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THE BIGGER PICTURE Lung adenocarcinoma is the most common type of lung cancer; therefore, its early
diagnosis is crucial. In this study, we develop a holistic machine vision framework to automatically analyze
CT images and identify the lung adenocarcinoma category with impressive performance. Our developed
method can provide a reliable supplementary basis for adenocarcinoma diagnosis in clinical settings and
can be used to label high-risk areas in CT images so that the relationship between CT characteristics
and pathological diagnosis can be determined. Our method can potentially be used as an artificial intelli-
gence (AI) system for adenocarcinoma identification using CT images, which will upgrade adenocarcinoma
identification from the traditional expert-based evidence investigation to an automated AI-assisted
paradigm.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Computed tomography (CT) is a widely usedmedical imaging technique. It is important to determine the rela-
tionship between CT images and pathological examination results of lung adenocarcinoma to better support
its diagnosis. In this study, a bilateral-branch network with a knowledge distillation procedure (KDBBN) was
developed for the auxiliary diagnosis of lung adenocarcinoma. KDBBN can automatically identify adenocar-
cinoma categories and detect the lesion area thatmost likely contributes to the identification of specific types
of adenocarcinoma based on lung CT images. In addition, a knowledge distillation process was established
for the proposed framework to ensure that the developed models can be applied to different datasets. The
results of our comprehensive computational study confirmed that our method provides a reliable basis for
adenocarcinoma diagnosis supplementary to the pathological examination. Meanwhile, the high-risk area
labeled by KDBBN highly coincides with the related lesion area labeled by doctors in clinical diagnosis.
INTRODUCTION

According to the WHO 2015 report,1 approximately 8.8 million

deaths were caused by cancer, of which lung cancer constituted

20%. Lung adenocarcinoma is the most common type of lung

cancer, whose early diagnosis and proper treatment are impor-

tant. According to the classification standard of lung tumors

described by the International Association for the Study of
This is an open access article under the CC BY-N
Lung Cancer, American Thoracic Society, and European Respi-

ratory Society classification in 2011 as well as the WHO in 2015,

lepidic-predominant adenocarcinomas %3 cm in size can be

classified into (1) adenocarcinoma in situ (AIS), which shows

the entirely lepidic growth, (2) minimally invasive adenocarci-

noma (MIA) with invasion of no more than 5 mm, and (3) invasive

adenocarcinoma (IAC), based on the degree of infiltration.2

It is believed that this classification standard of lung
Patterns 3, 100464, April 8, 2022 ª 2022 The Author(s). 1
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Figure 1. Overview of the experimental and computational design
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adenocarcinoma in pathophysiology helps improve the predic-

tive ability of clinical outcomes and therapeutic benefits, which

are important in the diagnosis.3

In real-world practice, lung adenocarcinoma is usually classi-

fied based on the results of pathological examination, which

evaluates the degree of infiltration, such as determining the

foci of stromal, vascular, and pleural invasion as well as

measuring the largest single focus of the invasion and central

scans.4 When it comes to computer-vision-based methods, his-

topathological images are chosen in most datasets.5 However,

pathological examination is not performed as a routine evalua-

tion to diagnose lung diseases, which may lead to misdiagnosis,

as this examination might not be conducted especially at the

early stage of lung cancer. In clinical practice, computed tomog-

raphy (CT) is a commonly adopted auxiliary lung cancer diag-

nosis technique owing to its value in accurately inspecting

chronic changes in the lung parenchyma.6 In fact, research re-

sults have shown that AIS and MIA are tumors most likely to

be detected on imaging procedures.7 Therefore, it is meaningful

and urgent to develop a non-pathological method to help identify

adenocarcinoma types and to compensate for the limitations of

pathological examination. A CT-image-based method turns out

to be the best alternative.

Recent studies8–10 have been conducted by radiologists and

pathologists to discover and further confirm that different de-

grees of tumor invasiveness can lead to different symptoms on

CT images, indicating the feasibility of adopting CT imaging as

an auxiliary diagnostic technique for classifying lung adenocarci-

noma. Yanagawa et al.8 reported that the irregular margin, the air

bronchogram with disruption and/or irregular dilatation, and

pleural indentation might distinguish IAC from AIS and that the

solid portion size on CT could be significantly different between

IAC and MIA (Figure S1). Other studies9,10 have reported similar

results. The findings of existing studies9 have indicated that the

percentage of solid volume and the proportion of solid mass in

the entire nodule increased as the adenocarcinoma became

more invasive histopathologically. Previous studies8–10 have

provided solid evidence on the feasibility of further studying

the computer vision model for automating the adenocarcinoma

classification by examining lung CT images; however, experi-

mental verification in a larger number of patients is still war-

ranted. Our study fills this gap in the literature.

This paper develops a holistic modeling framework based on

convolutional neural networks (CNN) to facilitate lung adenocar-
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cinoma diagnosis. The developed model allows an automated

identification of adenocarcinoma categories and detection of

the tumor area on CT images that most likely contribute to the

identification of the specific type of adenocarcinoma. The pro-

posed framework consists of three major data-analytical stages:

preprocessing, feature engineering, and final classification. In

the preprocessing stage, the segmentation and rebalancing

units are developed to exclude the redundant background of

CT images and rebalance the long-tailed data distribution,

respectively. The preprocessed datasets are then fed into the

representation branch and the rebalance branch in the feature-

engineering stage to generate the weighted features of the im-

ages. Finally, in the classification stage, these features are

passed on to the fully connected layer as a classifier to identify

the adenocarcinoma categories. The high-risk area on images

can be generated simultaneously by utilizing a class activation

map (CAM),11 which highlights the regions related to the

classification process. A knowledge distillation procedure is

developed for the proposed framework to facilitate the model

generalization to different datasets. To further explore the poten-

tial of deep-learning-based methods for the identification of

adenocarcinoma categories using CT images, the features of

different images and the overall imbalanced distribution of the

dataset are considered in entirety, thus obtaining ideal results.

Meanwhile, the developed framework has been verified to

achieve a state-of-the-art performance based on additional da-

tasets collected from multiple sources and by comparing our

method with a set of solid benchmarking methods.

