
Journal of Vision (2020) 20(2):1, 1–18 1

Impairment of cyclopean surface processing by
disparity-defined masking stimuli

Ross Goutcher
Psychology Division, Faculty of Natural Sciences,

University of Stirling, Stirling, UK

Paul B. Hibbard
Department of Psychology,

University of Essex, Colchester, UK

Binocular disparity signals allow for the estimation of
three-dimensional shape, even in the absence of
monocular depth cues. The perception of such
disparity-defined form depends, however, on the linkage
of multiple disparity measurements over space.
Performance limitations in cyclopean tasks thus inform
us about errors arising in disparity measurement and
difficulties in the linkage of such measurements. We
used a cyclopean orientation discrimination task to
examine the perception of disparity-defined form.
Participants were presented with random-dot sinusoidal
modulations in depth and asked to report whether they
were clockwise or counter-clockwise rotated. To assess
the effect of different noise structures on measurement
and linkage processes, task performance was measured
in the presence of binocular, random-dot masks,
structured as either antiphase depth sinusoids, or as
random distributions of dots in depth. For a fixed
number of surface dots, the ratio of mask-to-surface
dots was varied to obtain thresholds for orientation
discrimination. Antiphase masks were found to be more
effective than random depth masks, requiring a lower
mask-to-surface dot ratio to inhibit performance. For
antiphase masks, performance improved with decreased
cyclopean frequency, increased disparity amplitude,
and/or an increase in the total number of stimulus dots.
Although a cross-correlation model of disparity
measurement could account for antiphase mask
performance, random depth masking effects were
consistent with limitations in relative disparity
processing. This suggests that performance is
noise-limited for antiphase masks and
complexity-limited for random masks. We propose that
use of differing mask types may prove effective in
understanding these distinct forms of impairment.

Introduction

The perception of three-dimensional (3D) form from
binocular images depends on the successful encoding

of binocular disparities. The measurement of these
disparities begins at the first stages of visual cortex and
continues through multiple cortical areas, with disparity
selective cells found in V1, V2, hMT+, and elsewhere
(Krug & Parker, 2011; Minini, Bridge & Parker, 2010;
Parker, 2007; Uka & DeAngelis, 2003). Critically, the
types of disparities to which cells are selective differs
markedly across these areas.

At the earliest stages of cortical processing, disparity
selectivity adheres to an absolute frame of reference, in
which disparities are encoded in terms of differences in
retinal locations (Cumming & Parker, 1999). Selectivity
for absolute disparities has received significant attention
over a prolonged period of years, with multiple variants
of the disparity energy model having been used to
account for aspects of both neural processing and
behavioral performance (e.g., Goncalves & Welchman,
2017; Hibbard, Goutcher & Hunter, 2016; Read &
Cumming, 2007). In particular, numerous researchers
have considered whether limitations and/or biases
in the perception of disparity-defined form may be
accounted for through the action of absolute disparity
selective mechanisms (e.g., Allenmark & Read, 2010;
Allenmark & Read, 2011; Banks, Gepshtein & Landy,
2004, Filippini & Banks, 2009; Goutcher & Hibbard,
2014; Harris, 2014).

Beyond these early stages of processing, different
response patterns are observed. Beginning at V2, and
continuing through multiple cortical sites, neurons
show selectivity for relative disparities, that is, for
differences between absolute disparity measurements
across space (Fang et al., 2018; Neri, Bridge & Heeger,
2004; Thomas, Cumming & Parker, 2002; Umeda,
Tanabe & Fujita, 2007). Although sensitivity for
relative disparities has not been modeled extensively
(cf., Assee & Qian 2007; Hibbard & Goutcher, 2016;
Zhaoping, 2002), numerous psychophysical
observations suggest the importance of processes
operating at this level (e.g., Deas & Wilcox, 2014;
Deas & Wilcox, 2015; Glennerster & McKee, 1999;
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Glennerster & McKee, 2004; Goutcher & Hibbard,
2010; Goutcher, Connolly & Hibbard, 2018; Goutcher
& Wilcox, 2016; Vreven, McKee & Verghese, 2002;
Wardle & Gillam 2016). Such results indicate that the
tuning properties of relative disparity mechanisms are
critically important for understanding the perception of
cyclopean form (Goutcher et al., 2018; Hibbard, 2005;
Tyler, 1975; Tyler, 2012; Tyler & Kontsevich, 2001).

Given these distinct levels of processing for binocular
disparity, there are multiple potential sources of
limitation and impairment in the perception of
cyclopean structure. Cyclopean perception (Julesz,
1971), our ability to perceive the 3D shape and structure
of surfaces from binocular disparity alone, may, for
example, be limited primarily by early absolute disparity
measurement processes, as noted earlier. Alternatively,
performance impairments may be more directly related
to limitations in the measurement of relative disparities,
or in the use of these measurements for the description
of cyclopean form (e.g., Goutcher & Wilcox, 2016;
Goutcher et al., 2018; Wardle & Gillam, 2016). In
this article, we report the results of experiments
measuring performance impairments for cyclopean
surface perception in the presence of different forms of
random-dot masking stimuli. Participants were asked
to discriminate the orientation of a disparity-defined
random-dot sinusoid. Masking stimuli differed in
structure; one mask was a sinusoid in antiphase
arrangement with the target, whereas the other mask
contained dots randomly distributed in depth. Using
these different masks allowed us to examine the extent
to which limitations in the perception of cyclopean
form could be accounted for by early absolute disparity
measurement processes alone.

Absolute disparity measurement

To understand how early measurement processes
may be impaired, one must consider the nature
of these processes and the signals on which they
depend. A range of sources suggest that the early
measurement of absolute disparities makes use
of cross-correlation-like processes. This approach
to disparity measurement has been supported by
neurophysiological evidence (e.g., DeAngelis, Ohzawa &
Freeman, 1991; Nienborg, Bridge, Parker & Cumming,
2004; Ohzawa, DeAngelis & Freeman, 1990) and
biologically inspired computational modeling work
(e.g., Chen & Qian, 2004; Fleet, Wagner & Heeger,
1996; Goncalvez &Welchman, 2017; Qian & Zhu, 1997;
Read & Cumming, 2007) including some of the earliest
algorithms designed for the purpose (Sperling, 1970).
Cross-correlation-based algorithms have also been used
to account for patterns of bias and sensitivity in human
psychophysical performance (Allenmark & Read, 2010;
Allenmark & Read, 2011; Banks, et al., 2004; Filippini

& Banks, 2009; Goutcher & Hibbard, 2010; Goutcher
& Hibbard, 2014; Harris, 2014).

