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A B S T R A C T   

Purpose: This study aimed to propose a new deep learning (DL) approach to automatically predict 
the retinal nerve fiber layer thickness (RNFLT) around optic disc regions in fundus photography 
trained by optical coherence tomography (OCT) and diagnose glaucoma based on the predicted 
comprehensive information about RNFLT. 
Methods: A total of 1403 pairs of fundus photographs and OCT RNFLT scans from 1403 eyes of 
1196 participants were included. A residual deep neural network was trained to predict the 
RNFLT for each local image in a fundus photograph, and then a RNFLT report was generated 
based on the local images. Two indicators were designed based on the generated report. The 
support vector machines (SVM) algorithm was used to diagnose glaucoma based on the two 
indicators. 
Results: A strong correlation was found between the predicted and actual RNFLT values on local 
images. On three testing datasets, we found the Pearson r to be 0.893, 0.850, and 0.831, 
respectively, and the mean absolute error of the prediction to be 14.345, 17.780, and 19.250 μm, 
respectively. The area under the receiver operating characteristic curves for discriminating 
glaucomatous from healthy eyes was 0.860 (95 % confidence interval, 0.799–0.921). 
Conclusions: We established a novel local image-based DL approach to provide comprehensive 
quantitative information on RNFLT in fundus photographs, which was used to diagnose glau-
coma. In addition, training a deep neural network based on local images to predict objective 
detail information in fundus photographs provided a new paradigm for the diagnosis of 
ophthalmic diseases.   
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1. Introduction 

Glaucoma is the leading cause of irreversible blindness in the world [1], and the number of patients with glaucoma is estimated to 
reach 110 million by 2040 [2]. Glaucoma causes structural changes to the optic disc (OD) and retinal nerve fiber layer (RNFL), 
resulting in corresponding defects in visual function [3]. Glaucoma progression is irreversible, but early diagnosis and treatment can 
usually delay glaucomatous visual impairment [4]. Assessing structural changes to OD and RNFL is essential for the early diagnosis of 
glaucoma. 

Fundus photography and optical coherence tomography (OCT) are the primary examinations to assess structural changes to OD and 
RNFL. Fundus photography has the advantages of low cost and easy operation for diagnosing glaucoma. However, a high degree of 
subjectivity exists in the evaluation of fundus photographs by ophthalmologists. Subjective evaluation of fundus photographs suffers 
from low reproducibility, even when performed by senior ophthalmologists [5–7]. In addition, ophthalmologists frequently under-
estimate or overestimate glaucoma likelihood when evaluating fundus photographs [8]. OCT can accurately measure the RNFL 
thickness (RNFLT) around the OD, which is a sensitive indicator for evaluating the structural damage caused by glaucoma [9]. 
However, the cost of OCT is much higher than fundus photography, and hence OCT equipment is generally unavailable in primary 
hospitals and physical examination centers in developing countries. 

The development of artificial intelligence (AI) provides a powerful tool for establishing the correlation between fundus photo-
graphs and objective physiological indicators. The deep learning (DL) methods can accurately predict human physiological indicators 
such as age, blood pressure, body mass index, and hemoglobin concentration based on fundus photographs [10–13]. In 2019, Medeiros 
et al. trained a DL convolutional neural network to assess the fundus photographs and predict the mean RNFLT in OCT [14]. Although 
this study made great progress in predicting objective indicators in OCT based on fundus photographs, using only the mean RNFLT is 
far from revealing the rich details in OCT and thus does not provide the necessary information for diagnosing glaucoma. 

This study aimed to design a DL model based on local photographs (DL-LP) to predict the OCT-measured RNFLT curve around the 
OD. Furthermore, based on this predicted RNFLT curve, a report sheet similar to the OCT examination was automatically generated to 
comprehensively evaluate the status of RNFL (Fig. 1). Finally, the scale and morphological information of this curve were extracted as 
features, and support vector machines (SVM) algorithm [15] was used to make an automatic diagnosis of glaucoma. 

2. Methods 

A total of 1403 pairs of fundus photographs and OCT data were included in this study between 2016 and 2020. The study was 
conducted according to the tenets of the Declaration of Helsinki and approved by the institutional review board of Beijing Tongren 
Hospital (identifier, 1212017BJTR519). The medical ethics committee exempted the need for the informed consent of patients as this 

Fig. 1. An example of an automatically generated RNFL examination report from fundus photographs. 
RNFL retinal nerve fiber layer, I inferior, S superior, N nasal, T temporal. 

Y. Xu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e33813

3

study was a retrospective review and analysis of fully anonymized color retinal fundus photographs and OCT reports. 