RESULTS

In this study, we developed a CNN-based bilateral-branch-

network diagnosis framework with a knowledge distillation pro-

cedure (KDBBN) that can identify the lung adenocarcinoma

category based on CT images rather than the results of patho-

logical examinations or histopathological images (Figure 1). To

rebalance the extreme long-tailed distribution, we innovatively

use two kinds of data: representation data and rebalanced

data. To process representation and rebalanced data respec-

tively in latent feature engineering, two CNN-based branches,

the representation branch and the rebalance branch, are devel-

oped in the framework. The final latent features are obtained by

aggregating the features generated by these two branches. The

performance of the model was evaluated based on overall



Figure 2. Overall architecture of the pro-

posed framework

m denotes the threshold value in crop-background

extractor, measuring the area of the ROI found by

crop-background extractor. ðx; yÞ denotes an input

sample for CNN backbone and its corresponding

label, where the subscripts r and e mean repre-

sentation branch and rebalance branch, respec-

tively. f denotes the feature vector, FC denotes fully

connected layer, and bp denotes the output proba-

bility distribution.
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accuracy, precision, F1-score, and area under the receiver-

operating characteristic (ROC) curve (AUC). Figure 2 illustrates

the details of the overall architecture of the proposed framework.

Processing the special long-tailed dataset with
representation data and rebalanced data
The lung adenocarcinoma dataset has long-tailed distribution.

Figure 3 demonstrates the data distribution of long-tailed data-

sets, in which most samples belong to several head categories,

whereas the other tail categories have few samples. This distri-

bution indicates that the data are extremely imbalanced.

Meanwhile, it is challenging to obtain sufficient evidence to

infer the real distribution because of the high rate of missed diag-

nosis of MIA/AIS. Achieving a high overall accuracy is obviously

insufficient. Traditional imbalanced learning techniques,12–14

such as the synthetic minority oversampling technique

(SMOTE),15 also do not work ideally, because lung patterns

should remain clear and analyzable clinically to explain the rela-

tionship betweenCT imaging features and results of pathological

examination.

Therefore, two types of data were considered: representation

data and rebalanced data. Representation data retain the

observed distribution of lung adenocarcinoma categories and

serve as a basis consistent with the traditional medical image-

processing system. Rebalanced data transform the long-tailed

distribution to a more balanced distribution, whose main pur-
pose is to elevate the identification perfor-

mance of the data-drivenmodel on tail cat-

egories. The process of generating these

two types of data is regarded as the pre-

processing stage.

Preprocessing stage 1: Segmenting
vital area
The segmentation unit aims to extract the

region of interest (ROI) from the raw data

by removing the abounding background

in these CT images because the diag-

nosis-related information only lies in the

central lung section and the background

of CT images can be misleading. Three im-

age-segmentation methods were applied

in the proposed framework: the crop-

background extractor, simple ROI (SROI)

extractor, and conditional random field

(CRF) extractor. Of the three extractors,
both the SROI and CRF extractors segment the complete lung

regions along the edge of the section, where the CRF extractor

has a better performance on the precise division of boundaries.

However, the computing complexity of the CRF extractor is high

and dispensable when the quantity rather than the quality of the

result is of greater concern. The SROI extractor is designed as a

cost-efficient supplement to the CRF images in the rebalanced

data, which enhances the data diversity and reduces the data

duplication in the tail categories. The combination of SROI and

CRF extractors potentially strengthens the robustness and re-

duces overfitting of the framework, whereas common oversam-

pling methods, such as SMOTE, could transform the features of

the samplers, causing the lung area to appear unclear or

deformed. Moreover, special attention should be paid to the

specific solid portion area, and for this reason the crop-back-

ground extractor is introduced. To fine-tune the crop-back-

ground extractor, the proportion of the solid portion in the entire

image should be controlled. The rebalanced data composed of

all three kinds of images presents an ideal distribution of the

adenocarcinoma samples, taking the clinical diagnostic prefer-

ence into consideration.

Generally, the result from the CRF extractor has a more pre-

cise boundary, reducing unnecessary information loss, although

the result from the SROI extractor is also acceptable. The bound-

ary of the lung section in the ROI image with a black background

offers a higher contrast than that with a white background
Patterns 3, 100464, April 8, 2022 3



Figure 3. Data distribution among categories in a natural long-tailed

dataset, and the rebalanced distribution after class-rebalancing
strategies
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(Figure S2). The crop-background extractor with different set-

tings of the m and r obtain different segmented areas in Figure 1

and thus represent different features (Figure S3). Next, the prin-

ciples of the CRF, SROI, and crop-background extractors are

sequentially introduced.

SROI extractor

To recognize the rough outline of the lung area and extract it from

the background, the SROI lung extractor is developed on the ba-

sis of the traditionalmedical imageROIdetection algorithm.16 The

algorithm (Table S5) can be divided into two stages, binarization

and backend processing. In the binarization stage, the raw image

is first edge smoothed through a sequential process of dilation

and erosion, then binarized based on a customized adaptive

threshold to clean the background texture.17 The backend pro-

cessing aims to detect the contour of the binarized image and

replace the redundant background outside the contour with sim-

ple black or white pixels. In the backend processing stage, all of

the closed contours are detected by border-following tech-

niques18 and selected from the ROI. By filling the area inside

with white pixels and the area outside with black pixels, a black

imagemask is generatedwhose inverse image is the white image

mask. Finally, the black and the white SROI images are produced

throughacombinationof raw imageand thecorresponding image

mask processed via an ‘‘AND’’ or ‘‘OR’’ operation, respectively.19

CRF extractor

Similar to the SROI extractor, the CRF algorithm can be divided

into two stages. However, a fully convolutional network (FCN)

instead of a binarization serves as the frontend segmentation

method whereas the DenseCRF20 model serves as the postpro-

cessing method to modify the rough segmentation results to ac-

quire clear boundaries and more precise segmentation results.