Cross-correlation models for disparity measurement
operate by comparing local image patches in one
eye’s image with image patches from the other eye’s
image (see Figure 1a,b). Disparity is defined by the
positional offset between patches. The greater the
correlation value at a given offset, the greater the signal
for that disparity. Fundamentally, this means that
such mechanisms act to detect local image structure.
If patches are identical, save for their positional offset,
then they will be strongly correlated. If, however,
local structures in one eye’s image are, for example,
skewed relative to the other image, then correlation
values will be lower. Cross-correlation mechanisms
must therefore make a trade-off between the ability to
measure local image structure and the likelihood that
local structures will differ only in their positional offset.
This trade-off depends on the size of window used
for the cross-correlation calculation. Large correlation
windows allow for greater sensitivity to local image
structure but are also more likely to contain image areas
with multiple disparities (Kanade & Okutomi, 1994).

The masking stimuli employed in this article affect
local cross-correlation measurement in different ways.
Masks in antiphase arrangement with the target depth
sinusoid provided consistent local image structure at
disparities other than the target disparity, increasing
correlation at nontarget disparities while decreasing
correlation at the target disparity (see Figure 1c).
Moreover, disparities for the antiphase masking
stimuli provide disparity information consistent
with both possible stimulus orientations. Random
disparity masks, however, provided signals that did not
consistently favor one orientation or another. Random
masks also produced random local changes in measured
cross-correlation, rather than the consistent opposing
signal seen in antiphase masks, leading to more general
reductions in correlation, but only at higher levels
of noise. This differing impact on cross-correlation
calculations predicts that, for impairments at the level
of early disparity measurement, random disparity
masks will be far less effective than antiphase masks in
disrupting cyclopean surface perception.

Descriptions of relative disparities

Although cross-correlation mechanisms are limited
by their sensitivity to disruptions of local image
structure, cyclopean surface perception may also be
impaired at the level of relative disparity processing.
Such relative disparity impairment may take the form
of noise in the measurement of relative disparity itself
or may be related to the visual system’s description
of available relative disparity signals. Thus one may
distinguish between noise-limited performance, in
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Figure 1. Illustration of absolute disparity measurement through cross-correlation and the effects of noise. (a) An example stereogram
containing a sinusoidal modulation in depth, similar to the stimuli presented to participants in our experiments. Circles show local
windowed patches to be compared by cross-correlation mechanisms. (b) y, disparity coordinate cross-section of the cross-correlation
output for the example stimulus, using a smaller window standard deviation of 6.6 arcmin. The sinusoidal modulation is clearly
visible. (c) Examples of the effects of antiphase and random disparity masking stimuli (see General methods for details). At low
mask-to-surface dot ratios of the antiphase mask the wave form is still visible but is more difficult to discern at the limiting ratio of 1.
For random disparity masks the waveform is still visible at this ratio but is more difficult to discern at much higher ratios. Note that
the examples here have large disparity amplitudes (5.5 arcmin) and are for illustrative purposes only. They are not directly indicative
of cross-correlation model performance.

which basic measurements are themselves impaired, and
complexity-limited performance, in which cyclopean
structure is obscured through erroneous links between
target relevant and irrelevant information. This idea
of complexity-limited performance is commonly
encountered in research focused on perceptual grouping
(e.g., Elder & Goldberg, 2002; Field, Hayes & Hess,

1993; Watt, Ledgeway & Dakin, 2008), in which a
classic example of complexity-limited performance
is found in contour detection tasks. Here the ability
to detect a target contour among distractor elements
is impaired by complexity-related factors, such
as spurious groupings of distractor elements, or
the disruption of grouping mechanisms for target
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elements due to intervening distractors (Watt et al.,
2008).

In this article, we provide a minimal linkage model
of the relative disparity content of our cyclopean
masking stimuli, describing the 3D spatial relationships
between pairs of stimulus elements. This model is
aimed at understanding complexity-based limitations
in cyclopean surface perception, which arise owing to
the relative disparity signals provided by the masking
stimulus itself and through its grouping with the
target surface. It should not be considered as a model
of cyclopean processing per se, but as a description
of stimulus content. As such, this linking model
does not consider possible sources of measurement
noise and is concerned only with the extent to which
simple descriptions of relative disparity content may
be used to discriminate cyclopean form. Our model
describes relative disparity content in terms of the
orientation, elevation, and length of the sets of dipoles
connecting pairs of stimulus dots. By making explicit
the task-limiting effects of such 3D spatial relationships,
this model shows how different forms of noise may
disrupt processing at the cyclopean level.

The discrimination of cyclopean orientation in this
dipole model depends on the orientation (i.e., the
angle in the x, y plane) and elevation (i.e., angle in the
x, disparity plane) statistics of dipole distributions.
For a noise-free disparity-defined sinusoid, the spread
of dipole elevations will be smallest at the target
orientation and largest at the orthogonal orientation.
Performance limitations for this model therefore
depend on the statistics of mask-related dipoles (i.e.,
any dipole in which one or both points are defined by
a mask element) and the extent to which they interfere
with expected distributions. If mask-related dipoles add
noise to orientation and elevation distributions, then
they will impair performance.

This argument leads to an interesting prediction:
although antiphase masks will add noise to dipole
distributions through increased zero elevation dipoles
at nontarget orientations (i.e., for dipoles linking target
and mask dots with equivalent absolute disparities),
they will also add further zero elevation dipoles at the
target orientation (i.e., for dipoles linking pairs of
same disparity mask dots). The random disparity mask
would, conversely, add noise to dipole distributions
indiscriminately. As such, contrary to the predictions
of noise-limited cross-correlation models, complexity-
limited orientation discrimination performance should
be less affected by an antiphase mask than by a random
disparity mask. We test this possibility in this article,
comparing human performance with random disparity
and antiphase masks to the performance of both
cross-correlation and dipole models of cyclopean
orientation discrimination. Our results show that,
although patterns of performance limitations are
consistent with a role for early measurement noise, the

effects of random disparity masks also demonstrate
the key role played by complexity-limited grouping
processes in cyclopean processing. These results provide
a first step beyond the initial disparity matching
processes in our understanding of cyclopean surface
perception.

General methods

Participants

Five observers, including author RG, participated in
a total of four experiments. Of these five observers, three
participated in Experiment 1, with four participating
in Experiments 2 and 3. All five observers took part
in Experiment 4. All were experienced psychophysical
observers with normal, or corrected-to-normal vision,
and stereoacuity of at least 40 seconds of arc, as
measured by the Random Dot 2 Stereo Acuity
Test (Vision Assessment Corp., Elk Grove Village,
IL). All experimental procedures were approved by
the University of Stirling Psychology ethics board,
in accordance with the guidelines of the British
Psychological Society and the Declaration of Helsinki.

