound netrin-1 contribute to axon turning of hippocampal neurons in

our assay system.

We next stimulated hippocampal neurons expressing control miRNA or shootin1a miRNA, which

inhibits shootin1a expression, with a netrin-1 gradient. The majority of the axonal growth cones of

control neurons migrated toward the netrin-1 source (Figure 7A, Video 6). The mean axon out-

growth velocity was 26.1 ± 3.0 mm/h (Figure 7C), and the net change in the angle of the growth

cone toward the netrin-1 source was 32.7 ± 2.2˚ (n = 11) (Figure 7D). Repression of shootin1a by

RNAi not only reduced the axon outgrowth velocity (5.6 ± 0.9 mm/h, p<0.01) (Figure 7B and C,

Video 7) but also inhibited the growth cone turning toward the netrin-1 source (2.1 ± 1.2˚, p<0.01,
n = 13) (Figure 7B and D). Similar results were obtained using hippocampal neurons prepared from

Shootin1 knockout mice (Figure 7—figure supplement 2). Together, these data indicate that netrin-

1–induced axon guidance of hippocampal neurons on an L1-CAM substrate requires shootin1a.

Netrin-1–induced axon attraction requires shootin1a–L1-CAM
interaction
We further examined a role of shootin1a–L1-CAM interaction in netrin-1–induced axon guidance.

Hippocampal neurons overexpressing EGFP (control) or EGFP-shootin1a (1-125), which inhibits the

shootin1a–L1-CAM interaction (Figure 5C), were stimulated with a netrin-1 gradient for 7 hr

(Figure 7E and F, left panels). The majority of the axonal growth cones of control neurons migrated

toward the netrin-1 source (Figure 7E, Video 8). The mean axon outgrowth velocity was 32.4 ± 6.6

mm/h (Figure 7—figure supplement 3A), and the net change in the angle of the growth cone

toward the netrin-1 source was 28.8 ± 3.8˚ (n = 17) (Figure 7—figure supplement 3B). On the other

hand, inhibition of the shootin1a–L1-CAM interaction by overexpressing EGFP-shootin1a (1-125) not

only reduced the axon outgrowth velocity (13.8 ± 3.4 mm/h, p<0.05) but also inhibited the growth

cone turning toward the netrin-1 source (0.6 ± 1.1˚, p<0.01, n = 16) (Figure 7F, Figure 7—figure

supplement 3 and Video 9). These data suggest that the interaction between shootin1a and L1-

CAM mediates netrin-1–induced axon guidance.

Figure 4 continued

antibody (A). Cell lysates (1%) were also analyzed with anti-pSer101-shootin1, anti-pSer249-shootin1, or anti-myc antibody. Quantitative data for

phosphorylated and bound shootin1a are shown in (B) (n = 3 independent experiments). Data represent means ± SEM; ***p<0.01; **p<0.02; *p<0.05

(One-way ANOVA with Tukey’s post hoc test). (C and D) Co-immunoprecipitation of shootin1a and L1-CAM in cultured cortical neurons. After

incubation of neurons with 4.4 nM netrin-1 or BSA (control) for 1 hr, cell lysates were prepared and incubated with anti-shootin1 antibody (right panel).

The immunoprecipitates were immunoblotted with anti-shootin1 or anti-L1-CAM antibody. The cell lysates (5%) were also analyzed with anti-pSer101-

shootin1, anti-pSer249-shootin1, or anti-shootin1a antibody (left panel). Quantitative data for phosphorylated shootin1a and bound L1-CAM are shown

in (D) (n = 3 independent experiments). Data represent means ± SEM; **p<0.02; *p<0.05 (Unpaired Student’s t-test). (E) Fluorescence images of an

axonal growth cone labeled with anti-pSer249-shootin1a (magenta) and anti-L1-CAM (green) antibodies. The cells were observed using a TIRF

microscope. An enlarged view of the filopodium in the rectangle is shown in the lower panel. Arrowheads indicate phosphorylated shootin1a

colocalized with L1-CAM. Bar: 5 mm (in the inset, 2 mm).

DOI: https://doi.org/10.7554/eLife.34593.019

The following source data is available for figure 4:

Source data 1. Quantitative data for phosphorylated and bound shootin1a related to Figure 4B.

DOI: https://doi.org/10.7554/eLife.34593.020

Source data 2. Quantitative data for phosphorylated shootin1a and bound L1-CAM related to Figure 4D.

DOI: https://doi.org/10.7554/eLife.34593.021
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Shootin1a–L1-CAM interaction mediates netrin-1–induced axon
guidance on laminin
Laminins are widely used substrates for axon guidance assays (Turney and Bridgman, 2005;

Nichol et al., 2016); L1-CAM on growth cones interacts directly with laminin presented on the sub-

strate (Hall et al., 1997; Abe et al., 2018). To examine whether the shootin1a–L1-CAM interaction

mediates netrin-1–induced axon guidance generally, we performed an axon guidance assay on an

alternative substrate, laminin. Growth cones of cultured hippocampal neurons on laminin turned in

response to netrin-1 gradients (Figure 7—figure supplement 4A–C), as they did on L1-CAM

(Figure 7—figure supplement 1A). To assess shootin1a-mediated clutch coupling on laminin, we

measured F-actin retrograde flow in growth cones on laminin. Consistent with previously reported

Figure 5. Shootin1a (1-125) interacts with L1-CAM and disturbs the interaction between shootin1a and L1-CAM. (A) Upper panel: schematic

representation of shootin1a (WT) and shootin1a deletion mutants, and their ability to interact with L1-CAM-ICD and cortactin. Lower panel: in vitro

binding assay using purified myc-tagged shootin1a mutants and purified GST-L1-CAM-ICD. Myc-shootin1a mutants (100 nM) were incubated with GST-

L1-CAM-ICD (100 nM) and Glutathione Sepharose 4B. GST-L1-CAM-ICD was eluted. After SDS-PAGE, the eluate was immunoblotted with anti-myc or

anti-GST antibody. Asterisks denote myc shootin1a mutants. (B) Neurons transfected with myc-shootin1a (1-125) were labeled with anti-myc (magenta)

and anti-L1-CAM (green) antibodies. The cells were observed using a TIRF microscope. An enlarged view of the filopodium in the rectangle is shown in

the inset. Arrowheads indicate shootin1a (1-125) colocalized with L1-CAM. Bar: 5 mm (in the inset, 2 mm). (C) Overexpressed shootin1a (1-125) inhibits

the interaction between shootin1a and L1-CAM-ICD. HEK293T cells were transfected with vectors to express myc-shootin1a and FLAG-L1-CAM-ICD;

some of them were also co-transfected with a vector to overexpress myc-shootin1a (1-125) as indicated. Cell lysates were prepared and incubated with

anti-FLAG antibody. The immunoprecipitates were immunoblotted with anti-myc or anti-FLAG antibody. The cell lysates (1%) were also analyzed with

anti-myc antibody. The graph (right) shows quantitative data for bound shootin1a-DD (n = 3 independent experiments). Data represent means ± SEM;

*p<0.05 (unpaired Student’s t-test).

DOI: https://doi.org/10.7554/eLife.34593.022

The following source data is available for figure 5:

Source data 1. Quantitative data for bound shootin1a-DD related to Figure 5C.