2.1. Participants 

The 1403 pairs of fundus photographs and OCT data were divided into (1) a training dataset comprising 220 pairs of fundus 
photographs (CR-DGi; Canon) with 1572 × 1308 pixels and OCT (SD-OCT; Heidelberg Engineering) data collected from Beijing 
Tongren Hospital; (2) an internal testing dataset comprising 55 pairs of fundus photographs (CR-DGi; Canon) with 1572 × 1308 pixels 
and OCT (SD-OCT; Heidelberg Engineering) data collected from Beijing Tongren Hospital; (3) an internal testing dataset comprising 
264 pairs of fundus photographs (CR-DGi; Canon) with 1716 × 1404, 1924 × 1556, and 2196 × 1740 pixels and OCT (SD-OCT; 
Heidelberg Engineering) data collected from Beijing Tongren Hospital; and (4) an external testing dataset comprising 864 pairs of 
fundus photographs (VK-2; Kowa) with 2032 × 1934 pixels and OCT (DRI-OCT; Topcon) data collected from Handan First Hospital. 
The details of the training dataset and three testing datasets are presented in Table 1. The purpose of including the external testing 
dataset is to verify the generalization ability of proposed algorithm. 

The inclusion criteria were as follows: (1) age 18 years or older; (2) complete records of fundus photographs and OCT and medical 
history; and (3) for participants with the same name or ID number, only one of them was included. The exclusion criteria were as 
follows: (1) fundus photographs containing severe resolution reductions or significant artifacts; (2) illumination of fundus photographs 
too dark or too light; (3) OCT images having poor quality, motion artifacts, and segmentation errors; and (4) participants with a history 
of other ocular or systemic diseases affecting the optic nerve other than glaucoma. 

Two senior glaucoma specialists (M.H. and H.W.) used the fundus photographs and OCT to detect glaucomatous optic neuropathy 
(GON). These two glaucoma specialists independently diagnosed each eye as non-GON, probable GON, and definite GON according to 
the criteria described in a previous study [16]. When an eye was judged as probable GON by at least one glaucoma specialist, or the two 
glaucoma specialists could not reach an agreement, that eye was judged as probable GON. The training dataset comprised 31 fundus 
photographs of GON, 35 of probable GON, and 154 of non-GON. The testing dataset 1 comprised 7 fundus photographs of GON, 9 of 
probable GON, and 34 of non-GON. The testing dataset 2 consisted of 41 fundus photographs of GON, 57 of probable GON, and 166 of 
non-GON. Considering that the data in the testing dataset 3 were collected from the population examined physically, the two glaucoma 
specialists did not perform glaucoma diagnosis on these fundus photographs. 

2.2. Development of the DL system 

We designed a DL system to predict the local RNFLT in color fundus photographs. The goal was to use a deep neural network (DNN) 
to predict the RNFLT at the centers of a series of square images (patches) surrounding the OD in color fundus photographs. In order to 
obtain a DNN with accurate predictions, we need to construct a training dataset to train the DNN (modulate the parameters in the 
DNN). After completion of the training of this DNN, we used it to predict the local RNFLT of the new fundus photographs in the testing 
dataset. The workflow of this DL system is shown in Fig. 2. The input X of each sample was a patch in the color fundus photograph, and 
the output Y was the RNFLT at the center of the patch. Registering the color fundus photograph and OCT to construct the input–output 
pair (X, Y) is needed because the input came from the color fundus photograph and the output from the OCT. 

The original RNFLT data were obtained by circular scanning of the OD region using OCT. This circular scanning was used to 
generate a customized one-page report to show the scanned location and RNFLT. In the OCT report in Fig. 2, the upper left diagram is a 
low-resolution fundus photograph. In this fundus photograph, the green circle indicates the path of the circular scanning (with a 
diameter of 3.45 mm). In the lower right diagram of this OCT report, the black curve represents the RNFLT within the circumference of 
the scan path. We designed a MATLAB program to extract the value of this black curve within 360◦ and stored it as an RNFLT vector. 

Performing image registration of the color fundus photograph and the low-resolution fundus photograph in the OCT report is 
necessary to obtain the corresponding position of the RNFLT curve in the OCT report in the color fundus photograph. We used 
Photoshop software for manual registration: the blood vessels in the two fundus photographs were completely overlapped by scaling, 
translating, and rotating the low-resolution fundus photographs. After image registration, the corresponding circumference of the OCT 
scanning path in the color fundus photograph was recorded. This registration operation was implemented to all the images in the 
training and testing datasets. In the color fundus photograph, 90 points were selected at equal intervals on this circle. With each point 
as the center and 60 pixels as the side length, 90 patches in the color fundus photograph were intercepted. Our goal was to predict the 
RNFLT at the center of the patch based on the red–green–blue (RGB) intensity values within each patch. 