Stimuli

In each experiment, participants were presented
with a random-dot stereogram depicting a sinusoidal
modulation in depth. Gratings were oriented at ±20˚,
with the sign of orientation chosen, at random, at
the beginning of each trial. Except in Experiment 3,
gratings were always of amplitude 1.1 arcmin and
cyclopean frequency 0.84 cpd, with phase kept constant
across all stimuli. The elements comprising the stimulus
were circular dots of diameter 5.74 arcmin. Dots
could be either black or white and were randomly
distributed within a circular window of diameter 4.98˚.
The number of dots used to define the sinusoid varied
between 60 and 700 across experiments, equivalent
to target surface dot densities of between 3.1 and
35.9 dots per degree2, respectively. In addition to dots
defining the depth sinusoid, each experiment included
masking dot stimuli. These were structured as either
a random disparity distribution, or as a phase-shifted
depth sinusoid of identical orientation, amplitude, and
frequency as the target surface. Conditions for each
experiment are described in full detail throughout the
article and are summarized in Figure 2.

Design and procedure
Stimulus presentation and data recording were

carried out using aMacPro computer with a 49 × 31 cm
Apple Cinema HD Display (Apple Inc., Cupertino,
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Figure 2. Summary of the stimulus manipulations used across
all four experiments. Target surfaces are illustrated as black
sinusoidal curves, while illustrations of mask stimuli are shown
in red. Stimuli in the experiments were disparity-defined
random-dot sinusoidal surfaces, oriented ±20˚ from vertical.

CA). Display resolution was 1920 × 1200 pixels, with a
refresh rate of 60Hz. Each pixel measured 1.1 arcmin,
at the 76.4 cm viewing distance. Stimuli were generated
using MATLAB (Mathworks Inc., Natick, MA)
together with the Psychophysics Toolbox extensions
(Brainard, 1997; Pelli, 1997; Kleiner, Brainard & Pelli,
2007). Display luminance ranged between 0.18 cdm−2

and 45.7 cdm−2. The display was calibrated using a
SpyderPro2 calibration device (DataColor, Dietlikon,
Switzerland) to ensure a linear luminance output. The
presentation of binocular images was achieved using a
mirror stereoscope, calibrated to ensure that vergence
and accommodation were consistent with the stimulus
viewing distance. All experiments were conducted in a
darkened laboratory, with head movements restricted
using a HeadSpot chinrest (UCHO, Houston, TX).

In each experiment, participants were presented with
a single random-dot stereogram depicting a sinusoidal
modulation in depth and asked to judge whether
it was oriented in a clockwise or counter-clockwise
direction. Stimuli were presented for 250 ms and were
preceded by the 500 ms presentation of a fixation cross.
Participants responded by pressing one of two keys on
a keyboard. Each key press initiated the presentation of
the next trial. Participants viewed the stimuli in random

order, over multiple blocks, resulting in a minimum of
30 repeated trials per condition in each experiment.
Stimulus presentation and manner of response were
identical across all experiments.

Modeling cyclopean orientation
discrimination

To understand the factors limiting orientation
discrimination performance, we devised two models
of cyclopean orientation discrimination. One of these
models, the cross-correlation model, targeted the impact
of measurement noise at the level of absolute disparities.
The second model, the dipole model, examined the
impact of grouping processes on cyclopean orientation
discrimination. Thus these models selectively assessed
the contributions of noise-limited factors in disparity
measurement and complexity-limited descriptions of
relative disparity structure for cyclopean orientation
perception. We detail these models later.

Cross-correlation models for disparity
estimation

To assess performance in our psychophysical tasks
in terms of limitations in early disparity measurement
processes, we employed a normalized cross-correlation
model similar to those used by Filippini and Banks
(2009) and Allenmark and Read (2010, 2011). For each
experiment, the cross-correlator passed a Gaussian
windowed patch from one eye’s image over the other
image at a range of different horizontal offsets,
equivalent to a range of horizontal disparities. The
correlation at each disparity was calculated according
to Equation 1,

c(δx) =
∑

(x,y∈WL )
[(
L(x,y) − μL

)(
R(x−δx,y) − μR

)]
√∑

(x,y∈WL )
(
L(x,y) − μL

)2√∑
(x,y∈WL )

(
R(x−δx,y) − μR

)2

(1)

where δx is the disparity given by the cross-correlation
offset, wL is the local windowed patch in the left image,
L and R are left and right images, and μL and μR are
the mean luminance values for left and right window
regions.

Using this model, we measured the correlation of
left and right eye images across a range of disparities
for Gaussian windowed patches centered on each point
of the stimulus image. Cross-correlation calculations
were always performed with the same window size,
regardless of disparity. The resulting correlation
maps provide evidence of the disparity structure
of each stimulus (see Figure 3a). Performance in
psychophysical tasks requires a further decision-making
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Figure 3. Example templates from (a) the cross-correlation model and (b,c) the dipole model. (a) An example template for a clockwise
oriented depth sinusoid at a disparity of 1.1 arcmin. The template shows a “no mask” condition, for a window standard deviation of
17.6 arcmin. (b) An example template for the dipole model, showing the joint probability of dipole elevation and orientation, for
dipole lengths of between 14 and 22 arcmin. (c) An example dipole template for longer dipoles of between 163 and 172 arcmin.

stage, however. For our model to make a decision
about the orientation of each stimulus, we adopted a
template matching approach similar to that used by
Allenmark and Read (2010, 2011). Using this approach,
cross-correlation outputs for a stimulus are compared
with a family of templates that provide the typical
cross-correlation response for a range of task relevant
stimuli. Templates were generated for each experiment
by obtaining cross-correlation maps for 50 repeated
trials of each stimulus level, at both possible stimulus
orientations. Templates were generated separately for
each experiment, and no templates were shared between
experiments. During testing, templates were correlated
with the cross-correlation map generated for each trial.
Orientation judgements were made on each trial by
selecting the highest template-stimulus correlation,
under a winner-takes-all rule. Note that at no stage does
this template matching approach make an estimate of
the absolute disparity of any region of the stimulus.
Instead, model responses depend on variation in
cross-correlation measures across x, y, disparity space.

To assess the extent to which cyclopean orientation
judgements could be impaired at the level of
absolute disparity measurement, we varied the size
of the Gaussian windowed patches used by our
cross-correlation model. For Experiments 1, 3, and 4,

in which the amplitude and cyclopean frequency of the
depth sinusoid were held constant at 1.1 arcmin and
0.84 cpd, respectively, cross-correlation windows were
defined as two-dimensional Gaussians with standard
deviations of between 3.3 and 35.2 arcmin. Window
standard deviations in Experiment 2 varied between 2.2
and 45.1 arcmin. These sizes were selected to take into
account the manipulations of disparity amplitude and
cyclopean frequency made in this experiment. Window
sizes were selected following the relationship laid out in
Allenmark and Read (2011) in which a cross-correlation
window’s standard deviation is defined relative to its
absolute disparity tuning as

σ = 3 + 0.27δ (2)

where σ is the standard deviation of the cross-
correlation window and δ is its disparity tuning. We
also considered the relationship between cyclopean
frequency and correlation window size, using the
formula proposed by Nienborg et al (2004), in which
the relationship between window standard deviation
and cyclopean frequency tuning is given as

σ = 1/ (2πξ ) (3)
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where ξ is the cutoff frequency above which disparity
modulations are no longer detectable by windows
of standard deviation σ . Although these equations
guided the choice of window standard deviation
across models, they were not used to covary window
size and cross-correlation offset (i.e., disparity) as in
Allenmark and Read (2011). Instead, window-size was
held constant across disparities. This means that model
performance reflects the ability of a single correlation
window size to measure absolute disparity across the
stimulus. Modeling was conducted in this fashion to
consider the role of window size only, rather than more
complex, physiologically, and behaviorally derived,
concepts.