DOI: https://doi.org/10.7554/eLife.34593.023
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Figure 6. Shootin1a–L1-CAM interaction mediates netrin-1–induced F-actin adhesion coupling and mechanoresponse for axon outgrowth. (A)

Fluorescent feature images of mRFP-actin at axonal growth cones overexpressing myc-GST (control) or myc-shootin1a (1-125) in the absence (control) or

presence of 4.4 nM netrin-1 (see Video 2). Kymographs of the fluorescent features of mRFP-actin in filopodia at 5 s intervals are shown (F-actin flows

are indicated by dashed yellow lines). (B) F-actin retrograde flow speed measured from the kymograph analysis in A; 120 fluorescent features (47 growth

Figure 6 continued on next page
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data (Abe et al., 2018), the F-actin retrograde flow rate in control growth cones on laminin was

2.3 ± 0.3 mm/min (Figure 7—figure supplement 4D). As in the case of growth cones on L1-CAM

(Figure 6A and B), overexpression of shootin1a (1-125) increased significantly the retrograde flow

rate under these conditions (Figure 7—figure supplement 4D), indicating that inhibition of the

shootin1a–L1-CAM interaction also disrupts F-actin-adhesion coupling in growth cones on laminin.

Furthermore, uncoupling of F-actin-adhesion coupling by shootin1a (1-125) inhibited netrin-1–

induced axon outgrowth and turning on laminin (Figure 7—figure supplement 4A–C and E).

Together, these data indicate that netrin-1–induced axon guidance, which is mediated by the shoo-

tin1a–L1-CAM interaction, is not limited to

growth cones on L1-CAM.

Figure 6 continued

cones) were analyzed. One-way ANOVA with Tukey’s post hoc test was used. (C) DIC and fluorescence images (left panel) showing an axonal growth

cone of a DIV2 neuron overexpressing EGFP and cultured on L1-CAM–coated polyacrylamide gel with embedded 200 nm fluorescent beads. The

panels show representative images from time-lapse series taken every 3 s for 150 s before (control) and 60 min after netrin-1 (4.4 nM) stimulation (see

Video 3). The original and displaced positions of the beads in the gel are indicated by green and red colors, respectively. Dashed lines indicate the

boundary of the growth cone. The kymographs (right panel) along the axis of bead displacement (white dashed arrows) at the indicated areas 1 and 2

of the growth cone show movement of beads recorded every 3 s. The bead in area two is a reference bead. (D) Analyses of the magnitude of the

traction forces under axonal growth cones overexpressing myc-GST (control) or myc-shootin1a (1-125) before (control) or after netrin-1 stimulation (see

Figure 6—figure supplement 1A for the direction of the traction forces, n = 14 growth cones). One-way ANOVA with Tukey’s post hoc test was

performed. (E) Three hours after plating, hippocampal neurons overexpressing myc-GST (control) or myc-shootin1a (1-125) were incubated with BSA

(control) or 4.4 nM netrin-1 for 40 hr, and then immunolabeled by anti-myc antibody (see Figure 6—figure supplement 1B). Axon length was then

analyzed (n = 909 neurons). One-way ANOVA with Schaffer’s post hoc test was performed in the left graph, while an unpaired Student’s t-test was used

in the right graph. Data represent means ± SEM; ***p<0.01; *p<0.05; ns, not significant. Bars: 5 mm (in the kymographs of A, 2 mm).

DOI: https://doi.org/10.7554/eLife.34593.024

The following source data and figure supplements are available for figure 6:

Source data 1. Quantitative data for F-actin retrograde flow speed related to Figure 6B.

DOI: https://doi.org/10.7554/eLife.34593.027

Source data 2. Quantitative data for the magnitude of the traction forces related to Figure 6D.

DOI: https://doi.org/10.7554/eLife.34593.028

Source data 3. Quantitative data for axon length and axon outgrowth by netrin-1 related to Figure 6E.

DOI: https://doi.org/10.7554/eLife.34593.029

Figure supplement 1. Shootin1a–L1-CAM interaction mediates netrin-1–induced axon outgrowth.

DOI: https://doi.org/10.7554/eLife.34593.025

Figure supplement 1—source data 1. Statistical analyses of the angle (˚) of the traction forces related to Figure 6—figure supplement 1A.

DOI: https://doi.org/10.7554/eLife.34593.026

Video 2. Movement of fluorescent features of mRFP-

actin in a growth cone of a neuron overexpressing myc-

GST. See the legend for Figure 6A.

DOI: https://doi.org/10.7554/eLife.34593.030

Video 3. Netrin-1-induced promotion of traction forces

at an axonal growth cone. Left and right panels show

bead displacement before and 60 min after netrin-1

stimulation, respectively. See the legend for Figure 6C.

DOI: https://doi.org/10.7554/eLife.34593.031
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Netrin-1–induced axon attraction requires polarized shootin1a
phosphorylation within growth cones
Finally, we analyzed the role of polarized shootin1 phosphorylation within growth cones elicited by

netrin-1 gradients. As shown above (Figure 7A–D), repression of shootin1a by expression of shoo-

tin1a miRNA inhibited axon outgrowth and growth cone turning toward the netrin-1 source. Expres-

sion of RNAi-refractory shootin1a-WT in neurons expressing shootin1a miRNA rescued the reduction

of axon outgrowth as well as growth cone turning (Figure 8A, C and D, Video 10), indicating that

shootin1a regulates both axon outgrowth and growth cone turning. Our previous work has shown

that axon outgrowth is regulated by shootin1a–mediated clutch coupling (Shimada et al., 2008;

Kubo et al., 2015). As shootin1a-DD, the constitutively active shootin1a, mediates clutch coupling

and force generation in the absence of PAK1 activity (Toriyama et al., 2013) but cannot be regu-

lated by phosphorylation, displacement of wild-type shootin1a with shootin1a-DD would disturb

netrin-1–induced polarized shootin1a regulation without disturbing the clutch coupling. As shown by

Figure 8B–D and Video 11, disturbance of polarized shootin1a phosphorylation within growth

cones by this displacement inhibited growth cone turning toward the netrin-1 source without reduc-

ing axon outgrowth velocity. These results demonstrate that the disturbance of axon turning caused

by depletion of shootin1a (Figure 7D and Figure 7—figure supplement 2D) or by dominant nega-

tive shootin1a (Figure 7—figure supplement 3B) is not attributed only to the inhibited axon out-

growth, and suggest that the polarized phosphorylation of shootin1a within growth cones is

required for the directional axon guidance induced by netrin-1 gradients (Figure 8E).

Video 4. A time-lapse movie of a hippocampal neuron

under a gradient of netrin-1 without heparin. See the

legend for Figure 7—figure supplement 1A. The

gradient of Alexa Fluor 594-BSA in Figure 7—figure

supplement 1A is not shown.

DOI: https://doi.org/10.7554/eLife.34593.032

Video 5. A time-lapse movie of a hippocampal neuron

under a gradient of netrin-1 with 2 mg/ml heparin. See

the legend for Figure 7—figure supplement 1D. The

gradient of Alexa Fluor 594-BSA in Figure 7—figure

supplement 1D is not shown.

DOI: https://doi.org/10.7554/eLife.34593.033
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Figure 7. Shootin1a and shootin1a–L1-CAM interaction mediate netrin-1–induced axon guidance. (A and B) Time-lapse phase-contrast/fluorescence

images of hippocampal neurons expressing control miRNA (A) and shootin1a miRNA (B) under the gradients of netrin-1 and Alexa Fluor 594-BSA.

White and blue arrowheads indicate growth cones at the first and last time-points, respectively. See Videos 6 and 7. The right panels depict

trajectories of individual growth cone migrations. The initial growth cone positions are normalized at (x = 0 mm, y = 0 mm). Bars: 50 mm. (C) Axon

Figure 7 continued on next page
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Discussion
Since the seminal proposal by Ramón y Cajal (Cajal, 1890) that the growth cone senses extracellular

chemical cues and produces force for axon guidance, considerable progress has been made in

understanding the signaling events at the axon guidance machinery located within the growth cone.