We established a training dataset consisting of 19,800 (220 × 90) patch-level training samples based on the results of image 

Table 1 
Baseline characteristics of participants.  

Datasets Pairs of images(N) Eyes (N) RNFLT (um) 
Mean ± SD 

Individuals (N) Age(y) 
Mean ± SD 

Female (N)Total (%) Source 
Datasets 

Training 220 220 91.2 ± 17.8 131 49.4 ± 18.1 77(58.8) Beijing Tongren Hospital 
Testing 1 55 55 90.6 ± 18.2 33 48.5 ± 17.6 19 (57.6) Beijing Tongren Hospital 
Testing 2 264 264 91.7 ± 17.2 168 47.1 ± 17.4 87 (51.8) Beijing Tongren Hospital 
Testing 3 864 864 104.45 ± 11.72 864 41.7 ± 12.3 298 (34.5) Handan First Hospital 

RNFLT, retinal nerve fiber layer thickness; SD, standard deviation. 
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registration. The input of each sample was a square RGB image of size 60 × 60 × 3 (the value of each pixel represents the intensity of 
the image in the corresponding channel), and the output was a real value (RNFLT at the center of the square). Before training the DNN 
on the training dataset, the pixel values were scaled to range from 0 to 1. 

We used a standard residual deep neural network (ResNet-50) [17] as the backbone architecture for RNFLT prediction. The pa-
rameters of ResNet-50 were trained on the ImageNet dataset [18]. However, further training was performed on the training dataset 
because the regression task of the present study differed largely from that of the ImageNet. We made two adjustments to the structure 
of ResNet-50. First, considering that the standard ResNet-50 is used for classification problems while RNFLT prediction is a regression 
problem, we replaced the cross-entropy loss with square loss. Second, we added a global pooling layer before the fully connected layer 
of ResNet-50 to reduce the number of parameters of the model. Before training the ResNet-50, we performed normalization pre-
processing on the pixel intensity values of fundus images. The pixel intensity values in each fundus image were linearly transformed, 
and the range of values was changed from [0, 255] to [− 1, 1]. The network was trained with a stochastic gradient descent method with 
a learning rate of 10− 4 and minibatches of size 64. 

Following the method described in a previous study [19], we calculated the mean RNFLT and inferior, superior, nasal, temporal 
(ISNT) score of the RNFLT curve, which reflected the scale and shape information of the RNFLT curve, respectively. Then, a 
two-dimensional classification line was established by SVM based on the two aforementioned indicators. The mean value of the RNFLT 
of 90 patches in a fundus photograph was calculated as the mean RNFLT. The ISNT score of the RNFLT curve was calculated as follows. 
First, the original RNFLT vector (with 90 dimensions) was normalized by subtracting each component from the average of this vector 
and dividing by the standard deviation of this vector. Then, the inner product of this normalized vector and a baseline vector was 
calculated as the ISNT score. The baseline vector was the average RNFLT vector of 50 typical normal eyes. The fundus photographs of 
these typical normal eyes were collected in the physical examination center of Tongren Hospital and were not included in the training 
and testing datasets. 

2.3. Statistical analyses 

The performance of the DL-LP was evaluated by comparing the predictions based on color fundus photographs with the actual OCT 
local RNFLT in testing datasets. We calculated the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of the 
predictions as well as the coefficient of determination and the Pearson correlation coefficient. In testing dataset 2, the receiver- 
operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to assess and compare the ability of the SVM 
algorithms based on predicted RNFLT in discriminating eyes with glaucoma from healthy eyes. Two SVMs were compared based only 
on the predicted average RNFLT and on both predicted average RNFLT and ISNT score. Besides the ROC curve and AUC, the sensitivity 
and specificity of the operating point with a threshold of 0.5 in ROC curves were also measured with two-sided 95 % confidence 
interval (CI). These CIs were calculated as Clopper–Pearson intervals, which were exact intervals based on cumulative probabilities. All 
statistical tests were performed using the Statistical Product and Service Solutions (SPSS) software. 

Fig. 2. Workflow of the deep learning model based on the local photographs. RNFLT retinal nerve fiber layer thickness.  
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3. Results 

A strong correlation was observed between patch-level DL predictions of RNFLT from fundus photographs and the actual OCT 
measurements in the testing datasets (Fig. 3a–c). Table 2 shows that, in patch-level, the MAE between the DL predictions of RNFLT 
from fundus photographs and the actual OCT measurements were all less than 20 μm in the testing datasets 1, 2, and 3. Especially, the 
MAE was less than 15 μm in the testing dataset 1. In patch-level, the MAPE between the DL predictions of RNFLT from fundus pho-
tographs and the actual OCT measurements were all less than 0.28. The R2 was greater than 0.47 (range, 0.477–0.699; P < 0.001), and 
the Pearson r was greater than 0.83 (range, 0.831–0.893; P < 0.001). 