A dipole model for cyclopean orientation
discrimination

Although cross-correlation approaches to the
modeling of disparity measurement can account
for early noise factors, such as correspondence and
measurement noise (e.g., Goutcher & Hibbard,
2014), they are not well-suited to addressing issues
of cyclopean structure and do little to account for
complexity-based processing limitations. In addition,
given that the measurements of disparity obtained
from cross-correlation procedures are in absolute
coordinates, these models offer no obvious means by
which to compare the structure of stimuli at different
absolute depths, or at different slants. Instead, such
comparisons require measurements based on differences
in disparity. Sensitivity to such relative disparities has
been noted in multiple areas of cortex (Fang et al.,
2018; Neri et al., 2004; Parker, 2007; Thomas et al.,
2002; Umeda et al., 2007).

Here we consider an approach to describing disparity
differences independently of absolute disparity
measurement. The starting point for this approach is
to assume that the visual system possesses error-free
measurements of the absolute disparity of each
stimulus dot. In other words, rather than beginning with
the stereoscopic image pair, this model assumes that
the coordinates of each point in x, y, disparity space
are known. Although this is an unrealistic assumption
(cf., Stevenson, Cormack & Schor, 1989; Wardle, Bex,
Cass & Alais, 2012), it ensures that any observed
performance limitations arise from uncertainty
concerning the description of relative disparities,
rather than uncertainty about their measurement. Note
that, even aside from the assumption of error-free
measures of absolute disparity, this model should not
be considered as an attempt to map out the processes
involved in the measurement and description of relative
disparities. Instead, this model should be understood
as a description of the relative disparity content of
our stimuli and of the efficacy of this content for

the discrimination of cyclopean orientation. It is a
description of stimulus information, not a model of
disparity processing.

Our model generated descriptions of disparity
differences by calculating the orientation, elevation, and
length of sets of dipoles linking each and every pair of
dots in a stimulus. These dipoles capture the simplest
3D structural information about the relationship
between pairs of points on the surface. On the basis
of this element for describing relative disparity, we
refer to this model as the dipole model. For each dipole,
orientation (O, angle in the x, y plane), length (L),
and elevation from the image plane (E, angle in the x,
disparity plane) were calculated using the following
equations:

O = tan−1 y2 − y1
x2 − x1

(4)

L =
√
(x2 − x1)2 + (y2 − y1)2 (5)

E = tan−1 [(z2 − z1) /L] (6)

where x and y values define the coordinates of element
positions in terms of their cyclopean direction, and z
values represent an element’s absolute disparity.

These measurements were used to define the joint
probability distribution p(E, O, L) for each stimulus.
Note that the measurement of these, and only these,
properties means that the dipole model has no access
to the absolute disparity information used as its input.
Task performance with the dipole model therefore
depends on only the most fundamental description
of relative disparity information available in the
stimulus. This also means that task performance for the
dipole model depends on the efficacy of this relative
disparity information as a description of the cyclopean
orientation of the stimulus. Model performance
thus reflects a complexity-based limitation in the
model’s summary description of the stimulus, not its
measurement of either absolute or relative disparity
content. The limitations revealed by our analysis
thus reflect the relative depth information available
to cyclopean processes, rather than any constraints
imposed by the mechanisms themselves.

As with our cross-correlation model, we used a
template-matching approach to allow for orientation
discrimination judgements. Template dipole
distributions were generated for 50 repeated trials of
each stimulus level and orientation, across all four
experiments (see Figure 3b,c). For each experiment,
these templates were correlated with the stimulus dipole
distributions generated on each trial, with the selected
orientation determined by a winner-takes-all decision
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rule. As with the cross-correlation model, the generation
of templates was independent between experiments.

Examination of the template in Figure 3b (for
dipoles with lengths of between 14 and 22 arcmin)
shows the relative disparity structures available in the
dipole distributions. The distribution of dipoles peaks
for elevations of zero at the target orientation of –20˚.
Note here that variability in elevation is far lower at
this target orientation. Conversely, elevation variability
is high at the orthogonal orientation of 70˚. Such
structure is not so visible for longer dipoles of between
163 and 172 arcmin (Figure 3c) because such dipoles
are longer than the wavelength of the depth sinusoid.
The range of lengths over which dipole distributions
provide structured information about the cyclopean
orientation of the target surface will depend on both
the disparity amplitude and cyclopean frequency of the
stimulus.

Experiment 1: Antiphase masking
of cyclopean orientation

Stimuli

In Experiment 1, participants were presented
with random-dot depth sinusoids in the presence
of a cyclopean masking stimulus. The mask was
structured as a random-dot depth sinusoid, with
identical orientation, amplitude, and frequency as the
target surface, but with opposite phase. Dot density
for the target sinusoid was kept at 6.2 dots per degree2
throughout the experiment. This meant that the target
surface was defined by 120 randomly distributed dots.
Mask-to-surface dot ratios were varied uniformly
across seven levels, from a ratio of 0.2 to a ratio of 1
to obtain thresholds for orientation discrimination.
Note that for antiphase masks, 1 was the maximum
possible mask-to-surface dot ratio. Values >1 indicate
conditions in which the antiphase mask surface
becomes the de facto target.

Results and discussion

Psychophysical results
Proportion correct orientation discrimination scores

were calculated for each mask-to-surface dot ratio
and fit with a decreasing scaled cumulative Gaussian
function. Seventy-five percent correct thresholds were
obtained from these fitted functions for each participant
as a measure of the masking effect of the antiphase
dots, with larger thresholds indicating an increased
tolerance for masking noise. These results are shown
in Figure 4a. As is evident from this figure, increasing

the mask-to-surface dot ratio decreased orientation
discrimination performance, with participants reaching
chance performance before the limiting ratio of 1.
Thresholds for 75% correct performance were at ratios
of 0.45, 0.49, and 0.50 for the three observers, with
95% confidence intervals (CIs) of ±0.004, ± 0.025, and
±0.08, respectively.