However, the gradient-reading as well as mechano-effector machinery that converts the environmen-

tal spatial chemical signals into the directional force for axon guidance has remained unclear. Here

we have shown that shallow gradients of netrin-1 elicited highly polarized shootin1a phosphorylation

within growth cones. Netrin-1–elicited shootin1a phosphorylation promoted direct interaction

between shootin1a and L1-CAM, thereby generating traction force for growth cone motility.

Figure 7 continued

outgrowth velocity obtained from the analyses in (A and B) (n = 24 growth cones). See also the legend for Figure 8C about quantitative data. (D)

Turning angle of axon toward the netrin-1 source was obtained from the analyses in (A and B), by calculating the difference between the angles of the

axonal tip at the first and last time-points of the observations (�f - �l). The graph shows quantified data (n = 24 growth cones). See also the legend for

Figure 8D about quantitative data. (E and F) Time-lapse phase-contrast/fluorescence images of hippocampal neurons expressing EGFP (control) (E)

and EGFP-shootin1a (1-125) (F) under gradients of netrin-1 and Alexa Fluor 594-BSA (red). White and blue arrowheads indicate growth cones at the first

and last time-points, respectively. See Videos 8 and 9. The right panels depict trajectories of individual growth cone migrations. The initial growth

cone positions are normalized at (x = 0 mm, y = 0 mm). See also quantitative data in Figure 7—figure supplement 3. Bars: 50 mm. Data represent

means ± SEM; ***p<0.01 (one-way ANOVA with Schaffer’s post hoc test).

DOI: https://doi.org/10.7554/eLife.34593.034

The following source data and figure supplements are available for figure 7:

Source data 1. Quantitative data for axon outgrowth velocity related to Figure 7C.

DOI: https://doi.org/10.7554/eLife.34593.048

Source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 7D.

DOI: https://doi.org/10.7554/eLife.34593.049

Figure supplement 1. Soluble and substrate-bound netrin-1 contribute to axon turning.

DOI: https://doi.org/10.7554/eLife.34593.035

Figure supplement 1—source data 1. Quantitative data for axon outgrowth velocity related to Figure 7—figure supplement 1B.

DOI: https://doi.org/10.7554/eLife.34593.036

Figure supplement 1—source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 7—figure supplement

1C.

DOI: https://doi.org/10.7554/eLife.34593.037

Figure supplement 2. Shootin1 knockout leads to inhibition of netrin-1–induced axon outgrowth and turning.

DOI: https://doi.org/10.7554/eLife.34593.038

Figure supplement 2—source data 1. Quantitative data for axon outgrowth velocity related to Figure 7—figure supplement 2C.

DOI: https://doi.org/10.7554/eLife.34593.039

Figure supplement 2—source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 7—figure supplement

2D.

DOI: https://doi.org/10.7554/eLife.34593.040

Figure supplement 3. Shootin1a–L1-CAM interaction mediates netrin-1–induced axon guidance.

DOI: https://doi.org/10.7554/eLife.34593.041

Figure supplement 3—source data 1. Quantitative data for axon outgrowth velocity related to Figure 7—figure supplement 3A.

DOI: https://doi.org/10.7554/eLife.34593.042

Figure supplement 3—source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 7—figure supplement

3B.

DOI: https://doi.org/10.7554/eLife.34593.043

Figure supplement 4. Shootin1a–L1-CAM interaction mediates netrin-1–induced axon guidance on laminin.

DOI: https://doi.org/10.7554/eLife.34593.044

Figure supplement 4—source data 1. Quantitative data for axon outgrowth velocity related to Figure 7—figure supplement 4B.

DOI: https://doi.org/10.7554/eLife.34593.045

Figure supplement 4—source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 7—figure supplement

4C.

DOI: https://doi.org/10.7554/eLife.34593.046

Figure supplement 4—source data 3. Quantitative data for F-actin retrograde flow speed related to Figure 7—figure supplement 4D.

DOI: https://doi.org/10.7554/eLife.34593.047
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Furthermore, the spatially regulated phosphorylation of shootin1a within growth cones was required

for axon turning induced by netrin-1 gradients. These results suggest that shootin1a constitutes a

gradient-reading and mechano-effector machinery involved in netrin-1–induced axon guidance.

Mechano-effector machinery for netrin-1–regulated axon guidance
The present study defines a mechano-effector for netrin-1–induced axon guidance. Previous reports

proposed that an increase in the mechanical coupling between F-actin retrograde flow in the growth

cone and cell adhesions transmits the force of F-actin flow onto the adhesive substrates for growth

cone migration (Mitchison and Kirschner, 1988; Suter and Forscher, 2000). In relation to this

notion, a recent study reported that axon guidance cues affect F-actin–adhesion coupling locally

within the growth cone to influence axon outgrowth and guidance (Nichol et al., 2016). In addition,

we previously reported that shootin1a associates with the F-actin flow at the growth cone through

its direct interaction with cortactin, and showed that netrin-1–induced phosphorylation of shootin1a

by Pak1 promotes shootin1a–F-actin interaction through cortactin (Toriyama et al., 2013;

Kubo et al., 2015).

Here, we demonstrated that netrin-1–induced shootin1a phosphorylation by Pak1 also promotes

direct interaction between shootin1a and L1-CAM. Previous studies reported that netrin-1 induces

dimerization of its receptor, DCC, thereby activating molecules including NCK1, FAK and FYN

(Stein et al., 2001; Ren et al., 2004; Lai Wing Sun et al., 2011). This in turn induces activation of

Video 6. A time-lapse movie of a hippocampal neuron

expressing control miRNA, under a gradient of netrin-1.

See the legend for Figure 7A. The gradient of Alexa

Fluor 594-BSA in Figure 7A is not shown.

DOI: https://doi.org/10.7554/eLife.34593.050

Video 7. A time-lapse movie of a hippocampal neuron

expressing shootin1a miRNA, under a gradient of

netrin-1. See the legend for Figure 7B. The gradient of

Alexa Fluor 594-BSA in Figure 7B is not shown.

DOI: https://doi.org/10.7554/eLife.34593.051
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Cdc42 and Rac1, and their downstream kinase

Pak1 (Li et al., 2002; Shekarabi and Kennedy,

2002; Shekarabi et al., 2005; Briançon-

Marjollet et al., 2008; Demarco et al., 2012) (Figure 8E). Thus, under the activation of Pak1 via

these signaling pathways, the shootin1a phosphorylation enhances both the shootin1a–adhesion and

shootin1a–F-actin interactions that lead to increased F-actin–adhesion coupling (Figure 8E). This

double regulation would enable efficient regulation of forces for axon guidance in response to

netrin-1. At present, no information is available on the three-dimensional structure of shootin1a. In

addition, it is unknown how shootin1a–L1-CAM and shootin1a–cortactin interactions are promoted

by the phosphorylation of shootin1a. Future investigations of the molecular structure of shootin1a,

and of how the structures of the domains mediating interaction with L1-CAM and cortactin are

affected by phosphorylation, will lead to a better understanding of this mechano-effector machinery.