After rough segmentation through FCN, the pixels of the raw

image are labeled according to the FCN. To extract the lung re-

gion accurately, the FCN segmentation results are fed into the

fully connected CRF model, which applies the following energy

function of the label assignment:

EðxÞ =
X
i

qiðxiÞ+
X
ij

qijðxi; xjÞ; (Equation 1)

where qiðxiÞ = �log PðxiÞ and PðxiÞ is the label probability at pixel

i. The most probable label assignment x is the result of mini-

mizing energy E(x). The different labels assigned by x divide

the raw image into different regions, in which the central lung

area is the ROI.
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Crop-background extractor

The crop-background extractor is a semi-automated segmenta-

tion algorithm, focusing on roughly highlighting the cancer-

related area, given

r =

P
pixel

number of total pixels
; (Equation 2)

m =

P
row=colpixel

number of col=row
; (Equation 3)

wherepixeldenotes thepixel value of aCT image andm represents

the averagepixel value of one rowor column.One characteristic of

the lung CT image is that the solid portion of the nodule in the lung

parenchyma is close to the white pixel while the redundant back-

ground and lung parenchyma are close to the black pixel. Thus,

a larger m indicates that this row/column is more likely to contain

nodule information. The role of r is similar to that of m, except

that r represents the entire image rather than the row or column

in m, serving as a supplement to m: Based on setting different

thresholds on m and r, images containing different densities of in-

formation are generated as shown in Figure S3. Intuitively, the

larger the m and r, the smaller the crop-background image,

whereas a larger solid nodule accounts for the entire image. These

images provide nodule areas with less redundant information and

higher informationdensity, highlighting thecentral areas in training.

However, unlike the CRF or SROI extractor, which excludes the

background outside the lung section, the crop-background

extractor might also remove some lung areas whose information

density is lower than the threshold. Thus, by fine-tuning m and r,

the importance of the marginal area in the lung section for identifi-

cation of lung adenocarcinoma category can be determined.
Preprocessing stage 2: Rebalancing
Figure 4 briefs the main idea of the rebalancing unit. The first

random sampler S1 is applied to identically distributed long-

tailed datasets, fromData 1 to DataN, individually with preserva-

tion of the original long-tailed distribution. The parameter b de-

notes the target proportion of the total number of samples

from Data 1 to Data N. The second random sampler S2 acts

on the integrated dataset generated by S1 and transforms its

distribution from the long-tailed to a new target distribution g,

which in our case is roughly a uniform distribution.

To integrate N different datasets D1; D2;.; DN with the same

data distribution 4 into one dataset Dwith the specified data dis-

tribution 40, the following equation describes the relationship:

D = S2ðg;S1ðb;D1;D2;.;DNÞÞ; (Equation 4)

where S1ð, ; ,Þ and S2ð, ; ,Þ represent two random samplers.

In S1ð, ; ,Þ and S2ð, ; ,Þ, the first parameter is the data pro-

portion of each category after resampling, while the second rep-

resents the input dataset. b = ðb1; b2; .; bNÞ; b1 + b2;

+.+ bN = 1, in which biði = 1; .; NÞ denotes the proportion

of the corresponding datasetDi in each category of the result da-

taset D. g = ðgA; gM; gIÞ; gA + gM + gI = 1, where giði =A; M; IÞ
denotes the proportion of corresponding categories AIS, MIA,

and IAC in the result dataset D. The detailed algorithm of the

data rebalancing unit is described in algorithm 2 (Table S6).



Figure 4. Working process of the rebalanc-

ing unit
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The rebalancing unit aims to rebalance the dataset distribution

and increase the diversity of the training images without chang-

ing the regular pattern of the lung in the CT images. Maintaining

the regular pattern also avoids the global position information of

the lesion area in the CT images from being affected. Moreover,

with the parameter b, the proportion of datasets generated by

different extractors can be controlled. Among them, bC, control-

ling crop-background images, is the most vital. It enhances the

data variety and controls the degree of attention of the special-

ized area in the rebalance branch.
Two-branch network architecture
In the feature-engineering stage, the feature extraction network

is naturally divided into two branches. The representation branch

processes the representation data and performs representation

learning, whereas the rebalance branch processes the reba-

lanced data and improves the identification performance of the

network in the tail categories. Finally, the features generated

by the two branches are aggregated via weighted average to ac-

quire the output feature.

The feature extraction task in the two branches is handled by

CNN backbones, which can be adjusted and chosen accord-

ingly. Features generated by appropriate CNN models aim to

facilitate representation learning and mitigate the impact of the

data imbalance on the final identification results. In this study,

we expect the CNN backbone in the representation branch to

automatically obtain the most representative latent features for

the original dataset while the CNN backbone in the rebalance

branch should pay more attention to the tail category. Two

well-known CNN structures widely applied in medical imaging,

DenseNet169 and ResNet50, are considered as candidates for

each feature-engineering branch.

The feature vectors f r and fc are generated by the global

average pooling layers from DenseNet backbone in the repre-

sentation branch and the ResNet backbone in the rebalance

branch, with the same dimension. Subscripts r and e denote

the features or parameters in the representation and rebalance

branches, respectively. The features are further incorporated to
one vector f by weighting f r and fe with a parameter a, which

can be formulated as follows:

f = af r + ð1�aÞfe: (Equation 5)

The output logits are formulated as follows:

z=WT f ; (Equation 6)

where W denotes the weight matrix of the final fully connected

(FC) layer. The softmax function layer calculates the probability

distribution for the adenocarcinoma categories via

bp =
expðzÞP
expðzÞ: (Equation 7)

If we denote E as the cross-entropy loss function, the

weighted cross-entropy loss for the identification process

combining two branches can be illustrated as

L = aEðbp; yrÞ+ ð1�aÞEðbp; yeÞ (Equation 8)

and the whole identification network is end-to-end trainable.

DISCUSSION

Comparison between the proposed framework and
other state-of-the-art methods
Popular image-classification models are considered as bench-

marking methods in computational experiments; these models

are used to evaluate the performance of the proposed frame-

work. The benchmarking methods are divided into four groups

according to the different feature extractors and classifiers.