Modeling results
Figures 4b and 4c show the performance of the

cross-correlation model when presented with the
antiphase mask stimuli. As with human observers,
the performance of the cross-correlation model
decreased with increasing mask-to-surface dot ratio.
Increasing the window size led to a reduction in
thresholds. Near-ceiling performance was observed
for the smallest window sizes, of standard deviation
3.3 and 6.6 arcmin, with proportion correct scores
remaining above chance level, even at the maximum
mask-to-surface dot ratio. At larger window sizes,
performance more closely approximated that of
human observers. At the very largest window sizes,
however, more generalized performance impairments
were observed at all mask-to-surface dot ratios
(i.e., performance was at or below threshold for all
mask-to-surface dot ratios). We quantified the effects
of window sizes by running bootstrapped simulations
to estimate the range of root mean squared errors
(RMSE) across each tested window standard deviation.
For each of 5000 simulations we found the window
standard deviation that provided the smallest RMSE.
From this distribution of minimum RMSEs we found
the best-fitting window standard deviation, using
maximum likelihood estimation. The results of this
analysis show that discrepancies between human and
model performance were, on average, lowest for window
sizes of around 24.5 arcmin. The 95% CIs for the
distribution of minimum RMSEs were rather large,
however (±20.5 arcmin). Although this is largely a
factor of the comparatively small impact of increases
in window standard deviation beyond 11 arcmin
(see Figure 4c), it suggests, beyond smaller window sizes
in which manipulations of mask-to-surface dot ratio
have little effect, there are a wide range of window sizes
consistent with human-like performance.

In contrast to the best-fitting cross-correlation
model, the dipole model shows no performance
impairments when presented with antiphase masking
stimuli (Figure 4d). These results are consistent
with the antiphase masking stimulus primarily
limiting performance through its effect on the initial
measurement of absolute binocular disparity, rather
than through the resulting relations between points.
The antiphase mask therefore appears to impose
noise-based limitations on performance. Critically,
however, such effects require a reliance on measurement
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Figure 4. Results from Experiment 1. (a) Results for individual participants (P1 is author RG), together with fitted scaled cumulative
Gaussian functions. Error bars show binomial standard errors. (b) Example results from the cross-correlation model, at a window
standard deviation of 17.6 arcmin. (c) Cross-correlation model prediction error shown as RMSE against window standard deviation.
Each color shows the error for an individual participant. (d) Dipole model performance as a function of mask-to-surface dot ratio.

processes operating at very coarse scales. The equations
proposed by Allenmark and Read (2011) and Nienborg
et al (2004) for the relationship between correlation
window size and, respectively, the parameters of
absolute disparity and cyclopean frequency, suggest
that our experimental stimulus is processed by units
with window standard deviations of between 3.3
and 11 arcmin. In comparison, cross-correlation
model performance at these standard deviations
exceeds that of human observers by some margin. We
further examine these issues in Experiment 2 through
manipulation of cyclopean frequency and disparity
amplitude for stimuli at the limiting 1:1 mask-to-surface
dot ratio. Both the frequency and amplitude are
expected to influence the size of the correlation window
that is relevant for the perception of depth. Higher
spatial frequencies should rely on smaller correlation
windows to capture finer spatial structure (Banks et al.,
2004; Nienborg et al., 2004). Disparity magnitude is
also related to window size, with the processing of
larger magnitudes of disparity associated with larger
correlation windows (Allenmark & Read, 2011; Prince,
Cumming & Parker, 2002; Smallman & MacLeod,
1994).

Experiment 2: Measuring effects of
cyclopean frequency and disparity
amplitude

Stimuli

In Experiment 2, participants were once again
presented with depth sinusoids in the presence of
an antiphase mask. Here, however, the ratio of
mask-to-surface dots was kept constant, at the
maximum value of 1. Thus rather than measuring
the ratio of mask-to-surface dots required to reduce
performance to threshold level, Experiment 2 examined
whether changes in the structure of the depth sinusoid
could improve task performance. To this end, we
varied the amplitude and cyclopean frequency of both
surface and mask sinusoids. Cyclopean frequency was
either 0.21, 0.42, 0.63, or 0.84 cpd, while amplitude
was varied uniformly across five levels between 1.1 and
2.75 arcmin. In all cases, the frequency and amplitude
of the target and mask were identical and differed only
in their phase.
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Figure 5. Psychophysical and modeling results for Experiment 2. (a) Results for an example participant (P4) showing increases in
proportion correct scores with decreasing cyclopean frequency and increasing disparity amplitude. (b) Results for each participant
(P1 is author RG) shown as 75% correct disparity amplitude thresholds across each level of cyclopean frequency. Error bars show the
standard deviation of best-fitting thresholds, obtained via bootstrapped resampling. (c) Results for the cross-correlation model with a
window standard deviation of 17.6 arcmin (close to the best-fitting window size; see Experiment 2 Results and discussion for details).
(d) Prediction error for the cross-correlation model, shown as RMSE against window standard deviation. Each color shows the errors
for a different participant. (e) Results for the dipole model, showing ceiling-level performance at all cyclopean frequencies and
disparity amplitudes.

Results and discussion

Psychophysical results
Figures 5a and 5b show the results for Experiment 2,

in which cyclopean frequency and amplitude were
manipulated, given a constant mask-to-surface dot ratio
at the limiting value of 1. At this value, performance
was again at chance level for stimuli with a frequency
of 0.84 cpd and an amplitude of 1.1 arcmin. Combined
decreases in cyclopean frequency and increases
in amplitude led to improvements in orientation
discrimination performance. These improvements are
plotted for each participant in Figure 5b as 75% correct

thresholds for disparity amplitude at each cyclopean
frequency. Note that such thresholds could not be found
for the highest tested frequency of 0.84 cpd. Thresholds
increased with increasing cyclopean frequency, from
an average disparity amplitude of 1.12 arcmin at the
0.21 cpd frequency, to 1.92 arcmin at a frequency of
0.63 cpd (F2,6 = 21.03, p = 0.0019 on a Repeated
Measures analysis of variance [ANOVA]). Thresholds
for the 0.84 cpd condition exceeded the tested disparity
amplitude range. Across observers, disparity threshold
95% CIs ranged from ±0.02 to ±0.49 arcmin for the
0.21 cpd frequency, ±0.05 to ±0.38 arcmin for the
0.42 cpd frequency, and ±0.01 to ±0.5 arcmin for the
0.63 cpd frequency.



Journal of Vision (2020) 20(2):1, 1–18 Goutcher & Hibbard 11

Modeling results
As in Experiment 1, the cross-correlation model

provided a close match to human performance for a
subset of window sizes.Model performance is shown for
an example window size and as RMSE across window
sizes in Figures 5c and 5d. As with mask-to-surface dot
ratio manipulations in Experiment 1, the dipole model
shows little to no effect for manipulations of cyclopean
frequency and amplitude, maintaining ceiling-level
performance (Figure 5e).