Gradient-reading machinery for netrin-1–regulated axon guidance
The ability of cells to sense small spatial differences in environmental cues is essential for proper

axon guidance as well as directional cell migration, but the molecular mechanism underlying it

remains a major question (Quinn and Wadsworth, 2008; Hegemann and Peter, 2017). Initial stud-

ies reported that growth cones can respond to 1% gradients of repulsive tectal membranes pre-

sented on the substrate (Baier and Bonhoeffer, 1992) and 5–10% gradients of diffusible axon

guidance molecules including netrin-1 (Ming et al., 1999). More recently, analyses employing micro-

fluidic devices demonstrated that growth cones have even higher sensitivities to chemical gradients:

Video 8. A time-lapse movie of a hippocampal neuron

expressing EGFP, under a gradient of netrin-1. See the

legend for Figure 7E. The gradient of Alexa Fluor 594-

BSA in Figure 7E is not shown.

DOI: https://doi.org/10.7554/eLife.34593.052

Video 9. A time-lapse movie of a hippocampal neuron

expressing EGFP-shootin1a (1-125), under a gradient of

netrin-1. See the legend for Figure 7F. The gradient of

Alexa Fluor 594-BSA in Figure 7F is not shown.

DOI: https://doi.org/10.7554/eLife.34593.053
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Figure 8. Asymmetric shootin1a phosphorylation within growth cones is required for netrin-1–induced axon guidance. (A and B) Time-lapse phase-

contrast/fluorescence images of hippocampal neurons expressing shootin1a miRNA + RNAi refractory shootin1a-WT (A), and shootin1a miRNA + RNAi

refractory shootin1a-DD (B) under gradients of netrin-1 and Alexa Fluor 594-BSA (red). White and blue arrowheads indicate growth cones at the first

and last time-points, respectively. See Videos 10 and 11. The right panels depict trajectories of individual growth cone migrations. The initial growth

cone positions are normalized at (x = 0 mm, y = 0 mm). (C) Axon outgrowth velocity obtained from the analyses in Figure 7A and B, Figure 8A and B

(n = 47 growth cones). (D) Turning angle of axon toward the netrin-1 source was obtained from the analyses in Figure 7A and B, Figure 8A and B

(n = 47 growth cones), by calculating the difference between the angles of the axonal tip at the first and last time-points of the observations (�f - �l). (E)

A model for gradient-reading and mechanoresponse processes of netrin1–induced axon guidance. A very small difference (250:251; 0.4%) in netrin-1

Figure 8 continued on next page
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Figure 8 continued

concentration can induce highly polarized phosphorylation of shootin1a within growth cones (pink), as a readout of highly sensitive gradient-reading

processes. A netrin-1 gradient on the substrate would also contribute to polarized shootin1 phosphorylation (yellow). This process is achieved through a

signaling pathway including DCC, Rac1/CDC42, Pak1 and shootin1a. The polarized phosphorylation of shootin1a within a growth cone locally promotes

shootin1a–L1-CAM and shootin1a–cortactin interactions. These interactions in turn enhance asymmetrically the coupling between F-actin retrograde

flow and the adhesive substrate and increase traction force (blue arrows) on the side of the netrin-1 source, thereby leading to a decision for the

migratory direction (white arrow). Data represent means ± SEM; ***p<0.01; ns, not significant (one-way ANOVA with Schaffer’s post hoc test). Bars: 50

mm.

DOI: https://doi.org/10.7554/eLife.34593.054

The following source data is available for figure 8:

Source data 1. Quantitative data for axon outgrowth velocity related to Figure 8C.

DOI: https://doi.org/10.7554/eLife.34593.055

Source data 2. Quantitative data for turning angle of axon toward the netrin-1 source related to Figure 8D.

DOI: https://doi.org/10.7554/eLife.34593.056

Video 10. A time-lapse movie of a hippocampal

neuron expressing shootin1a miRNA + RNAi refractory

shootin1a-WT, under a gradient of netrin-1. See the

legend for Figure 8A. The gradient of Alexa Fluor 594-

BSA in Figure 8A is not shown.

DOI: https://doi.org/10.7554/eLife.34593.057

Video 11. A time-lapse movie of a hippocampal

neuron expressing shootin1a miRNA + RNAi refractory

shootin1a-DD, under a gradient of netrin-1. See the

legend for Figure 8B. The gradient of Alexa Fluor 594-

BSA in Figure 8B is not shown.

DOI: https://doi.org/10.7554/eLife.34593.058
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for example, they can turn in response to 0.1–0.4% gradients of NGF (Rosoff et al., 2004), and 0.5

and 0.1% gradients of substrate-bound laminin and ephrin-A5, respectively (Xiao et al., 2014). This

study presents the framework of a highly sensitive gradient-reading machinery for axon guidance

(Figure 8E). Our data demonstrate that a 0.4% (250:251) difference in netrin-1 concentration induces

a 71% difference in shootin1a phosphorylation within growth cones, as a key readout of the spatial

signal. This polarized phosphorylation locally promotes shootin1a–L1-CAM and shootin1a–cortactin

interactions within growth cones and asymmetrically promote traction force (blue arrows, F

Figure 8E) on the side of the netrin-1 source, leading to a decision for the migratory direction (white

arrow, Figure 8E).

Our data suggest that the netrin-1 gradient-reading process in growth cones is achieved through

a signaling pathway that includes DCC, Rac1/Cdc42, Pak1 and shootin1a (Figure 8E); however, how

these molecules amplify very small spatial differences in netrin-1 concentration remain to be deter-

mined. It has been proposed that amplification of local signals through combined positive and nega-

tive feedback loops contribute to sense shallow gradients of extracellular chemicals (Yang et al.,

2016; Hegemann and Peter, 2017) and that polarized assembly of signaling molecules may play a

key role in it (Quinn and Wadsworth, 2008; Hegemann and Peter, 2017). Previous studies in C.

elegans reported that local netrin-1 signals induce polarized distribution of the DCC orthologs UNC-

40 within cell bodies (Adler et al., 2006; Ziel et al., 2009; Wang et al., 2014). However, growth

cones of mouse cortical neurons did not show polarized localization of DCC under netrin-1 gradients

(Taylor et al., 2015). In addition, FRET visualization of Cdc42 and Rac1 signals has not, so far,

revealed a distinct polarized activation of these molecules in growth cones (Picard et al., 2009;

Rappaz et al., 2016). Tracing the spatial signals from phosphorylated shootin1a back upstream to

DCC will lead to a better molecular understanding of the gradient-reading mechanism involved in

netrin-1–regulated axon guidance.

Shootin1a–mediated axon guidance in the brain
The present study has shown that shootin1a is expressed at high levels in developing forebrain com-

missural axons and that Shootin1 knockout mice display dysgenesis and misprojection of these

axons. We analyzed their projections with the axonal marker L1-CAM (Chung et al., 1991;

Klingler et al., 2015) and DiI tracing (Klingler et al., 2015). As L1-CAM interacts with shootin1a,

ablation of shootin1a expression could lead to a change in L1-CAM localization in these axons; how-

ever, both the L1-CAM labelling and DiI tracing analyses revealed misprojection of these axons. Sim-

ilar defects of callosal and anterior commissural axons were reported in knockout mice for Netrin-1

(Serafini et al., 1996) as well as DCC (Fazeli et al., 1997), Rac1 (Chen et al., 2007; Kassai et al.,

2008) and L1-CAM (Demyanenko et al., 1999), thereby providing evidence for the notion that

shootin1a cooperates with these molecules in axon guidance. Thus, the defects in the forebrain com-

missural axons in Shootin1 knockout mice are consistent with the in vitro observations that shootin1a

is required for netrin-1–induced axon outgrowth and guidance.