The first group of benchmarking methods is type I, which adopts

LBP21 or GLCM22 as the feature extractor, and k-nearest

neighbor (KNN).23 or support vector machine (SVM)24 as the

classifier, denoted as, for example, ‘‘LBP + KNN’’ or ‘‘LBP +

SVM.’’ The type I method represents the performance of the

classical machine-learning classification model with a traditional

feature-engineering method.
Patterns 3, 100464, April 8, 2022 5



Table 1. Comparison of the performance of benchmarking

methods and the proposed framework (percentage, mean ± SD)

Method Class Precision F1 Accuracy AUC

Type I LBP + KNN IAC 91.8 ± 0.4 94.8 ± 0.2 90.3 ±

0.4

88.1 ±

1.4MIA 85.1 ± 6.3 58.2 ± 6.4

AIS 55.2 ± 6.0 39.0 ± 7.8

LBP + SVM IAC 92.8 ± 0.4 94.8 ± 0.2 87.3 ±

0.5

87.7 ±

1.4MIA 84.1 ± 5.3 56.7 ± 5.4

AIS 54.2 ± 4.1 39.6 ± 7.1

GLCM + KNN IAC 91.9 ± 0.4 94.8 ± 0.2 86.5 ±

0.6

87.1 ±

0.4MIA 83.1 ± 3.3 58.8 ± 6.4

AIS 54.0 ± 6.4 34.0 ± 4.8

GLCM + SVM IAC 92.5 ± 0.4 94.8 ± 0.2 87.2 ±

0.4

88.0 ±

1.2MIA 85.1 ± 2.3 58.2 ± 6.4

AIS 55.0 ± 6.0 38.1 ± 6.5

Type II DB + KNN IAC 91.8 ± 0.6 95.4 ± 0.3 91.5 ±

0.7

89.1 ±

1.9MIA 88.4 ± 4.1 61.2 ± 7.8

AIS 81.5 ± 12.0 39.2 ± 13.1

RB152 + KNN IAC 92.1 ± 0.3 95.4 ± 0.2 91.1 ±

0.6

88.0 ±

2.2MIA 79.6 ± 12.4 58.6 ± 7.2

AIS 76.5 ± 9.9 41.4 ± 5.4

RB50 + KNN IAC 91.8 ± 0.6 95.2 ± 0.6 90.8 ±

1.0

87.4 ±

2.2MIA 77.8 ± 13.6 57.7 ± 13.5

AIS 72.0 ± 5.4 36.8 ± 7.0

DB + SVM IAC 91.0 ± 0.6 95.4 ± 0.3 91.2 ±

0.4

89.0 ±

1.5MIA 88.8 ± 3.6 61.8 ± 6.8

AIS 80.5 ± 12.0 40.0 ± 12.6

RB152 + SVM IAC 92.1 ± 0.3 95.1 ± 0.5 91.3 ±

0.5

88.3 ±

1.9MIA 79.9 ± 11.4 58.7 ± 6.2

AIS 77.1 ± 8.8 41.8 ± 5.4

RB50 + KNN IAC 91.6 ± 0.7 95.2 ± 0.6 90.4 ±

0.8

87.2 ±

2.0MIA 78.1 ± 12.6 58.2 ± 12.5

AIS 71.7 ± 5.5 38.8 ± 7.3

Type III D169 IAC 96.4 ± 0.5 98.0 ± 0.3 95.9 ±

0.4

94.8 ±

2.6MIA 93.8 ± 1.9 85.1 ± 5.7

AIS 96.6 ± 3.4 80.1 ± 3.7

R152 IAC 92.9 ± 0.8 96.2 ± 0.5 92.9 ±

0.8

90.9 ±

1.8MIA 95.8 ± 3.1 65.7 ± 5.2

AIS 91.6 ± 6.0 62.0 ± 4.1

Inception-v4 IAC 91.0 ± 1.2 93.6 ± 1.1 87.6 ±

2.0

72.9 ±

3.5MIA 53.6 ± 16.7 49.1 ± 8.8

AIS 10.3 ± 17.8 6.4 ± 11.0

Type IVGuan et al.29 IAC 97.4 ± 0.8 98.6 ± 0.5 96.9 ±

0.8

95.9 ±

1.8MIA 94.9 ± 2.1 84.1 ± 4.2

AIS 90.2 ± 4.0 84.1 ± 4.1

Jin et al.31 IAC 97.8 ± 0.8 98.8 ± 0.5 97.1 ±

0.9

96.6 ±

1.6MIA 92.5 ± 3.1 86.0 ± 3.7

AIS 90.2 ± 6.6 84.1 ± 4.9

Proposed

framework

IAC 98.9 ± 0.5 99.3 ± 0.2 97.8 ±

0.4

96.8 ±

1.9MIA 90.7 ± 0.9 87.6 ± 4.6

AIS 88.6 ± 1.1 86.7 ± 3.2
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The second group of benchmarkingmethods, type II, follows a

framework that combines the features extracted by CNNs and

the classical machine-learning classifier. The Inception

network,25 ResNet,26 and DenseNet,27 which represent three

state-of-the-art deep CNNs, are considered. Their structures

are denoted as the DenseNet169 backbone (DB), ResNet152

backbone (RB152), and ResNet50 backbone (RB50), respec-

tively. These combinations are denoted as, for example, ‘‘DB +

KNN’’ or ‘‘DB + SVM.’’

The third group of benchmarking methods, type III, utilizes

deep-learning-based transfer learning methods, Inception-v4,

R152, and D169, with pretrained weights on ImageNet while all

hyperparameters are the same as those in the proposed

framework.

The fourth group of benchmarking methods, type IV, repre-

sents effective medical imaging classification or segmentation

methods that have been applied in other tasks. Guan et al. pro-

posed an attention-guided CNN framework for the thorax

disease classification task and achieved state-of-the-art perfor-

mance on the ChestX-ray1428 dataset.29 Jin et al. compared

several state-of-the-art medical imaging segmentation algo-

rithms, and finally chose to combine U-net++30 with CNN to

rapidly identify Covid-19 from other lung diseases.31 Two

methods are adapted to solve the lung adenocarcinoma classi-

fication problem in this study, and their results serve as the

benchmark.