These results are again consistent with a primarily
noise-based effect of the antiphase mask at the
level of absolute disparity measurement. In contrast
with Experiment 1, however, the cross-correlation
model performs most similarly to human observers
with intermediate window sizes. Best-fitting window
standard deviations for Experiment 2, calculated
using the same approach as for Experiment 1,
were approximately 15.5 arcmin, with 95% CIs of
±6.74 arcmin (Figure 5d). Given that, for most
conditions, disparities are larger and cyclopean
frequencies lower than in Experiment 1, one should, if
anything, expect the best-fitting window size to increase.
That this is not the case suggests that impairment of
absolute disparity measurements is not the sole factor
affecting cyclopean surface perception in this task. The
limiting effect of window size does, however, suggest
that performance impairments are due to some form of
measurement process, especially given the ceiling-level
performance of the dipole model. We consider potential
measurement-related factors in the Discussion.

Experiment 3: Measuring the
effects of element number

Stimuli

As in Experiment 2, Experiment 3 sought to
examine the effect of changes on surface structure on
orientation discrimination performance. Participants
in Experiment 3 were therefore presented with a series
of stimuli in which the mask-to-surface dot ratio was
again kept constant at the maximum value of 1. In this
experiment, rather than varying the structure of the
depth sinusoid, we varied the total number of stimulus
elements. Increasing the number of dots was expected
to improve performance, despite the maintenance of the
1:1 mask-to-surface dot ratio, as increasing the number
of stimulus elements improves the sampling of the
surface structure. Dot numbers were varied uniformly
across seven levels, from 100 to 700 target dots. The
total number of dots in each stimulus thus varied from
200 to 1400, equivalent to total dot densities of between
10.3 and 71.9 dots per degree2, and target surface
densities of between 5.1 and 35.9 dots per degree2.

Results and discussion

Psychophysical results
Figure 6a shows the results for Experiment 3, plotted

as proportion correct scores against the number of
surface dot elements. For all observers, increasing
the number of surface dots increased the ability to
discriminate the direction of cyclopean orientation,
despite a concomitant increase in the number of
masking dots. Thresholds for 75% correct orientation
discrimination averaged 573 dots across all four
observers. Individual thresholds were 428, 583, 714, and
571 dots, with 95% CIs of ±6, ±211, ±76, and ±113
dots, respectively.

Modeling results
Modeling results for the manipulation of element

number in Experiment 3 are shown in Figures 6b
through 6d. Once again, the performance of the
cross-correlation model is qualitatively similar to
that of human observers (Figures 6b and 6c). As
in Experiment 1, the match between human and
cross-correlation model performance is best for
larger window sizes, with a best-fitting window
standard deviation of 31 arcmin (with 95% CIs of
±10.04 arcmin) (Figure 6c). At smaller window
sizes, the cross-correlation model approaches ceiling
performance even with smaller numbers of stimulus
elements. The dipole model also maintains ceiling-level
performance with the manipulation of element number
(Figure 6d). As with Experiments 1 and 2, these results
again suggest that antiphase masking effects primarily
involve the impairment of measurement processes. Once
again, however, the dependence on large correlation
window sizes means that an explanation based on
absolute disparity measurement alone runs contrary to
expectations (Allenmark & Read, 2011; Nienborg et al.,
2004) and requires one to hold that cyclopean surface
perception is driven by highly suboptimal processes.

Experiment 4: Random disparity
masking of cyclopean orientation

Stimuli

As in previous experiments, participants in
Experiment 4 were presented with random-dot-defined
depth sinusoids in the presence of binocular masking
dots. Here, however, masking dots were assigned
random disparities, drawn from a uniform distribution
with range ±1.1 arcmin, centered at fixation. Given this
random distribution of disparities, mask-to-surface dot
ratios could be increased well beyond the maximum
value used in Experiment 1. We presented participants
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Figure 6. Results of Experiment 3. (a) Results for each participant (P1 is author RG), together with fitted scaled cumulative Gaussian
functions. Error bars show binomial standard errors. (b) Example results for the cross-correlation model with a window standard
deviation of 26.4 arcmin (close to the best-fitting window size; see Experiment 3 Results and discussion for details). (c) Prediction
errors for the cross-correlation model, plotted as RMSE against window standard deviation for each participant. (d) Dipole model
performance. As in Experiments 1 and 2, the dipole model performs at ceiling-level across all tested conditions.

with stimuli in which mask-to-surface dot ratios varied
between 0.2 and 3.6 across seven uniformly spaced
levels. The number of dots specifying the target surface
was also varied. Three of the five participants were
presented with target surfaces comprised of either 60,
100, or 200 dots, whereas the remaining participants
were presented with target surfaces comprised of either
60, 80, 100, 150, or 200 dots. These were equivalent to
target surface dot densities of between 3.1 and 10.3
dots per degree2. Mask-to-dot ratio thresholds were
obtained for each target surface dot density.

Results and discussion

Psychophysical results
Figures 7a and 7b shows the results of Experiment 4,

plotted as psychometric functions for an example
participant, and as 75% correct mask-to-surface dot
ratio thresholds for each participant, across different
surface dot numbers. Mask-to-surface dot ratio
thresholds increased slightly with increasing numbers
of surface dots, from an average threshold ratio

of 1.67 for 60 surface dots to an average threshold
ratio of 2.83 for 200 surface dots (F2,8 = 25.31, p =
0.0003 on a Repeated Measures ANOVA). Critically,
however, the values of these threshold ratios provide an
important comparison to results from Experiment 1.
Although mask-to-surface dot ratios in Experiment 1
were necessarily limited by the antiphase structure of
the masking stimulus, this was not the case for the
randomly distributed masks used in Experiment 4. An
increase in the ratio of mask-to-surface dots beyond a
value of 1 continued to increase the effectiveness of the
mask. This is critically important, as threshold ratios
in Experiment 4 were much higher than those found
with antiphase masks; observed threshold ratios fell
between a minimum of 0.94 and a maximum of 4.1.
The 95% CIs for these thresholds averaged ±0.61 across
participants and conditions, although larger CIs were
found for participants P4 and P5 in the 150 and 200 dot
conditions, respectively. Here 95% CIs were ±1.1 and
±1.72 for surface-to-mask ratio thresholds of 3.58 and
4.1. These results suggest that randomly distributed
noise masks are much less effective than the previously
employed antiphase masks in disrupting cyclopean
surface perception.
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Figure 7. Psychophysical and modeling results for Experiment 4. (a) Results for an example participant (P1 is author RG), showing
proportion correct scores against mask-to-surface dot ratios for three quantities of surface dot numbers. Error bars show binomial
standard errors. (b) Threshold mask-to-surface dot ratios for each participant, as a function of the number of surface dots. Error bars
show the standard deviation of best-fitting thresholds, obtained via bootstrapped resampling. (c) Example psychometric functions for
the cross-correlation model at a window standard deviation of 30.8 arcmin (close to the best-fitting window size; see Experiment 4
Results and discussion for details). Error bars show binomial standard errors. (d) Prediction errors for the cross-correlation model,
shown for each participant as RMSE against window standard deviation. (e) Results of the dipole model, plotted as proportion correct
scores against mask-to-surface dot ratios for different number of surface dots. Error bars show binomial standard errors.