However, although netrin-1 mRNA is distributed along the paths of forebrain commissural axons

(Serafini et al., 1996), netrin-1 gradients have not yet been reported in these brain regions. In addi-

tion, as Shootin1 knockout mice exhibit multiple defects in the brain, we cannot conclude that the

dysgenesis of the forebrain commissures is only due to the axon outgrowth and guidance deficits

observed in in vitro assays. Generation of conditional knockout mice as well as detailed mapping of

netrin-1 will facilitate future analyses of the shootin1a–mediated axon guidance in the brain. In con-

trast to the forebrain commissural axons, we could not detect distinct shootin1a localization in the

ventral spinal commissural axons and could not observe their abnormality in Shootin1 knockout

mice, suggesting that shootin1a is not required for guidance of the spinal commissural axons.

Netrin-1–induced axon guidance through chemotaxis and haptotaxis
Axon guidance and cell migration are directed by spatial gradients of soluble chemicals (called che-

motaxis) (Gundersen and Barrett, 1979; Mortimer et al., 2008) and by chemicals presented on

adhesive substrate or neighboring cells (termed haptotaxis) (Carter, 1967; Baier and Bonhoeffer,

1992). The present study indicates that gradients of both soluble and immobilized netrin-1 are pro-

duced on L1-CAM–coated substrate, thereby contributing to axon turning of hippocampal neurons.

As soluble and immobilized chemical cues act as ligands to activate intracellular signaling pathways
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in growth cones (Huber et al., 2003; Lowery and Van Vactor, 2009; Kolodkin and Tessier-Lav-

igne, 2011), the gradient-reading machinery involving shootin1a may explain both axonal chemo-

taxis and haptotaxis elicited by shallow gradients of netrin-1 (red and yellow arrows, Figure 8E).

On the other hand, recent studies reported that netrin-1 locally presented by neural progenitors

is required for guidance of the spinal commissural axons (Dominici et al., 2017; Varadarajan et al.,

2017) and that these axons respond to substrate-bound netrin-1 (Moore et al., 2012) and steep

gradients of netrin-1 (Sloan et al., 2015) in vitro. These reports underscore the importance of hapto-

taxis in netrin-1–induced axon guidance of spinal commissural neurons. Concerning the axon guid-

ance mechanism of these neurons, Moore et al. (2012) reported that immobilization of netrin-1 is

required; the immobilized netrin-1 is proposed to play a key role in mechanical activation of FAK,

thereby leading to activation of signaling pathways including Crk-associated substrate (CAS) for axo-

nal haptotaxis. The details of how axon guidance is regulated by immobilized netrin-1 remain impor-

tant issues for future analyses.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene
(Rattus norvegicus)

Wistar SLC RRID:RGD_2314928

Gene
(Rattus norvegicus)

Wistar CLEA Japan RRID:RGD_12879431

Gene
(Mus musculus)

C57BL/6 SLC RRID:MGI:5658686;
RRID:MGI:5295404

Gene
(Mus musculus)

C57BL/6 CLEA Japan RRID:MGI:5658686;
RRID:MGI:2160139

Genetic reagent
(Mus musculus)

Shootin1 gene
knockout

This paper Please see ’Generation of
Shootin1 knockout mice’ in
Materials and methods section

Cell line
(Homo sapiens)

HEK293T cell ATCC Cat# CRL_3216;
RRID:CVCL_0063

Antibody anti-shootin1a
peptide sequence
(rabbit polyclonal)

This paper Rabbit polyclonal; against aa
450–456; Immunohistochemistry:
(1:5000) Immunoblot: (1:5000)

Antibody anti-shootin1
antibody
(rabbit polyclonal)

PMID: 17030985
(Toriyama et al., 2006);
PMID: 23453953
(Toriyama et al., 2013)

Immunoblot: (1:1000)

Antibody anti-pSer101-shootin1
antibody
(rabbit polyclonal)

PMID: 23453953
(Toriyama et al., 2013)

Immunoblot: (1:1000)

Antibody anti-pSer249-shootin1
antibody
(rabbit polyclonal)

PMID: 23453953
(Toriyama et al., 2013)

Immunoblot: (1:5000);
Immunofluorescence(1:1000)

Antibody anti-NCAM-L1 (C-20)
antibody
(goat polyclonal)

Santa Cruz Biotechnology Cat# sc-1508;
RRID:AB_631086

Immunoblot: (1:2000);
Immunofluorescence: (1:1000);
Immunohistochemistry: (1:1000)

Antibody anti-Neurofilament
antibody 2H3
(mouse monoclonal)

DSHB Cat# 2H3;
RRID:AB_531793

Immunohistochemistry: (1:2000)

Antibody anti-TAG-1 antibody 4D7
(mouse monoclonal)

DSHB Cat# 4D7/TAG1;
RRID:AB_531775

Immunohistochemistry: (1:100)

Antibody anti-FLAG(DDDDK) tag
antibody
(rabbit polyclonal)

MBL Cat# PM020;
RRID:AB_591224

Immunoblot: (1:1000)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody anti-Myc tag antibody
(rabbit polyclonal)

MBL Cat# 562–5;
RRID:AB_591116

Immunoblot: (1:2000)

Antibody anti-GST tag antibody
(goat polyclonal)

GE Healthcare Cat# 27-4577-01;
RRID:AB_771432

Immunoblot: (1:3000)

Antibody anti-His tag antibody
(goat polyclonal)

Wako Cat# 014–23221 Immunofluorescence (1:500)

Antibody anti-rabbit IgG secondary
antibody, Alexa Fluor
594 (from donkey)

Jackson immune research Cat# 711-585-152;
RRID:AB_2340621

Immunofluorescence: (1:1000);
Immunohistochemistry: (1:1000)

Antibody anti-goat IgG secondary
antibody, Alexa Fluor
488 (from donkey)

Invitrogen, Thermo Fisher
Scientific

Cat# A-11055;
RRID:AB_2534102

Immunofluorescence: (1:1000);
Immunohistochemistry: (1:1000)

Antibody anti-mouse IgG secondary
antibody, Alexa Fluor
488 (from goat)

Invitrogen, Thermo Fisher
Scientific

Cat# A-11029;
RRID:AB_2534088

Immunofluorescence: (1:1000)

Antibody anti-rabbit IgG, Whole
Ab ECL antibody,
HRP Conjugated
(from donkey)

GE Healthcare Cat# NA934;
RRID:AB_772206

Immunoblot: (1:2000)

Antibody anti-goat IgG, HRP
conjugate, Species
Adsorbed: H, M, R, Ch, Gp, Eq,
Ht, Rb antibody (from donkey)

Millipore Cat# AP180P;
RRID:AB_92573

Immunoblot: (1:2000)

Recombinant DNA
reagent

pCMV-myc vector Stratagene, Agilent Cat# 211173

Recombinant DNA
reagent

pCMV-Flag vector Strategene, Agilent Cat# 211172

Recombinant DNA
reagent

pCAGGS vector PMID: 1660837
(Niwa et al., 1991)
Strategene, Addgene

Collection number
LMBP2453

This vector was provided by
J. Miyazaki, Osaka University,
Osaka, Japan; Niwa et al. (1991)
(PMID: 1660837)

Recombinant DNA
reagent

pGEX-6P-1 GE Healthcare Cat# 28954648

Recombinant DNA
reagent

pCMV-mRFP-actin vector PMID: 29483251
(Abe et al., 2018)

Recombinant DNA
reagent

pCMV-myc-shootin1a vector PMID: 17030985
(Toriyama et al., 2006)