As shown in Table 1, the computational results of the four

groups of benchmarking methods and our proposed framework

are listed according to different evaluation metrics. The pro-

posed framework outperforms all the other methods in terms

of overall accuracy and tailed class precision. Moreover, it

shows higher robustness based on different folds of data split.

In Figure 5, the speed of convergence for the proposed frame-

work lies between the representation and rebalance branches.

This demonstrates that the proposed framework combines the

performances of the two branches and prevents overfitting

(Figure 6).

Relationship between the two branches
The performances of the representation branch, rebalance

branch, and proposed framework are summarized in Table 2.

We report two results for the rebalance branch owing to the

different executing processes. The rebalance branch with a sim-

ple rebalancing method (SR branch) means that the rebalanced

data in the rebalance branch are generated by the traditional

oversampling method. The rebalance branch with the rebalanc-

ing unit (RU branch) indicates that the rebalance data are gener-

ated according to the preprocessing stage in our framework. It is

observable that the RU branch performs better in terms of overall

accuracy and precision in each individual category; this finding

demonstrates that the proposed rebalancing unit effectively im-

proves the identification performance in the tail category while

avoiding overfitting. The proposed framework outperforms

either a single representation branch or a single rebalance

branch, as reported in Table 2. These results illustrate that the

framework can integrate the advantage of the representation

branch in IAC with that of the rebalance branch in MIA and IAS.

The value of a varies from 0.3 to 0.7, or it can also be dynam-

ically set (Figure S5). This illustrates that the performance of the



Figure 5. Graphical display of the experiment

(A) Comparison of the increasing rate of the validation accuracy among three

modules.

(B) Confusion matrix of the performance of the proposed framework on the

category identification. Each grid corresponds to two labels: the row repre-

sents true labels while the column shows the predicted label. The number in

each grid denotes the percentage (%) of the testing samples from its true

category that were identified as its predicted category.
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framework tends to be poor when one branch is regarded as

much more important than the other, or when only one branch

is considered. The best performance appears when a is set to

0.6. The representation branch plays a slightly more important

role in the final prediction. With regard to the variation of a as a

kind of attention mechanism, the results indicate that the main

focus is fixed. In other words, a periodic change does not occur

when the two branches are trained.

Effect of different image-segmentation algorithms for
lung region
To further validate the strength of the chosen lung extractors in

this study, the classification performances of D169 are

compared, based on the input datasets generated by different

extractors and U-net32 as well as the raw dataset as the input.

In Table 3, ‘‘Raw Data’’ and ‘‘U-net’’ represent that the input

dataset is the raw dataset and the input dataset generated by

U-net, respectively. The SROI images with a black background

and SROI images with a white background correspond to
‘‘SROIinblack’’ and the ‘‘SROIinwhite.’’ The datasets generated

by the crop-background extractor are distinguished by the pa-

rameters m and r. After choosing one example image in the data-

set, the corresponding image mask can be generated through

setting the ROI as white and the background as black. The

values of m and r can be approximately estimated according

to Equations 2 and 3 based on the image mask; it is then fine-

tuned on the dataset.

As shown in Table 3, SROIinblack andCRF outperform the raw

data. This validates the effectiveness of utilizing the SROI lung

extractor and the CRF lung extractor to extract more useful

lung regions. However, SROIinwhite performs slightly worse

than the raw data. The probable reason for this is that the white

lung section region cannot be distinguished from the white back-

ground, which causes difficulties in the identification when the

number of samples remains the same as other datasets in Table

3. The performance of the U-net is close to that of the CRF. How-

ever, manual labeling masks are requested for U-net, while the

CRF extractor can automatically segment the ROI. As shown in

Table 4, SROI has a significant advantage in terms of calculation

time.

Three datasets generated by the crop-background extractor

present three different types of requirements. The first one, m =

180 and r>100, only removes the redundant background. The

second one, m = 200 and r>100, removes all of the back-

ground together with some white lung regions. The apparent

worse performance indicates that the loss of information has

a negative impact on identification. The third one, m =

230 and r>160, only retains the central black lung region with

the solid portion nodule; its performance is even worse than

that of the second one. However, according to the values of

the precision and F1 score for each category in the three data-

sets, the datasets show uniform variations in different cate-

gories. The overall performance is maintained at an acceptable

level. This phenomenon indicates that the overall skeleton of

the information required for identification is retained. Some mi-

nor information is lost as m and r grow. Through the second

and third crop-background datasets, we conjecture that the

central black region, especially the solid portion nodule, holds

the most vital information for the identification of lung adeno-

carcinoma categories. The relative size of the solid portion

and the white lung region might provide minor information for

identification.

Comparison between the identification results of the CT
images and those of pathological examinations
Figure 7 shows examples of correctly (Figure 7A) and inaccu-

rately (Figure 7B) identified cases, together with the correspond-

ing raw input images, output heatmaps, detected high-risk

areas, and probability score for each class. As shown in

Figure 7A, the proposed framework can correctly identify the

categories of lung CT images with high confidence scores. The

detection results also align with the lesion areas shown in the

raw input imagesmarked in a red circle by skilled doctors. In Fig-

ure 7B, some inaccurate cases occur between IAC and correct

categories (AIS/MIA). There is considerable overlap between

these cases in the detection and category prediction results.

