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Abstract

While interacting with objects during every-day activities, e.g. when sliding a glass on a

counter top, people obtain constant feedback whether they are acting in accordance with

physical laws. However, classical research on intuitive physics has revealed that people’s

judgements systematically deviate from predictions of Newtonian physics. Recent

research has explained at least some of these deviations not as consequence of miscon-

ceptions about physics but instead as the consequence of the probabilistic interaction

between inevitable perceptual uncertainties and prior beliefs. How intuitive physical rea-

soning relates to visuomotor actions is much less known. Here, we present an experiment

in which participants had to slide pucks under the influence of naturalistic friction in a simu-

lated virtual environment. The puck was controlled by the duration of a button press, which

needed to be scaled linearly with the puck’s mass and with the square-root of initial dis-

tance to reach a target. Over four phases of the experiment, uncertainties were manipu-

lated by altering the availability of sensory feedback and providing different degrees of

knowledge about the physical properties of pucks. A hierarchical Bayesian model of the

visuomotor interaction task incorporating perceptual uncertainty and press-time variability

found substantial evidence that subjects adjusted their button-presses so that the sliding

was in accordance with Newtonian physics. After observing collisions between pucks,

which were analyzed with a hierarchical Bayesian model of the perceptual observation

task, subjects transferred the relative masses inferred perceptually to adjust subsequent

sliding actions. Crucial in the modeling was the inclusion of a cost function, which quantita-

tively captures participants’ implicit sensitivity to errors due to their motor variability. Taken

together, in the present experiment we find evidence that our participants transferred their

intuitive physical reasoning to a subsequent visuomotor control task consistent with New-

tonian physics and weighed potential outcomes with a cost functions based on their knowl-

edge about their own variability.
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Author Summary

During our daily lives we interact with objects around us governed by Newtonian physics.

While people are known to show multiple systematic errors when reasoning about Newto-

nian physics, recent research has provided evidence that some of these failures can be

attributed to perceptual uncertainties and partial knowledge about object properties.

Here, we carried out an experiment to investigate whether people transfer their intuitive

physical reasoning to how they interact with objects. Using a simulated virtual environ-

ment in which participants had to slide different pucks into a target region by the length

of a button press, we found evidence that they could do so in accordance with the underly-

ing physical laws. Moreover, our participants watched movies of colliding pucks and sub-

sequently transferred their beliefs about the relative masses of the observed pucks to the

sliding task. Remarkably, this transfer was consistent with Newtonian physics and could

well be explained by a computational model that takes participants’ perceptual uncer-

tainty, action variability, and preferences into account.

Introduction

Whether sliding a glass containing a beverage on a counter top in your kitchen or shooting a

stone on a sheet of ice in curling, acting successfully in the world needs to take physical rela-

tionships into account. While humans intuitively sense an understanding of the lawful rela-

tionships governing our surroundings, research has disputed that this is indeed the case [1, 2].

Instead, human judgements and predictions about the dynamics of objects deviate systemati-

cally from the laws of Newtonian mechanics. Past research has interpreted these misjudgments

as evidence that human judgements violate the laws of physics and that they instead use con-

text specific rules of thumb, so called heuristics [2–4]. E.g., when judging relative masses of

objects such as billiard balls based on observed collisions, people seem to use different features

of motion in different contexts and end up with erroneous predictions [2].

But recent research has provided a different explanation of human misjudgments on the

basis of the fact that inferences in general involve sensory uncertainties and ambiguities, both

in perceptual judgements [5, 6] as well as in reasoning and decision making [7, 8]. Therefore,

physical reasoning needs to combine uncertain sensory evidence with prior beliefs about phys-

ical relationships to reach predictions or judgements [9–13]. By probabilistically combining

prior beliefs and uncertain observations, a posterior probability about the unobserved physical

quantities is obtained. Judgements and predictions are then modeled as based on these proba-

bilistic inferences. Thus, deviations from the predictions of Newtonian physics in this frame-

work are attributed to perceptual and model uncertainties.