Recombinant DNA
reagent

pCMV-Flag-L1-CAM-ICD
(intracellular domain) vector

This paper

Recombinant DNA
reagent

pCMV-dominant negative
myc-Pak1vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pCMV-constitutively active
myc-Pak1 vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pCAGGS-myc PMID: 17030985
(Toriyama et al., 2006)

Recombinant DNA
reagent

pCAGGS-myc-GST vector PMID: 17030985
(Toriyama et al., 2006)

Recombinant DNA
reagent

pCAGGS-myc- shootin1a
(1-125) vector

This paper

Recombinant DNA
reagent

pCAGGS-EGFP This paper

Recombinant DNA
reagent

pCAGGS-EGFP-
shootin1a(1-125)

This paper

Recombinant DNA
reagent

pGEX-shootin1a-WT vector PMID: 26261183
(Kubo et al., 2015)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA
reagent

pGEX-shootin1a-DD
(phopho-mimic
shootin1a) vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-myc-shootin1a-DD
(phopho-mimic shootin1a)
vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-myc-shootin1a-
(1-125) vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-myc-shootin1a-
(125-260) vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-myc-shootin1a-
(217-456) vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-myc-shootin1a-
(261-377) vector

PMID: 26261183
(Kubo et al., 2015)

Recombinant DNA
reagent

pGEX-L1-CAM-ICD
(intracellulardomain)
vector

This paper

Recombinant DNA
reagent

RNAi shootin1a vector
(miRNA)

PMID: 17030985
(Toriyama et al., 2006);
PMID: 23453953
(Toriyama et al., 2013)

Recombinant DNA
reagent

RNAi-refractory
shootin1a-WT vector

PMID: 23453953
(Toriyama et al., 2013)

Recombinant DNA
reagent

RNAi-refractory
shootin1a-DD (phopho-
mimic shootin1a)
vector

PMID: 23453953
(Toriyama et al., 2013)

Peptide, recombinant
protein

recombinant Netrin-1
protein (from mouse)

R and D systems Cat# 1109-N1-025 No CF (No carrier protein free)

Peptide, recombinant
protein

FLAG peptide Sigma-Aldrich Cat# F3290

Peptide, recombinant
protein

Laminin Solution, from
Mouse EHS Tumor

Wako Cat# 120–05751

Peptide, recombinant
protein

L1-CAM-Fc PMID: 18519736
(Shimada et al., 2008)

N/A

Peptide, recombinant
protein

Prescission protease GE Healthcare Cat# 27084301

Peptide, recombinant
protein

Recombinant Pak1 Life technologies,
Thermo Fisher Scientific

Cat# PV3820

Commercial assay or
kit

Rat Neuron Nucleofector
kits (25 RCT)

Lonza Cat# VPG-1003

Chemical compound,
drug

anti-FLAG M2 antibody
affinity gel (mouse
monoclonal)

Sigma-Aldrich Cat# A2220;
RRID:AB_10063035

Chemical compound,
drug

7-amino-4-
chloromethylcoumarin
(CMAC)

Invitrogen, Thermo Fisher
Scientific

Cat# C2110

Chemical compound,
drug

4,6-diamidino-2-
phenylindole(DAPI)

Roche Cat# 10236276001
Roche

DAPI stain (1:1000)

Chemical compound,
drug

1,1’-dioctadecyl-
3,3,3’,3’-tetramethyl-
indocarbocyanine dye (DiI)

Invitrogen, Thermo Fisher
Scientific

Cat# D3911

Chemical compound,
drug

Glutathione sepharose 4B GE Healthcare Cat# 17-0756-01

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Chemical compound,
drug

Protein G-sepharose 4B GE Healthcare Cat# 6511–5

Chemical compound,
drug

Polydimethylsiloxane (PDMS) Dow Corning Toray, Japan Cat# 3255981

Chemical compound,
drug

Silicone oil (Barrier coat No.6) ShinEtsu, Japan Cat# 06003

Chemical compound,
drug

PhosSTOP Roche Cat# 4906845001

Software, algorithm Image J https://imagej.nih.gov/ij/ RRID:SCR_003070

Software, algorithm Fiji http://fiji.sc RRID:SCR_002285

Software, algorithm Graphpad prism 7 Graphpad software RRID:SCR_002798

Software, algorithm R Project for Statistical
Computing

http://www.r-project.org/ RRID:SCR_001905

Software, algorithm Matlab http://www.mathworks.com
/products/matlab/

RRID:SCR_001622

Software, algorithm Microsoft Excel 2016 Microsoft
https://www.microsoft.com

Other Amicon ultra-4 centrifugal
filter devices

Millipore Cat# UFC800324

Histology and immunohistochemistry
All relevant aspects of the experimental procedures were approved by the Institutional Animal Care

and Use Committee of Nara Institute of Science and Technology (reference No. 1802). For timed

pregnancy, the morning of vaginal plug detection was designated as embryonic day E0.5. The brains

(E16.5 and P0) and embryos (E12.5) were fixed by immersion in 4% formaldehyde (FA) prepared

fresh from paraformaldehyde (PFA) at 4˚C for 60 min. Serial sections (8 mm) of paraffin-embedded

brains were cut on a microtome (Micro-edge Instruments) and used for Nissl substance staining. For

immunohistochemistry, 12 mm cryosections cut by a cryostat (Leica) were preincubated with 10%

fetal bovine serum (Invitrogen) in 1 � phosphate buffer (PB) containing 0.3% Triton-X 100 for 2 hr.

The sections were then incubated with the primary antibodies at 4˚C two overnight; the primary anti-

bodies used were rabbit anti-shootin1a (1:5,000), goat anti-L1-CAM (Santa Cruz, RRID:AB_631086)

(1:1,000), mouse anti-Neurofilament (Cat# 2H3, RRID:AB_531793) (1:2,000), and mouse anti-TAG-1

(Cat# 4D7/TAG1, RRID:AB_531775) (1:100) diluted in PB containing 0.3% Triton-X 100. Secondary

antibodies were Alexa Fluor 488 anti-goat (Invitrogen, RRID:AB_2534102) and Alexa Fluor 594 anti-

rabbit (Invitrogen, RRID:AB_2340621): they were used at a 1000-fold dilution at 4˚C overnight. The

WT and knockout sections used were from the same coronal or horizontal stereotaxic brain regions.

Slides were mounted in 50% glycerol (v/v) in PBS after staining with 4,6-diamidino-2-phenylindole

(DAPI; Roche). Fluorescence images were acquired using a confocal microscope (LSM 700 or LSM

710; Carl Zeiss) equipped with a plan-Apochromat �10, 0.45 NA and �20, 0.8 NA objective lens

(Carl Zeiss) or BZ-X700 fluorescence microscope (Keyence) equipped with a CFI Plan Apo �10, 0.45

NA objective lens (Nikon).

Generation of Shootin1 knockout mice
The targeting vector for Shootin1 knockout mice was constructed to replace most of the first exon

of Shootin1 with IRES-LacZ and PGK-neo (Figure 1—figure supplement 3A). The linearized target-

ing vector was introduced into 129 donor ES cells and the mutation of Shootin1 in the cells was con-

firmed by Southern blot analysis. Targeted ES clones were microinjected into C57BL/6 blastocysts

and implanted into pseudopregnant mice. Chimeric mice were crossed with C57BL/6 mice for at

least seven generations before analysis.
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DiI tracing
1,1’-dioctadecyl-3,3,3’,3’-tetramethyl-indocarbocyanine dye (DiI; Invitrogen) crystals were placed in

the dorsomedial cortex in a rostrocaudal series for tracing of the corpus callosum, or in the anterior

olfactory nucleus/anterior piriform cortex for tracing of the anterior limb of the anterior commissure

(Klingler et al., 2015). After the placement, brains were incubated in 4% FA at 37˚C for 3 months,

and then 100 mm sections were prepared by vibratome (Leica). The sections were mounted on glass

slides, and observed under a fluorescence microscope.