The detected risky areas are not veracious and frequently

deviate from the lesion. We observe an interesting phenomenon
Patterns 3, 100464, April 8, 2022 7



Figure 6. Violin plot indicating the framework

performance on the test set for every fold
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in that their heatmaps appear bicircular, like the lung area. The

highest probability scores are both obtained in the incorrect

IAC category; however, the correct categories rank second,

and the scores are more competitive compared with the scores

of the incorrect categories in Figure 7A. The second-highest

scores are still in the same order of magnitude as the top-highest

ones. From the phenomenon in heatmaps, the framework might

have been confused with the images and tried to set the whole

lung region as an interesting area but failed; thus, the identifica-

tion also failed. Another inaccurate case occurs between AIS

and the correct category of IAC. The risky area is also quite inac-

curate, and the probability scores this time are even closer to
Table 2. Identification performance of three modules

(representation branch, rebalance branch, and the proposed

framework), formatted as percentage, mean ± SD

Module Class Precision F1 Accuracy AUC

Representation

branch

IAC 97.2 ± 0.5 98.6 ± 0.3 96.8 ±

0.6

94.5 ±

3.6MIA 89.7 ± 1.9 82.4 ± 4.9

AIS 97.2 ± 3.4 84.3 ± 3.3

SR branch IAC 97.3 ± 0.6 97.7 ± 0.3 91.5 ±

0.7

89.1 ±

1.9MIA 56.0 ± 2.1 58.3 ± 3.8

AIS 54.9 ± 2.0 57.1 ± 3.1

RU branch IAC 99.0 ± 0.6 98.7 ± 0.3 96.5 ±

0.4

94.1 ±

1.3MIA 81.2 ± 1.1 83.0 ± 2.8

AIS 80.0 ± 1.9 82.5 ± 1.0

Proposed

framework

IAC 98.9 ± 0.5 99.3 ± 0.2 97.8 ±

0.4

96.8 ±

1.9MIA 90.7 ± 0.9 87.6 ± 4.6

AIS 88.6 ± 1.1 86.7 ± 3.2
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each other, showing that the inaccurate

risky area will mislead the framework.

One possible reason for the misdiagnosis

is that the lesion areas in those images

are not typical and insufficiently evident

because of the excessively low contrast

in the MIA and AIS images.

In summary, the proposed frame-

work ensures more accurate identifica-

tion of lung adenocarcinoma categories

compared with other methods and can

provide references to experienced radiolo-

gists to distinguish lung diseases more

effectively.

Framework validation of other
datasets directly or through
knowledge distillation
Datasets from different sources over

different years are utilized to prove the

generalizability of the framework. A

detailed description of all datasets can be
found in overview of the datasets in experimental procedures.

The dataset utilized in the previous discussions is denoted as da-

taset 1. Dataset 1 is divided randomly into three parts—train,

test, and validation (val)—with a split ratio of 60%, 30%, and

10%, respectively. The trained framework is then validated by

implementing it in two smaller labeled datasets (denoted as da-

tasets 2 and 3). The experimental design aims to validate the

feasibility of the framework on unfamiliar data.

As shown in Table 5, the results are undoubtedly close be-

tween the test and val parts of dataset 1, although the val part

does not participate in the learning process. Considering these

results as the baseline, the performance of the proposed frame-

work degrades slightly on datasets 2 and 3, the most likely

reason being that the framework has not been fine-tuned based

on each dataset because of the small data volume. However, the

high specificity and sensitivity still indicate that the misdiagnosis

and missed diagnosis rates are considerably low.

A semi-supervised knowledge distillation (KD) procedure33 is

designed to further demonstrate the performance and transfer-

ability of the framework (Figure 8). Dataset 1 is also divided

randomly into three parts. The proposed framework trained

by the train/test parts serves as the first teacher model M1.

The pseudo labels of the unlabeled data (dataset 4) will be

generated by M1. M1 is then fine-tuned to obtain the second

teacher model M2 by minimizing the labeled loss function

Llabeled on labeled data. The student model has the same ar-

chitecture as the teacher models. Its parameters come from

fine-tuning M2 by minimizing the unlabeled loss function

Lunlabeled on unlabeled data. Here, s denotes the ground-truth

label for the labeled data, s0 denotes the prediction of the

teacher model for labeled or unlabeled data, and s00 denotes
the prediction of the student model for labeled or unlabeled



Table 3. Identification performance on different ROI datasets

(percentage, mean ± SD)

Dataset Class Precision F1 Accuracy AUC

m = 180;

r> 100

IAC 95.9 ± 0.5 97.7 ± 0.1 96.0 ±

0.3

94.1 ±

1.5MIA 91.4 ± 5.3 79.3 ± 8.2

AIS 92.8 ± 4.2 77.2 ± 4.2

m = 200;

r> 100

IAC 95.3 ± 0.6 97.1 ± 0.3 94.5 ±

0.5

93.6 ±

2.1MIA 91.4 ± 3.7 78.6 ± 6.4

AIS 87.4 ± 6.7 71.8 ± 2.5

m = 230;

r> 160

IAC 95.9 ± 0.5 97.7 ± 0.1 94.0 ±

0.5

92.9 ±

1.1MIA 95.2 ± 0.5 95.7 ± 0.1

AIS 91.4 ± 5.3 79.3 ± 8.2

Raw data IAC 96.4 ± 0.5 98.0 ± 0.3 95.9 ±

0.4

94.8 ±

2.6MIA 93.8 ± 1.9 85.1 ± 5.7

AIS 96.6 ± 3.4 80.1 ± 3.7

SROIinwhite IAC 92.8 ± 4.2 77.2 ± 4.2 95.7 ±

0.5

94.2 ±

1.0MIA 92.8 ± 4.2 77.2 ± 4.2

AIS 89.3 ± 5.9 76.0 ± 1.6

SROIinblack IAC 96.1 ± 0.4 97.7 ± 0.1 96.3 ±

0.4

94.5 ±

1.0MIA 95.7 ± 3.0 83.6 ± 3.9

AIS 88.2 ± 8.4 75.3 ± 2.0

CRF IAC 97.2 ± 0.5 98.4 ± 0.3 96.8 ±

0.6

94.5 ±

3.6MIA 94.9 ± 1.9 87.1 ± 4.9

AIS 92.3 ± 3.4 83.7 ± 3.3

U-net IAC 96.8 ± 0.5 98.3 ± 0.3 96.9 ±

1.2

94.4 ±

1.9MIA 97.3 ± 1.5 86.7 ± 4.6

AIS 97.1 ± 2.4 82.9 ± 3.2
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data. The loss function of the KD procedure can be written as

follows:

Llabeled = 0:5CEðs; s00Þ+ 0:5KLðs0; s00Þ; (Equation 9)

Lunlabeled = KLðs0; s00Þ; (Equation 10)

where CEð,; ,Þ represents the cross-entropy function while

KLð,; ,Þ represents the KL-divergence function.