This framework of explaining reasoning about physical systems on the basis of Newtonian

mechanics and perceptual uncertainties has been referred to as the noisy Newton framework

(see e.g. [14] for a review). It has been quite successful at explaining a range of discrepancies

between predictions of Newtonian physics and human predictions for various perceptual

inference tasks, including subjects’ biases in judgements of mass ratios when observing simu-

lated collisions of objects, if perceptual uncertainties are taken into account [9, 15]. Addition-

ally, the noisy Newton framework can also explain why human judgements depend on

experimental paradigms, because tasks differ in the availability of knowledge about objects’

properties [16]. As an example, this suggests an explanation for the fact that judgements about

physical situations based on a static image representing a situation at a single timepoint have

usually been reported to deviate more from physical ground truth compared to richly
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animated stimuli [17], which additionally allow to estimate objects’ velocities. Nevertheless,

some persistent failures of intuitive physical reasoning have been suggested to be caused by

distinct systems of reasoning compared to the more calibrated physical reasoning underlying

visuomotor tasks [16].

While physical reasoning has been studied predominantly using tasks in which subjects

needed to judge physical quantities or predict how objects continue to move, much less is

known about how intuitive physical reasoning guides actions. Commonly, experimental para-

digms have asked subjects to judge physical properties in forced choice paradigms such as rela-

tive masses in two-body collisions [3, 9, 11, 12], predict the future trajectory of an object when

no action is taken based on an image of a situation at a single timepoint, such as a pendulum

[16], a falling object [18], or whether an arrangement of blocks is stable [12]. Other experi-

ments have asked subjects to predict a trajectory of objects [19] or their landing position [10]

after seeing an image sequence, but again without subjects interacting with the objects in the

scene. Recent studies have also investigated more complex inference problems in which sub-

jects needed to learn multiple physical quantities by observing objects’ dynamics [13] or quan-

tified how much entropy reduction for forced choice questions about physical properties of

objects was achieved by interactions with objects in a scene [20]. By contrast, the literature on

visuomotor decisions and control [21–24] has seldom investigated the relationship between

visuomotor decisions, actions, and control and physical reasoning. Notable exceptions are

studies which have investigated how humans use internal models of gravity in the interception

of moving targets [25] and how exposure to 0-gravity environments [26] changes this internal

model. Nevertheless, these studies did not investigate the inference and reasoning of unobserv-

able physical quantities. Other studies have investigated how perceptual judgements and visuo-

motor control in picking up and holding objects in the size-weight and material-weight

illusions can be dissociated [27, 28]. Nevertheless, these studies did not investigate the relation-

ship of intuitive physical reasoning and visuomotor actions.

Here we investigate how human subjects guide their actions based on their beliefs about

physical quantities given prior assumptions and perceptual observations. Thus, we combine

work on intuitive physics [9, 11, 12] and visuomotor control [21, 23, 25, 27]. First, do humans

use the functional relationships between physical quantities as prescribed by Newtonian

mechanics in new task situations? Specifically, when sliding an object on a surface the velocity

with which the object needs to be released needs to scale linearly with the object’s mass but

with the square-root of the distance the object needs to travel. Second, when interacting with

simulated physical objects, do humans interpret differences in objects’ behavior in accordance

with physical laws? Specifically, when two objects slide according to two different non-linear

relationships, subjects may attribute these differences to the lawful influences of unobserved

physical quantities such as mass. Third, after having observed collisions between objects do

humans adjust their actions to be consistent with the inferred relative masses of those objects?

Specifically, while it is known that subjects can judge mass ratios of two objects when observ-

ing their collisions, it is unclear whether they subsequently use this knowledge when sliding

those objects. To address these questions, subjects were asked to shoot objects gliding on a sur-

face under the influence of friction to hit a target’s bullseye in a simulated virtual environment.

The simulated puck was accelerated by subjects’ button presses such that the duration of a but-

ton press was proportional to the puck’s release velocity. A succession of four phases investi-

gated what prior assumptions subjects had about the relationships between their actions and

physical quantities, whether they could learn to adjust their actions to different objects when

visual feedback about their actions was available, whether they would interpret the differences

in objects’ behavior in accordance with physical laws, and whether they could transfer mass

ratios inferred from observing collisions to adjust their actions accordingly.
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Analysis of the data shows that subjects adjusted their press-times depending on the dis-

tance the pucks had to travel. Furthermore, subjects adjusted the button press-times to get

closer to the target within a few trials when visual feedback about the puck’s motion was avail-

able. Because perceptual uncertainties and motor variability can vary substantially across sub-

jects and to take Weber-Fechner scaling into account, we subsequently analyzed the data with

a hierarchical Bayesian interaction model under the assumption that subjects used a Newto-

nian physics based model. We compared this model to the prediction of a linear heuristics

model. Importantly, because subjects needed to adjust their button press-times, the model

needs to account for perceptual judgements and the selection of appropriate actions. We

include a comparison of three cost functions to investigate subjects’ selection of press-times.