Cultures and transfection
Hippocampal neurons prepared from E18 rats were cultured on glass coverslips coated sequentially

with polylysine and L1-CAM-Fc as described (Shimada et al., 2008; Toriyama et al., 2013;

Kubo et al., 2015). For the experiments in Figure 7—figure supplement 4, we cultured neurons on

glass coverslips coated sequentially with polylysine and laminin as described (Toriyama et al., 2006;

Abe et al., 2018). All experiments except for the measurement of forces were carried out on glass

surfaces. For the immunoprecipitation and immunoblot analyses in Figure 4C, we used cortical neu-

rons, which also respond to netrin-1 (Li et al., 2008), as the experiments required large numbers of

neurons. They were prepared from E18 rat embryos using the same protocol as above. The neurons

were transfected with vectors using Nucleofector (Lonza) before plating. HEK293T cells (ATCC,

RRID:CVCL_0063, cell identities were authenticated by STR profiling and cells were tested negative

for mycoplasma using the TAKARA PCR mycoplasma detection set Cat# 6601) were cultured in Dul-

becco’s modified Eagle’s medium supplemented with 10% fetal bovine serum and transfected with

plasmid DNA by the calcium phosphate method.

Axon guidance assay
A microfluidic device that generates netrin-1 gradients in culture medium was produced according

to a previous report (Bhattacharjee et al., 2010), with modification. Briefly, it was fabricated with

polydimethylsiloxane (PDMS; Silpot 184, Dow Corning Toray, Japan) and a glass coverslip; the

device consists of an open rectangular cell culture area and two microchannels on the long sides of

the culture area (Figure 2A). The micro-molds of the channel pattern were lithographically fabricated

on a photoresist (SU-8 3025, MicroChem, USA) spin-coated on a 70 mm thick silicon wafer. PDMS

sheets were obtained from this mold, which had been treated with silicone oil (Barrier coat No. 6,

ShinEtsu, Japan) to facilitate their removal. A PDMS sheet, coated with 1 mm thick PDMS glue

(KE103, ShinEtsu, Japan), was then bonded to a glass coverslip coated sequentially with polylysine

and L1-CAM-Fc. To generate netrin-1 gradients in the cell culture area, flows of culture medium (7.5

mm/min) with or without 4.4 nM (300 ng/ml) netrin-1 and 2 mM fluorescent tracer (Alexa Fluor 594-

BSA or Alexa Fluor 488-BSA) were applied to the microchannels on either side of the open cell cul-

ture area (black arrows, Figure 2A). As reported (Bhattacharjee et al., 2010), the microfluidic

device generated stable gradients of the tracer in the culture medium (Figure 2B). For live imaging

of neurons expressing miRNA, EGFP fluorescence was used as an indicator of miRNA expression.

The turning angle of an axon toward the netrin-1 source was obtained by calculating the difference

between the angles of the axonal tip at the first and last time-points of the observations (�f - �l)

(Bhattacharjee et al., 2010) (Figure 7D).

RNAi
For RNAi experiments, we used a Block-iT Pol II miR RNAi expression kit (Invitrogen). The targeting

sequence of shootin1a miRNA and its effectiveness were reported previously (Toriyama et al.,

2006). As described previously (Shimada et al., 2008), to ensure high-level expression of miRNA

before neurite elongation, hippocampal neurons prepared from E18 rat embryos and transfected

with the miRNA expression vector were plated on uncoated polystyrene plates. After a 20 hr incuba-

tion to induce miRNA expression, the cells were collected and then cultured on coverslips.

DNA constructs
Preparation of the vectors to express shootin1a-WT has been described previously (Toriyama et al.,

2006). cDNA fragments of shootin1a deletion mutants were amplified by PCR and subcloned into

pGEX-6P-1 (GE Healthcare), pCAGGS-myc, pCAGGS-EGFP, pCMV-myc (Stratagene) or pEGFP
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(Clontech) vector as described (Kubo et al., 2015). The generation of RNAi-refractory shootin1a-WT

and shootin1a-DD shootin1a was described previously (Toriyama et al., 2013). pCAGGS-myc was

used to overexpress proteins under the b-actin promoter as described (Toriyama et al., 2006).

Protein preparation and in vitro kinase assay
Recombinant proteins were expressed in Escherichia coli as GST fusion proteins and purified on Glu-

tathione sepharose columns, after which GST was removed by PreScission protease. L1-CAM-Fc was

prepared as described (Shimada et al., 2008). Kinase reactions were carried out in 20 ml kinase

buffer (50 mM HEPES pH 7.5, 10 mM MgCl2, 2 mM MnCl2, 1 mM DTT, 125 mM ATP, in the presence

or absence of 10 mCi [g-32P]ATP) containing 250 ng active Pak1 and 2.1 mg purified shootin1a as

described (Kubo et al., 2015).

In vitro binding assay
Purified GST-L1-CAM-ICD and shootin1a were incubated overnight at 4˚C in reaction buffer (20 mM

Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 1 mM DTT). After centrifugation for 15 min at 17,400 g

at 4˚C, the supernatants were incubated with Glutathione Sepharose 4B beads for 2 hr at 4˚C. The
beads were washed three times with wash buffer (20 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM

EDTA, 1 mM DTT) and once with TED buffer (20 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 mM DTT). For

elution, the Sepharose beads were incubated with 25 ml of elution buffer (15 mM reduced glutathi-

one pH 8.0, 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 1 mM DTT) for 2 hr at 4˚C. For the
binding assay in Figure 3A, we incubated 100 nM shootin1a and 100 nM GST-L1-CAM-ICD in 10 ml

reaction buffer. After further incubation with Glutathione Sepharose 4B (bed volume 500 ml), GST-

L1-CAM-ICD was eluted by 20 mM glutathione buffer (pH 8.0). After concentrating the 10 ml eluate

with a centrifugal filter (Millipore), using half of the eluate, we could detect the interaction between

shootin1a and L1-CAM-ICD by CBB staining. For the binding assay in Figure 3B, the supernatants

were analyzed by immunoblot. Apparent dissociation constants were calculated by non-linear

regression using GraphPad Prism 6 (GraphPad Prism Software).

Immunoprecipitation and immunoblot
Immunoprecipitation and immunoblot were performed as described (Toriyama et al., 2006). For

immunoprecipitation with HEK293T cells, cell lysates were prepared using NP40 lysis buffer (0.5%

NP-40, 20 mM HEPES pH 7.5, 3 mM MgCl2, 100 mM NaCl, 1 mM EGTA, 1 mM DTT, 1 mM PMSF,

0.01 mM leupeptin, 1 � PhosStop). The supernatants of cell lysates were incubated with 25 ml (bed

volume) of anti-FLAG M2 gel (RRID:AB_10063035) overnight at 4˚C. The anti-FLAG M2 gels were

washed three times with wash buffer (0.1% Tween 20, 20 mM HEPES pH 7.5, 3 mM MgCl2, 100 mM

NaCl, 1 mM EGTA, 1 mM DTT) and once with TED buffer. To elute immunocomplexes, the gels

were incubated with 25 ml of FLAG peptide (400 mg/ml) for 2 hr at 4˚C. The immunocomplexes were

analyzed by immunoblot.