In the experiment, the train/test parts of dataset 1 vary from

40%/50% to 80%/10% while the val part remains unchanged

at 10%. The volume of unlabeled data changes with the train

part to maintain the diversity of the training data. That is, the vol-

ume of the train part plus unlabeled data should be constant. The

performance of the student model is evaluated based on the val

parts of datasets 1, 2, and 3.

The results are shown in Figure 9. The framework after the

distillation performs even better, indicating that the proposed

semi-supervised self-distillation procedure not only enhances

the framework transferability on smaller datasets but also im-
Table 4. Comparison between the average test times of

segmentation methods (unit: millisecond per image)

Methods CRF SROI Crop-background U-net

Time 0.6 0.4 0.3 0.8
proves the overall performance. The AUC scores of the teacher

and student models based on the validation dataset, which is the

val part of dataset 1, increase as the training proportion in-

creases. This is reasonable because the teachermodel is entirely

trained based on the train part without unlabeled data. In addi-

tion, the labeled data contribute more than the unlabeled data.

Therefore, for those results based on the val part, better perfor-

mance can be achieved as the proportion of labeled data in-

creases. The results based on datasets 2 and 3 do not exhibit

much sensitivity to the proportion of training data. This finding in-

dicates that when the validation data and labeled training data

are obtained from different sources, KDBBNdoes not show pref-

erences between the labeled and unlabeled data. In general, the

proposed framework maintains a satisfactory performance on

datasets collected from different sources, demonstrating its

generalizability.
Conclusion
A holistic CNN-based framework for accurately identifying lung

adenocarcinoma categories by analyzing CT images was devel-

oped, which helped address the disadvantages of the traditional

identification method, the pathological examination, from two

perspectives. On the one hand, the framework highly improved

the identification performance on the long-tailed dataset, espe-

cially in the head category. A rebalancing method and a two-

branch identification network were introduced to solve the

extreme data imbalance problem. On the other hand, the frame-

work tried to confirm the correlation between the adenocarci-

noma category and the solid portion nodule on the CT image,

shown using a heatmap, while the pathological examination re-

sults only considered the infiltration degree of the tumor cells

and tissues microscopically.

The computational results of the comparative experiments

demonstrated that the proposed framework outperformed three

groups of benchmarking methods in terms of overall classifica-

tion accuracy and precision for each category, especially in the

tail categories. The high-risk area heatmap results showed that

there was considerable overlap between the heatmap and the

solid lesion area detected by skilled doctors, which provided

additional evidence to support the theory that the solid portion

area strongly contributes to the different categories of lung

adenocarcinoma. Furthermore, the results of the evaluation of

different image-segmentation algorithms suggest that the rela-

tive size of the solid portion and the white lung region are related

to adenocarcinoma identification.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this study is Zijun Zhang: zijzhang@cityu.edu.hk.

Materials availability

This study did not generate new unique materials.

Data and code availability

Code can be accessed at https://github.com/lynnwahh/KDBBN. The latest

DOI is https://zenodo.org/badge/latestdoi/454431366. The assession number

for the data from the Nanfang Hospital and the explanatory file of data from

open access reported in this paper is OSFHOME: https://osf.io/5aqe4/. Data

from restricted access cannot be disclosed in our paper in accordance with

the Creative Commons license.
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Figure 7. Examples of the prediction results from the proposed

framework

(A and B) The original labels of the CT images diagnosed by skilled doctors

through pathological examinations and the corresponding probability scores

for three categories. The detected high-risk area by the framework is also

shown by the heatmaps and detection results. (A) Correctly identified cases.

(B) Inaccurately identified cases.

Table 5. Adenocarcinomacategory identification performance of

the proposed framework on different test or validation datasets

Dataset Class Sensitivity Specificity Accuracy AUC

Dataset 1, test IAC 99.9 90.3 97.9 96.9

MIA 84.8 99.4

AIS 93.0 99.7

Dataset 1, val IAC 99.7 90.4 97.9 96.9

MIA 85.0 99.2

AIS 93.1 99.5

Dataset 2 IAC 99.6 91.4 97.2 96.0

MIA 81.2 99.1

AIS 88.5 99.7

Dataset 3 IAC 99.6 87.8 96.8 95.9

MIA 80.0 99.3

AIS 84.2 99.3
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Overview of the datasets

Four datasets are utilized in the study. Dataset 1 and dataset 2 were collected

from the hospital, while dataset 3 and dataset 4 are composed of samples from

open-access online repositories.

Dataset 1

The effectiveness of our proposed framework is mainly evaluated based on a

clinical CT image dataset (see Table S1) provided by Nanfang Hospital in

China. In total, 2,571 lung section CT images from 520 patients across China

were collected before 2019 with the corresponding clinical diagnostic records

including the lung adenocarcinoma category, which is diagnosed by experi-
10 Patterns 3, 100464, April 8, 2022
enced doctors. The patients together with the corresponding CT images can

be categorized into three categories, IAC, AIS, andMIA, according to the diag-

nostic results, which are regarded as the ground truth. The CT images were

acquired from the CT scans with a resolution of 5123 512 or 4843 484 as DI-

COM format. Since several images cannot provide complete diagnostic infor-

mation or do not match with the diagnostic records, we finally selected 2,425

labeled images from 488 patients for our experiments. Among these, 2,118 im-

ages belong to the IAC category, 153 images belong to MIA, and 154 images

belong to AIS.

Because different CT instruments are used, the view of images can be round

or square (Figure S4). Inter-class variances of symptoms appearing in lungs

are apparent because of different CT appliances, creating extra challenges

for the machine vision-based diagnosis.

Dataset 2

To further validate themodel, this dataset (see Table S2) was collected by Nan-

fangHospital in 2021 through a similar procedure. After excluding substandard

data, 670 labeled images from 98 patients were selected. Among these, 542

images belong to the IAC category, 32 images belong to MIA, and 96 images

belong to AIS.