In image-level (the mean value of all the 90 patch-level RNFLT values), in testing datasets 1, 2, and 3, the MAE between the DL 
predictions of RNFLT from fundus photographs and the actual OCT measurements were all less than 11 μm (range, 8.83–10.73 μm). In 
image-level, the MAPE between the DL predictions of RNFLT from fundus photographs and the actual OCT measurements were all less 
than 0.13. A strong correlation was found between the predicted and the observed image-level RNFLT values. The R2 was greater than 
0.42 (range, 0.427–0.619; P < 0.001), and the Pearson r was greater than 0.46 (range, 0.468–0.824; P < 0.001). 

Fig. 4 shows the prediction of RNFLT by DL-LP in one eye with GON and one eye with non-GON. Fig. 4b shows that the range of 
RNFLT predicted by DL-LP was roughly equivalent to the true value, and the MAE of 90 patches was 11.06 μm for the fundus 
photograph of the eye with GON in Fig. 4a. The maximum absolute error was 32.15 μm, and more than 70 % of patches had an absolute 
error of less than 15 μm. Fig. 4d shows that the change trend of the RNFLT curve predicted by DL-LP was highly consistent with the real 
curve, and the MAE of 90 patches was 11.46 μm for the fundus photograph of the eye with non-GON in Fig. 4c. 

Fig. 5(a–h) shows several local images in the two fundus photographs in Fig. 4, and the RNFLT predicted by DL-LP on these local 
images. Figs. 4 and 5 show that DL-LP had smaller errors in predicting RNFLT on the nasal and temporal sides and larger errors in 
predicting RNFLT on the inferior and superior sides. As shown in Fig. 4d, the areas with the largest prediction errors were near the 
peaks of the real RNFLT curve. The absolute error was the largest, with a maximum value of 43 μm, at one of the peaks of the real 
RNFLT curve. One possible reason for this phenomenon is that the proportion of training samples at peaks is small. 

We established two indicators, mean RNFLT and ISNT score [19], for each fundus photograph based on the 90 patch-level RNFLTs 
predicted by DL-LP to characterize the scale and morphology of RNFLT curves. First, the mean RNFLT and ISNT score were calculated 
using the predicated RNFLT from the fundus images. Then SVM was used to diagnose glaucoma based on the two indictors above. The 
Mean ± standard deviation of predicted ISNT scores of eyes in the training dataset and testing datasets 1, 2 and 3 were 28.77 ± 7.86, 
29.82 ± 6.39, 29.27 ± 7.51, and 30.8 ± 4.51, respectively. 

In testing dataset 2, we evaluated the accuracy of applying SVM to discriminate GON from non-GON based on the aforementioned 
two indicators. The AUC was found to be 0.860 (95 % CI, 0.799–0.921) for the SVM based on both mean RNFLT and ISNT score, and 
0.809 (95 % CI, 0.736–0.882) for the SVM based only on mean RNFLT (Fig. 6). When the threshold was set as 0.5, the sensitivity and 
specificity reached 0.7805 (95 % CI, 0.620–0.889) and 0.8494 (95 % CI, 0.784–0.898), respectively, for the SVM based on both mean 
RNFLT and ISNT score. For the SVM based only on mean RNFLT, the sensitivity and specificity reached 0.732 (95 % CI, 0.568–0.853) 
and 0.783 (95 % CI, 0.711–0.842), respectively. The aforementioned results indicated that predicting the local RNFLT in fundus 
photographs to obtain the morphological indicator ISNT score of the RNFLT curve played an essential role in improving the accuracy of 
glaucoma diagnosis. 