For immunoprecipitation with cultured neurons, after netrin-1 (4.4 nM) stimulation for 1 hr, cell

lysates were prepared with NP40-Triton lysis buffer (0.5% NP-40, 1% Triton X-100, 20 mM HEPES

pH 7.5, 3 mM MgCl2, 100 mM NaCl, 1 mM EGTA, 1 mM DTT, 1 mM PMSF, 0.01 mM leupeptin,

1 � PhosStop). The supernatants of the lysates were incubated with antibodies overnight at 4˚C, and
immunocomplexes were then precipitated with protein G-Sepharose 4B. After washing the beads

with wash buffer (0.1% Tween 20, 20 mM HEPES pH 7.5, 3 mM MgCl2, 100 mM NaCl, 1 mM EGTA,

1 mM DTT), immunocomplexes were analyzed by immunoblot.

Immunocytochemistry and microscopy
Cultured neurons were fixed with 3.7% FA in Krebs buffer (118 mM NaCl, 5.7 mM KCl, 1.2 mM

KH2PO4, 1.2 mM MgSO4, 4.2 mM NaHCO3, 2 mM CaCl2, 10 mM Glucose, 400 mM Sucrose, 10 mM

HEPES pH7.2) for 10 min at room temperature, followed by treatment for 15 min with 0.05% Triton

X-100 in PBS on ice and 10% fetal bovine serum in PBS for 1 hr at room temperature. They were

then labeled with antibodies, as described (Shimada et al., 2008). We used secondary antibodies

conjugated with Alexa Fluor 488 or Alexa Fluor 594. For CMAC staining, cells were incubated with

2.5 mM CMAC for 2 hr before live-cell imaging. Fluorescence and phase-contrast images of neurons

were acquired using a fluorescence microscope (Axioplan2; Carl Zeiss) equipped with a plan-
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Neofluar 20 � 0.50 NA or 63x oil 1.40 NA objective (Carl Zeiss), a charge-coupled device camera

(AxioCam MRm; Carl Zeiss), and imaging software (Axiovision3; Carl Zeiss). Live-cell images of cul-

tured hippocampal neurons were acquired at 37˚C using a fluorescence microscope (IX81; Olympus)

equipped with an EM-CCD camera (Ixon DU888; Andor), using a plan-Fluar 20 � 0.45 NA or 40 �

0.60 NA objective (Olympus), and MetaMorph software. TIRF microscopy was performed using a

TIRF microscope (IX81; Olympus) equipped with an EM-CCD camera (Ixon3; Andor), a CMOS cam-

era (ORCA Flash4.0LT; Hamamatsu), a UAPON 100 � 1.49 NA (Olympus), and MetaMorph software.

Axon length was measured using ImageJ (Fiji version).

Fluorescent speckle imaging and traction force microscopy
The speckle imaging data in were obtained using neurons cultured on coverslips coated with L1-

CAM-Fc or laminin as described (Shimada et al., 2008). Traction force microscopy was performed

as described (Toriyama et al., 2013; Abe et al., 2018). Briefly, neurons were cultured on polyacryl-

amide gels with embedded fluorescent microspheres (200 nm diameter; Invitrogen). Time-lapse

imaging of fluorescent beads and growth cones was performed at 37˚C using a confocal microscope

(LSM710; Carl Zeiss) equipped with a C-Apochromat 63x/1.2 W Corr objective. The growth cone

area was determined by EGFP fluorescence or from DIC images. Traction forces under the growth

cones were monitored by visualizing force-induced deformation of the elastic substrate, which is

reflected by displacement of the beads from their original positions, and expressed as vectors. The

force vectors detected by the beads under individual growth cones were then averaged, and were

expressed as vectors composed of magnitude and angle (�) (Figure 6—figure supplement 1A, left

panel) (Toriyama et al., 2013). To compare the forces under different conditions, the magnitude

and angle (�) of the force vectors of the individual growth cones were statistically analyzed and

expressed as means ± SEM, separately (Abe et al., 2018). They were also analyzed by one-way

ANOVA with Tukey’s post hoc test.

Analyses of netrin-1 attached on the substrate
Netrin-1 attached on the substrate was analyzed as described (Moore et al., 2012) with modifica-

tions. Glass coverslips coated with polylysine or coated sequentially with polylysine and L1-CAM-Fc

were incubated with culture medium and netrin-1 containing a 10-His tag at the C-terminus, in the

absence or presence of 2 mg/ml heparin. The glasses were washed with PBS, and blocked for 1 hr at

room temperature with 0.1% BSA in PBS. They were then labeled with anti-His antibody and second-

ary anti-mouse antibody conjugated with Alexa Fluor 488. Fluorescence images were acquired using

a fluorescence microscope (IX81; Olympus) equipped with an EM-CCD camera (Ixon DU888; Andor),

using a plan-Fluar 20 � 0.45 NA objective (Olympus), and quantified using ImageJ (Fiji version).

Statistical analysis
All statistical analysis were performed using Microsoft Excel, Statistical software R (RRID:SCR_

001905) and Graphpad prism 7 (RRID:SCR_002798). Significance was determined by the two-tailed

unpaired Student’s t-test in most cases. For multiple comparisons, we used one-way ANOVA with

Schaffer’s post hoc test or Tukey’s post hoc test.

Materials
Rabbit antiserum to shootin1a was raised by immunizing rabbits with the synthetic peptide CKGI-

LASQ that corresponds to the region specific to shootin1a (Higashiguchi et al., 2016). The specific-

ity of the antiserum was confirmed by immunoblot analysis (Figure 1—figure supplement 3C).

Preparation and affinity purification of anti-pSer101-shootin1 and anti-pSer249-shootin1 antibodies

are described elsewhere (Toriyama et al., 2013). Antibody against L1-CAM (Cat# sc-1508, RRID:

AB_631086) was obtained from Santa Cruz. Antibodies against myc (Cat# 562–5, RRID:AB_591116)

and FLAG (Cat# PM020, RRID:AB_591224) were obtained from MBL. Dulbecco’s modified Eagle’s

medium, polylysine, Rabbit IgG control antibody (Cat# I8140, RRID:AB_1163661), anti-FLAG M2

antibody (Cat# F3165, RRID:AB_259529), anti-FLAG M2 gel (Cat# A2220, RRID:AB_10063035),

FLAG peptide and heparin (Cat# H3149) were obtained from Sigma-Aldrich. Secondary anti-goat

antibody conjugated with Alexa Fluor 488 (Cat# A-11055, RRID:AB_2534102), secondary anti-mouse

antibody conjugated with Alexa Fluor 488 (Cat# A-11029, RRID:AB_2534088), active Pak1 and
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CMAC were obtained from Invitrogen. Anti-His antibody (Cat# 014–23221) was obtained from

Wako. Recombinant mouse netrin-1 containing a 10-His tag at the C-terminus was obtained from R

and D Systems (Cat# 1109-N1-025, not CF form). Antibody against GST (Cat# 27-4577-01, RRID:AB_

771432), Secondary anti-Rabbit antibody conjugated with HRP (Cat# NA934, RRID:AB_772206), Glu-

tathione Sepharose 4B beads and PreScission protease were obtained from GE Healthcare. Second-

ary anti-Goat antibody conjugated with HRP (Cat# AP180P, RRID:AB_92573) and Amicon ultra-4

centrifugal filter devices were obtained from Millipore. Secondary anti-Rabbit antibody conjugated

with Alexa Fluor 594 (Cat# 711-585-152, RRID:AB_2340621) was obtained from Jackson immune

research. Fetal bovine serum and PhosStop were obtained from Japan Bio Serum and Roche,

respectively.
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