Based on this model of the sliding task, we find evidence that subjects used the functional rela-

tionship between mass and distance of pucks as prescribed by Newtonian physics and readily

interpreted differences between two pucks’ dynamics as stemming from their unobserved

mass. Moreover, biases in subjects’ press-times can be explained as stemming from costs for

not hitting the target, which grow quadratically with the distance of the puck to the target’s

bullseye. After observing 24 collisions between an unknown puck and two pucks with which

subjects had previously interacted, we found evidence that participants transferred the inferred

relative masses to subsequent sliding actions. The mass beliefs from observing the collisions

were inferred by a hierarchical Bayesian observation model. Thus, intuitive physical reasoning

transfers from perceptual judgements to control tasks and deviations from the predictions of

Newtonian physics are not only attributable to perceptual and model uncertainties but also to

subjects’ implicit costs for behavioral errors.

Materials and methods

Participants

Twenty subjects took part in the experiment. All participants were undergraduate or graduate

students recruited at the Technical University of Darmstadt, who received course credit for

participation. All experimental procedures were carried out in accordance with the guidelines

of the German Psychological Society and approved by the ethics committee of the Technical

University of Darmstadt. Informed consent was obtained from all participants prior to carry-

ing out the experiment. All subjects had normal or corrected to normal vision and were seated

so that their eyes were approximately 40 cm away from the display and the monitor subtended

66 degrees of visual angle horizontally and 41 degrees vertically. In the vertical direction the

monitor had a resolution of 1080 pixels, which corresponded to a distance of approximately

11.5m in the simulation. Four participants have been excluded from the analysis (three due

to incorrect task execution and one due to incomplete data; f = 9, m = 11, age = [18, 27],

median = 22.5, mean = 22.25).

Experimental design and data

Participants were instructed to shoot a puck in a virtual environment into the bullseye of a tar-

get, similar to an athlete in curling. The shot was controlled by the duration of pressing a but-

ton on a keyboard. Participants were told that they were able to adjust the force, which initially

was going to accelerate the puck and thus the initial velocity of the puck, by the duration of

their press. However, they were not explicitly told about the linear relationship between the

press time and the initial velocity. Additionally, participants were told that realistic friction

was going to slow down the puck while sliding on the simulated surface. The general objective

of the experimental design was to investigate whether subjects adjusted their shooting of the

pucks in a way that was in line with the physical laws governing motion under friction.
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Specifically, the magnitude of the initial impulse exerted on the puck determines how far the

puck slides on the surface. Thus, subjects needed to adjust the duration of a button press

according to the distance between the randomly chosen initial position of the puck and the tar-

get on each trial. The different experimental phases allowed investigating subjects’ prior beliefs

about the puck’s dynamics, their adjustments of button presses when these beliefs were

updated given visual feedback of the puck’s motion, and the potential transfer of knowledge

about relevant object properties to the control of the puck from perceiving object collisions.

Therefore we designed a task with two conditions and four consecutive experimental phases,

which differed in the availability of previous knowledge and feedback.

Laws of motion governing the puck’s motion. At the beginning of each trial, subjects

saw the fixed target and a puck resting at a distance chosen uniformly at random between one

and five meters from the target’s bullseye. To propel the puck toward the target, subjects

needed to press a button. To model the relationship between the button press and the puck’s

motion, we reasoned as follows. Human subjects have been shown to be able to reason accu-

rately about the mass ratio of two objects when observing elastic collisions between them [9].

In elastic collisions, according to Newtonian laws, the impulse transferred by the collision is

proportional to the interaction duration with a constant force. In other words, the duration of

the interaction with a constant force leads to a linearly scaled impulse. Given a constant mass

m of a puck and assuming a constant surface friction coefficient μ, Newtonian physics allows

deriving the button press-time Tpress required to propel the puck to the target at a distance Δx:

Tpress ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mgm2

F2
Dx

r

/ m �
ffiffiffiffiffiffi
Dx
p

ð1Þ

with gravitational acceleration g and a constant force F. Here, the constant force F is being

applied by the interaction, i.e. the button press of duration Tpress, which is physically equivalent

to an elastic collision with an object. Note that this formulation of the interaction has the addi-

tionally intuitive consequence that the release velocity of the puck scales linearly with the dura-

tion of the button press (see S1 Appendix “Puck Movement”). The second expression clarifies

that the press-time scales linearly with the mass of the puck, while it scales with the square-

root of the distance to the target. Obviously, this relationship assumes perfect knowledge of all

involved quantities. The movement of the puck was implemented by simulating the equivalent

difference equations for each frame given the friction and the velocity of the preceding frame

(detailed derivations are provided in the S1 Appendix, “Puck Movement”).