Modeling results
Model performance in Experiment 4 (Figures 7c–e)

was markedly different to the previous experiments.
Unlike antiphase masks, increases in mask-to-surface
dot ratios for random masks had relatively little effect
on orientation discrimination performance for the
cross-correlation model. Threshold ratios of between 8
and 16 were found across multiple window sizes. Even
at larger window standard deviations (i.e., 26.4 and
30.8 arcmin), in which human comparable performance
had been found in Experiment 1, thresholds ratios
were between 4.5 and 10. These thresholds far exceed
the thresholds of between 1.62 and 3.56 seen in our
participants. Beyond these window sizes, performance
collapses almost completely, with proportion correct
scores reaching only slightly above threshold level,
even in the complete absence of any masking stimulus.

Despite this collapse in performance, the best-fitting
window standard deviation was found at this larger
range. Best-fitting window standard deviation was
31.7 arcmin, with 95% CIs of ±7.33 arcmin. RMSE
measures at this window standard deviation averaged
0.16 across observers. These results suggest that the
measurement factors limiting performance with the
antiphase mask are not the same as those limiting
performance with the random mask.

Results for the dipole model in Experiment 4 are
shown in Figure 7e. Although the cross-correlation
model performed far in excess of human observers
when presented with a randomly distributed mask,
this was not the case for the dipole model. Dipole
model thresholds were at ratios of between 1.4 and
2.5, broadly comparable to those found for human
observers, and showed a clear increase with increasing
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numbers of surface dots. RMSEmeasures for the dipole
model were substantially lower, at a value of 0.02,
than for the best-fitting cross-correlation model, with
a mean difference of 0.141. The 95% CIs of ±0.139
for the difference between model RMSEs indicate a
significantly better fit for the dipole model than the
best-fitting cross-correlation model, despite its lack of
free parameters. This contrasts markedly with dipole
model performance in Experiments 1 through 3, in
which near ceiling-level performance was maintained
throughout and fits to human data were poor. The
improved fit and match to changing thresholds patterns
for the dipole model suggest that the effects of the
random disparity mask are better accounted for by
complexity-limited processes that represent the relative
disparity information available in the stimulus. We
consider the possible nature of these processes and the
limitations of our dipole approach later.

Discussion

This article has demonstrated the effects of two
types of cyclopean masks on the perception of
disparity-defined form. The ability to discriminate the
orientation of depth sinusoid stimuli was impaired by
the presence of both an antiphase depth sinusoid mask
and by a mask containing randomly distributed dots
in depth. Comparison with the performance of two
models of cyclopean surface perception suggests that
masking effects occur at multiple levels of disparity
processing, affecting both disparity measurement
and the description of relative disparity structures.
Results consistent with the effects of measurement
noise accounted for performance with antiphase
masks, although the scale of this measurement noise
varied between experiments. Random disparity masks
produced results consistent with the complexity-limited
impairment of cyclopean linkage processes. We
consider these differing effects in detail later.

Measurement noise as a limiting factor in
cyclopean perception

At the earliest stages of binocular integration, the
brain measures disparities in an absolute (i.e., retinal)
frame of reference (Cumming & Parker 1999). As noted
earlier, these processes appear to be well-described by
the disparity energy model (Fleet et al., 1996; Ohzawa,
DeAngelis & Freeman, 1990; Read, 2005) and can
be broadly understood as a process of binocular
cross-correlation (Banks et al., 2004; Fleet et al.,
1996; Goutcher & Hibbard, 2014). The acuity of
binocular vision is limited by the resolution at which
these measurement processes operate, with resolution

dependent on the size of the cross-correlation window
(Banks et al., 2004). Larger windows provide the
measurement process with increased information
but are likely to encounter differences in disparity
across the windowed area, resulting in decreased
signal-to-noise ratios. Thus the optimal window size
for cross-correlation depends on the cyclopean
frequencies present in the stimulus (Kanade &
Okutomi, 1994).

Our results show that masking effects for the
antiphase stimulus are consistent with effects of
measurement noise arising with large cross-correlation
windows. Critically, however, cross-correlation
model performance impairments are found at highly
suboptimal, very large, window sizes. This effect of
larger window sizes is the result of an increase in the
presence of information consistent with each disparity
across the image and can be considered as comparable
to the effects of increasing cyclopean frequency. To
argue, however, that early measurement noise is the
determining factor in such cyclopean masking effects
is to suppose that the systems for measuring absolute
disparity are poorly suited to the stimuli used in
our experiments. This seems a spurious argument,
given the sensitivity of disparity processing in a range
of other tasks (e.g., Stevenson et al., 1989; Tyler &
Kontsevich, 2001). In addition, these large window sizes
were also at odds with previous estimates, defined in
Equations 2 and 3 (Allenmark & Read, 2011; Nienborg
et al., 2004; Smallman & MacLeod, 1994), and with
estimates of the effects of correlation window size on
the disparity gradient limit (Filippini & Banks, 2009).
These previous estimates suggest window standard
deviations of between approximately 4 and 12 arcmin
in Experiments 1, 3, and 4, compared with the
best-fitting window standard deviations of 24.5, 31, and
31.7 arcmin, respectively. Notably, in Experiment 2, in
which previous suggestions for window size (Allenmark
& Read, 2011; Nienborg et al., 2004) would align with
larger correlation windows, our results are actually
consistent with a smaller best-fitting cross-correlation
window of standard deviation 15.5 arcmin.

One possible explanation is that window size is not
the sole noise-limited factor for disparity measurement.
For example, performance may be driven by processing
inefficiency, or by suboptimal decision strategies.
Although the decision rule for the cross-correlation
model mirrors that used by other authors (e.g.,
Allenmark & Read, 2010, Allenmark & Read, 2011) it
should only be considered as an approach appropriate
to the experimental task. It cannot reflect the wider
decision strategies employed by the visual system. In
addition, later processing stages could add further
noise or distortion to disparity measurement processes.
These could involve both additional absolute disparity
processes, such as disparity averaging (e.g., Cammack
& Harris, 2016) or processing at the relative disparity
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level (e.g., Goutcher et al., 2018). Thus the apparent
limiting effects of large cross-correlation windows may
reflect the scale over which higher resolution absolute
disparity measurements (i.e., those arising from smaller
cross-correlation windows) are brought together to feed
into subsequent mechanisms for the measurement of
relative disparity. Note that this potential spatial scale
effect of relative disparity processing is distinct from
the point-to-point measurements of relative disparity
in the dipole model. Instead, such effects could reflect
the smoothing of absolute disparities seen with the
use of cyclopean frequency-tuned hypercyclopean
filters (Goutcher et al., 2018; Hibbard, 2005;
Serrano-Pedraza & Read, 2010; Tyler, 2012; Tyler &
Kontsevich, 2001).