Dataset 3

To prove the generalizability of the model, this dataset (see data and code

availability) was collected from different sources. One portion of images are

obtained from the data collection Lung Fused-CT-Pathology34 in The Cancer

Imaging Archive (TCIA).35 Other images were obtained from online repositories

and papers.36–39 In total there were 267 IAC images, 30 AIS images, and 19

MIA images.

Dataset 4

To increase training data diversity, this dataset was obtained from the TCIA35

data collection NSCLC-Radiomics-Genomics,40 CPTAC-LUAD,41 NSCLC-

Radiomics,42 and APOLLO-5-LUAD.43 Lepidic-predominant adenocarci-

noma samples could be selected based on the clinical records, and the cor-

responding middle slice CT images were collected as unlabeled data for the

later training procedure.

Human research ethics statement. This study involves archival data without

disclosing the personal identity or private information, and has obtained the

ethics approval from the Human Subjects Ethics Committee at City University

of Hong Kong. The reference number of this ethics approval is 8-2021-47-E.

Experiment settings

Before training starts, we perform the standardization and normalization of

each image in the original dataset and resize the images to 224 3 224 resolu-

tion. Such data preprocessing aims to save computing resources and time so

that, in the application, it may run on personal computers rather than high-per-

formance servers. Computational experiments have been conducted to prove

that this change of resolution does not impact much on the performance of the

proposed framework (Table S3). During the training process, data



Figure 8. Knowledge distillation procedure

The main purpose of designing a knowledge distillation procedure is to better

transfer the original framework to other smaller datasets (datasets 2 and 3).

The teacher model and student model are both set to be the proposed

framework. Besides, to compare different train test partitioning portions

without decreasing training data diversity, the procedure is semi-supervised,

introducing unlabeled data (dataset 4).
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augmentation strategies are performed on the images by random horizontally

flipping and rotating. Computational experiments are conducted to determine

the more suitable CNN backbone in each of the two feature-engineering

branches as reported in Table S4. DenseNet169 (D169) and ResNet50 (R50)

are chosen as the CNN backbones in the representation branch and rebalance

branch, respectively. In themodel development, the CNN backboneswith pre-

trained weights on the ImageNet are further optimized by the Adam optimizer
with a batch of 16 images per step, while the total training epochs for each

backbone is set at 30. Values of the momentum, the learning rate, and the

weight decay are set to 0.9, 0.001, and 1 3 10�6, respectively. The a is fine-

tuned from 0.3 to 0.7, or set dynamically (Figure S5). Finally, it is set to 0.6

based on the best results. g is set to 0.334, 0.333, and 0.333 for IAC, AIS,

and MIA. b = (0.2, 0.2, 0.2, 0.15, 0.15, 0.1) respectively correspond to the

CRF images, black and white SROI images, and three sets of crop-back-

ground images, when (1) m = 180, r>100, (2) m = 200, r>100, (3) m = 230,

r>160. The framework is built on Keras 2.1.2 and TensorFlow 1.8.0 and is im-

plemented under the Ubuntu operating systemwith GPUNVIDIA GeForce RTX

2080Ti.

To confirm the robustness of the proposed framework, we utilize 4-fold

cross-validations in the experiment.

CNN models adopted in the framework

The architectures of the CNN models adopted in the framework are the same

as those in He et al.26 and Huang et al.27

Implementation

Algorithms 3 and 4 (Tables S7 and S8) detail the proposed framework in the

training and inference phase, respectively. In the training phase, for each

training epoch the training dataset is first fed into different extractors in the

segmentation unit to generate corresponding segmented image datasets

Dcrf ; Dsroi ; Dcrop. These datasets are then passed to the uniform sampler or

the rebalanced sampler accordingly to produce the representation data

fðxri ; yriÞni = 1g and the rebalanced data fðxei ; yeiÞni =1g for training, in which suffix

r and c respectively represent the representation branch and rebalance

branch, while imeans the ith sample and n represents the total number of sam-

ples. After feeding training samples into the representation branch and reba-

lance branch, respectively, corresponding features fr ; fc and the final

weighted feature f are obtained, while the output logits z and the probability

distribution for categories bp can be calculated. At the end of this training

epoch, the classification loss function is computed and the weights of the

CNN backbones are updated by optimizing the loss function. Finally, after

reaching the preset number of epochs in training, the CNN backbones and

the classifier together with their weights obtained are then applied in the infer-

ence phase.

In the inference phase, the testing dataset is simply fed into the CRF

extractor for preprocessing. Processed images are then passed to two

branches to obtain the representation feature and rebalance feature, respec-

tively. Through the weighted aggregation of two features, we obtain the final
Figure 9. Area under the ROC curve (AUC)

scores on different datasets based on

different data-partitioning proportions
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feature maps for the classification, and the probability distributions are calcu-

lated to determine the predicted categories having the largest probabilities.
Evaluation metrics

Considering the imbalanced distribution of the dataset, evaluation metrics that

can reflect the performance on each category are particularly needed. There-

fore, we employ two metrics, Precision and F1-score, to evaluate the perfor-

mance of identifying each category.

precisionj =
TPj

TPj +FPj

; (Equation 11)

F1� scorej = 2 � TPj

2 � TPj +FNj +FPj

; (Equation 12)

where suffix j represents the index of the categories (IAC, MIA, or AIS).

TPj ; FPj ; TNj ; FNj respectively denote the number of true positive, false pos-

itive, true negative, and false negative validation samples in the corresponding

index j.

Similarly, we also introduce the sensitivity and specificity to evaluate the

misdiagnosis or missed diagnosis rate.

sensitivityj =
TPj

TPj +FNj

; (Equation 13)

specificityj =
TNj

FPj +TNj

: (Equation 14)

We adopt the overall accuracy as the overall performance evaluation.

Furthermore, the AUC value, which represents the area under the ROC curve,

is also reported to evaluate the property of the classifiers, and the curves are

plotted with weighting of each class.
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