Phase 1: Prior beliefs. In the first phase, we wanted to investigate, which functional rela-

tionship subjects would use a priori to select the duration of button presses depending on the

perceived distance between the puck and the target. A black puck with unknown mass m was

placed at a distance to the target drawn uniformly at random. Participants received no further

information about the puck or the environment. Participants were instructed to press the but-

ton in a way so as to bring the puck into the target area, but after pressing the button for a

duration tpre and releasing it the screen turned black to mask the resulting movement of the

puck. This screen lasted for at least half a second until the participant started the next trial by

button press. All participants carried out fifty trials. Thus, the collected data allowed relating

different initial puck distances to the press-times subjects selected based on their prior beliefs.

Phase 2: Visual feedback. The second phase was designed to investigate how participants

adjusted their button press-times in relation to the simulated masses of pucks and their initial

distances to the target when visual feedback about the pucks’ motion was available. To this

end, participants carried out the same puck-shooting task but with two different pucks, as indi-

cated by distinct surface textures (yellow diamond versus five red dots, see Fig 1b, Feedback).
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The two pucks were alternating every four trials with a total number of two-hundred trials.

The two different pucks were simulated with having differing masses, resulting in different

gliding dynamics. In this condition, participants received visual feedback about their actions

as the pucks were shown gliding on the surface from the initial position to the final position

depending on the exerted impulse. Thus, because the distances traveled by the two pucks for

different initial positions as a function of the button press-times tpre could be observed, partici-

pants could potentially use this feedback to adjust their press-times on subsequent trials. Note

that the two pucks were only distinguished by a color cue and no cue about mass was given

apart from the different dynamics. Half the participants were randomly assigned to the ‘light-

to-heavy’ condition, in which the two pucks had masses of 1.5 kg and 2.0 kg, and the other half

of the participants were assigned to the ‘heavy-to-light’ condition, in which the pucks had mas-

ses of 2.0 kg and 2.5 kg.

Fig 1. Task design. (A) Single trial illustration. Target area and puck are presented on a monitor from bird’s-eye perspective. Releasing the pressed button accelerates

the puck by applying a force, which is proportional to the press-time. In trials without feedback the screen turned black after button release, while in feedback trials

participants were able to see the puck moving according to simulated physics. (B) Four phases of the experiment. In the ‘prior’ phase, no feedback about puck motion

was available, whereas in the ‘feedback’ phase subjects obtained visual feedback about the pucks’ motion. Two pucks with different colors and correspondingly

different masses were simulated. In the ‘no feedback’ phase subjects obtained a new puck as indicated by a new color and obtained no feedback. In the last phase,

subjects first watched 24 collisions between the new puck and the pucks they had interacted with in the ‘feedback’ phase before interacting again with the puck. Note

that the puck of the ‘no feedback’ and ‘collisions + no feedback’ phase are identical.

https://doi.org/10.1371/journal.pcbi.1007730.g001
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Phase 3: No feedback. In phase three, we wanted to investigate how having observed the

sliding of the pucks in phase two influenced participants’ press-times with an unknown puck.

Subjects were asked to shoot a new puck they had not seen before to the target without visual

feedback, as in the first experimental phase, for one-hundred trials (Fig 1B, No Feedback). The

texture of the puck consisted of five concentric rings. For participants in the ‘light-to-heavy’

condition, the new puck had a mass of 2.5 kg whereas for participants in the ‘heavy-to-light’

condition the new puck had a mass of 1.5 kg. However, different from phase one, in which

subjects had not obtained feedback about the pucks’ motion, by phase three participants had

already interacted with three pucks and obtained visual feedback about the motion of two

pucks. Importantly, participants had received feedback about the non-linear nature of gliding

under friction in phase two, albeit scaled differently for the two pucks. Thus, this experimental

phase allowed investigating, whether subjects use the functional mapping from puck distances

to press-times prescribed by Newtonian physics and what assumptions about the mass of an

unknown puck they used.