It is also unlikely that any noise in relative disparity
or hypercyclopean processing reflects a preponderance
of relative disparity signals to which the visual system
is not well-tuned. For example, one may predict
poor measurements of relative disparity for stimuli
containing large disparity gradients (i.e., for stimuli in
which large disparity differences occur over a small local
area). This is, however, not the case for the stimuli in our
experiments. Approximately 90% of stimulus dipoles
have disparity gradients of <0.5 for random masks at a
mask-to-surface dot ratio of 4.8, while 90% of dipoles
have gradients of <0.6 for antiphase masking stimuli
at the limiting mask-to-surface dot ratio of 1. Thus
even for high noise stimuli, the majority of dipoles fall
well below the gradient limit of 1 for binocular fusion
(Burt & Julesz, 1980) and the limit of 3 for stereoscopic
depth perception and surface segmentation (McKee &
Verghese, 2002).

Although the antiphasemask effects in Experiments 1
through 3 are consistent withmeasurement noise-related
processing limitations, the results of Experiment 4
are not. Thresholds for the random disparity mask in
Experiment 4 were far in excess of human performance
across a wide range of correlation window sizes and
failed to show an increase with surface dot density. This
better-than-human performance was even observed for
the larger, highly suboptimal, window sizes in which
cross-correlation performance best matched human
performance in Experiments 1 and 3. These results
suggest that factors other than measurement noise are
critical in accounting for the effects of the random
disparity mask.

Dipole distributions as a “minimal linkage”
description of disparity differences

In addition to examining the performance of the
cross-correlation model, this article also introduced a
dipole model for the consideration of relative disparity
stimulus content. As noted earlier, this model should
not be considered as an account of the processes

involved in relative disparity measurement (e.g., Assee
& Qian, 2007; Hibbard & Goutcher, 2016; Thomas
et al., 2002; Zhaoping, 2002) or of the description of
cyclopean structures using such measurements (e.g.,
Tyler, 2012). Instead the model provides a summary
description of one “minimal linkage”measure of relative
disparity content and allows for a judgement of whether
such a description can, in principle, support cyclopean
orientation discrimination. Thus using this model,
we may conclude that the orientation of the family
of stimuli used in Experiments 1 through 3 can be
discriminated on the basis of dipole distributions alone,
without any consideration of positional or absolute
disparity information. Comparisons of results between
the dipole and cross-correlation models thus allow us
to distinguish between measurement noise-limited and
complexity-limited cyclopean perception.

For the random disparity mask used in Experiment 4,
the dipole model shows performance limitations similar
to human behavior. As with humans, and unlike the
cross-correlation model, the dipole model shows an
increase in mask-to-surface dot ratio thresholds with
increasing surface dot density. In tandem with the
discrepancies between human and cross-correlation
model performance, this suggests that performance
limitations with random disparity masks involve the
complexity-limited description of relative disparity
information, rather than a noise-based impairment
of absolute disparity measurements. Thus random
disparity masks primarily affect performance by
increasing stimulus complexity, rather than increasing
measurement noise.

As with the cross-correlation model, although the
decision stage of the dipole model is ideally suited
to the experimental task, it cannot be considered as
a plausible account of the visual system’s processes
for interpreting relative disparity measurements. In
particular, to allow for the proper encoding of surface
structure, such processes most likely involve the further
comparison of relative disparity measurements over
space. Such processes would require the positional
information already absent from the distributions of the
dipole model. Use of such positional information, for
the further grouping of relative disparity measurements
across the image, could help to improve dipole model
performance, allowing it to match the full range of
observed human performance even in the presence of
measurement noise and/or processing inefficiency.

Describing cyclopean structures

Comparison of modeling results to human
performance suggests that cyclopean masking effects
arise at the level of both absolute disparity and relative
disparity processing. Antiphase masking effects are
consistent with the effects of measurement noise,
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whereas random disparity masks affect performance
in a manner consistent with the disruption of relative
disparity information. Note that impairments in
dipole model performance are not owing to errors or
uncertainty in relative disparity measurements but
owing to the impact of mask-related dipoles on the
dipole distribution. These reductions thus represent a
masking of task-relevant relative disparity information:
mask-related dipoles hide the stimulus structure
without impairing the initial measurements on which
such structure depends. As such, they illustrate a
limitation in the visual system’s ability to make effective
use of summary descriptions of stimulus content.
Limitations in the use of such summary descriptions are
also evident in the perception of stereoscopic volume
stimuli (Goutcher & Wilcox, 2016). Understanding
the descriptions of disparity content available to the
visual system will be a critical step in understanding
how disparity measurement processes underpin the
perception of cyclopean form.

Studies of the mechanisms responsible for the
perception of cyclopean structure have revealedmultiple
processes, involving the action of multiple neural sites
(Neri, 2004; Parker, 2007). Although there is evidence
for a progression from absolute disparity selectivity in
primary visual cortex to relative disparity selectivity
in areas V2 and V4 (Fang et al., 2018; Thomas et al.,
2002; Umeda et al., 2007), there is little consensus on
either the nature of the transformations involved in this
progression, or their computational purpose (cf., Assee
& Qian, 2007; Hibbard & Goutcher, 2016; Zhaoping,
2002). Tyler (1975, 2012) has suggested a progression
from initial disparity measurement units to units with
frequency-tuned selectivity for depth sinusoids. The
tuning properties of these “hypercyclopean” channels
have been used to account for orientation dependencies
in sensitivity to cyclopean form (Hibbard, 2005;
Serrano-Pedraza & Read, 2010; Tyler & Kontsevich,
2001) and structure-related biases in perceived depth
(Goutcher et al., 2018). Such mechanisms would encode
much of the information contained within the dipole
distributions examined here, although also subject to
those aspects of measurement noise on which antiphase
masking effects appear to depend. As discussed
earlier, the effects of hypercyclopean processing
may also provide a more biologically plausible
basis for the cross-correlation model’s dependence
on large correlation windows for matching human
performance.

Conclusion

The experiments reported in this article demonstrate
structure-dependent effects of cyclopean masking
stimuli on the perception of disparity-defined form.
Through comparison with two different modeling

approaches, these effects are shown to be consistent with
differing processing limitations. Although the effects
of antiphase masks are consistent with processing
limitations at the level of measurement noise, random
disparity masks appear to impose a complexity-based
limitation on performance, related to the description of
the relative disparity content of the stimulus. Further
use of these different mask types should prove useful in
determining the mechanisms underlying these different
aspects of cyclopean form perception.

Keywords: 3D shape, cyclopean vision, disparity
measurement, relative disparity
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