4. Discussion 

Fundus photographs contain a wealth of human health information, and AI has been used to establish a correlation between fundus 
photographs and human physiological indicators [10–13]. The RNFLT curve can reflect a variety of eye diseases [20]. Ophthalmol-
ogists usually cannot obtain comprehensive information on RNFL based on fundus photographs. OCT is required for this, which is 
expensive compared with fundus photographs. Therefore, using AI to establish the correlation between fundus photographs and the 

Fig. 3. Scatter diagram illustrating the relationship between patch-level predictions obtained by the deep learning algorithm evaluating fundus 
photographs and actual retinal nerve fiber layer thickness measurements from OCT. Data are from the testing datasets 1, 2, and 3. 
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RNFLT curve has important clinical practicality. AI has been applied to predict the mean RNFLT and diagnose glaucoma based on 
fundus photographs [14]. However, Mean RNFLT only shows the average level of RNFLT without showing details of the RNFLT curve. 
The method proposed in this study can predict RNFLTs in 90 local areas around the optic disc. Therefore, this method provided richer 
and more comprehensive RNFLT information, which is essential for glaucoma diagnosis. The experimental results showed that 
compared to the diagnosis of glaucoma only based on the predicted mean RNFLT, the predicted mean RNFLT and ISNT score can obtain 
higher prediction accuracy (Table 3). This study also provided an economical and powerful auxiliary tool for the diagnosis of other 
RNFLT-related diseases. 

In the field of automatic diagnosis of glaucoma based on fundus photographs, the DL methods have achieved satisfactory sensitivity 
and specificity. However, most DL methods are black-box methods without interpretability, which limits the practical application of 

Table 2 
Performance evaluation of DL-LP for predicting RNFLT.   

Patch-level Image-level 

MAE/μm MAPE R2 r MAE/μm MAPE R2 r 

Testing dataset 1 14.345 0.244 0.699 0.893 9.142 0.110 0.427 0.824 
Testing dataset 2 17.780 0.234 0.477 0.850 10.730 0.122 0.457 0.766 
Testing dataset 3 19.250 0.278 0.491 0.831 8.830 0.084 0.619 0.468 

DL-LP, deep learning based on local photographs; RNFLT, retinal nerve fiber layer thickness; MAE, mean absolute errors; MAPE, mean absolute 
percentage error. 

Fig. 4. Two examples of fundus photographs and the predicted and actual patch-level RNFLT curve. (a) An example of a fundus photograph with 
GON; (b) predicted and actual patch-level RNFLT curves of the fundus photograph in (a); (c) example of a fundus photograph with non-GON; and (d) 
predicted and actual patch-level RNFLT curve of the fundus photograph in (c). RNFLT retinal nerve fiber layer thickness, GON glaucomatous 
optic neuropathy. 
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such methods in clinical practice [21]. At present, the quantitative indicators for glaucoma diagnosis obtained using DL methods are 
still very limited, including VCDR, mean CDR and ISNT score of rim [16,22]. In this study, we predicted the RNFLT curve around the 
OD based on fundus photographs, and then calculated the mean RNFLT and INST score of the RNFLT curve, expanding the quantitative 

Fig. 5. Examples of local images in fundus photographs. (a–d) Local images from a fundus photograph of an eye with GON; (e–h) Local images from 
a fundus photograph of an eye with non-GON. GON glaucomatous optic neuropathy; RNFLT, retinal nerve fiber layer thickness. 

Fig. 6. Receiver-operating characteristic curve in diagnosing glaucoma in testing dataset 2 using SVM based on predicted RNFLT curve by DL-LP. 
AUC area under the ROC curve, SVM support vector machines, RNFLT retinal nerve fiber layer thickness, DL-LP deep learning based on local 
photographs, ISNT inferior, superior, nasal, temporal. 
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indicators for diagnosing glaucoma. In the future, we will design more interpretable indicators based on the predicted RNFLT curve 
and combine these indicators with rim-related indicators (VCDR, etc.) to further improve the accuracy of the algorithm while 
maintaining the interpretability. 

In addition, this study established a new paradigm for using AI to mine local information in medical images. For the training of DL 
models, thousands or even tens of thousands of well-labeled training datasets are often required to obtain accurate predictions. In this 
study, we only used 220 pairs of fundus photographs and OCT data to build the DL-LP model and obtained accurate prediction results 
for RNFLT. This was due to our localization technology, where each pair of image-level data was converted into 90 pairs of patch-level 
local data. This DL paradigm greatly reduced the cost of constructing training data and enabled the DL model to learn richer detailed 
information in fundus photographs. This paradigm can be used to explore the correlation between other pairs of medical data, such as 
optical image–CT pair and optical image–MRI pair. 

Despite the promising results, our study has several limitations. First, every local fundus photograph was selected as a square with 
resolution of 60 × 60 given the limitations in the GPU’s computational power. As a result, the texture details of RNFL at large scales 
were partially lost in the local fundus images, which affected the accuracy of the DNN in predicting RNFLT. In addition,the proposed 
DL-LP was only evaluated in the medical records collected in two hospitals. It is of great significance to evaluate our model in multiple 
medical centers, especially in primary eye care providers. Furthermore, only Chinese patients were included. It is need to test the 
algorithm using data from other ethnicities to investigate its performance. 
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