Phase 4: Collisions & no feedback. With the final experimental phase we wanted to

investigate, whether participants can use the relative mass ratios inferred from observing colli-

sions between two pucks to adjust their subsequent actions with one of those pucks. At the

beginning of phase four, participants watched a movie of twenty-four collisions between two

pucks. One was always the puck with unknown mass used in phase three (without feedback;

five rings) (see Fig 1B, Collisions No Feedback), while the second puck was one of the two

pucks presented in phase two (see Fig 1B, Feedback). Each collision thus showed one of the

two previously seen pucks from phase two selected at random colliding with the puck from

phase three with a total of twelve collision with each of the two known puck. By observing

these elastic collisions participants were expected to learn the mass ratios between pucks, as

shown in previous research [9, 15]. Note that the pucks were simulated without the influence

of friction in these collisions, ensuring that participants only obtained a cue about relative mas-

ses and not about the dynamics under friction for the puck from phase 3. After watching these

collisions, subjects were asked to shoot the puck from phase three again without obtaining

visual feedback, as in phases one and three, for one-hundred trials. Thus, subjects interacted

with the same puck as in phase three but had now seen the collisions of this puck with the two

pucks they had interacted with. This experimental phase therefore allowed investigating,

whether subjects used the learned mass ratios and transferred them to the control task to adjust

their press-times. Importantly, having learned the mass ratios between pucks needs to be

transferred to the press-times, which differ in a physically lawful way depending on the initial

distance of the pucks to the target. As the two pucks from phase two of the experiment were

only distinguished by color, such a transfer indicates that subjects had attributed the different

dynamics to their masses consistent with Newtonian physics. Thus, if subjects used an internal

model of physical relationships, they should be able to adjust their press-times for the new

puck without ever having seen it glide.

Results

Behavioral results

As subjects did not receive visual feedback about the consequences of their button presses in

the first phase of the experiment, the button press-times reflect the prior assumptions they

brought to the experiment. Indeed, subjects’ press-times tpre grew with the initial distance

between the puck and the target. The button press times for all phases of the experiment are

shown in Fig 2. The correlation between tpre and the initial distance was 0.482 (p< 0.001).

However, the functional relationship according to Newtonian physics prescribes a scaling of
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the press-time according to the square-root of the distance as specified in Eq 1. The correlation

between press-times tpre and the square-root of the initial distance was 0.478 (p< 0.001). We

expected the standard deviation of press-times to scale with the the mean of press-times in

accordance with the Weber-Fechner scaling. This was confirmed by subdividing the range

of distances into three intervals of the same size, i.e. [1, 2.33]m, (2.33, 3.66]m, and (3.66, 5]m
and computing the standard deviation of press-times within these three intervals resulting

2.97 × 10−1 s, 4.19 × 10−1 s, and 5.69 × 10−1 s.
In phase two, participants adjusted their press-times based on observing the gliding of the

pucks after button presses. Performance was evaluated by calculating the mean absolute dis-

tance of pucks to the target after sliding. The mean absolute error over the entire phase was

0.928m (0.0177m SEM), see Fig 3. Accordingly, the correlation between tpre and the initial dis-

tance was 0.644 (p< 0.001) and with the square-root of distance 0.646 (p< 0.001). The perfor-

mance improved between the first eight trials at the beginning of the phase (mean absolute

error 1.76m) and the last eight trials at the end of the phase (mean absolute error 0.89m). The

adjustment of pressing times was achieved on average after only a few trials, as revealed by a

change-point analysis [29], which showed that after six trials the average endpoint error of the

puck was stable (see S1 Appendix, “Change point detection”). Note that this includes four trials

with one puck of the same mass and two trials of the second puck with a different mass.

Phase three involved shooting a new puck, which subjects had previously not interacted

with, without visual feedback. Note that the puck was identical to the puck subjects later inter-

acted with in phase four after seeing the collisions. This phase therefore allowed testing

whether subjects used the non-linear scaling of the press-times depending on initial distance

of the puck after having observed the pucks’ motion in phase two. As expected, performance

Fig 2. Press-times as function of initial distance to target. Press-times for all participants by condition and experimental phase are shown with data points in black

and Newtonian relationship with perfect knowledge about the involved parameters in blue. The top row shows the data of subjects in the light-to-heavy condition and

the bottom row shows the data of subjects in the heavy-to-light condition. (A) Press-times of participants in the first phase (“prior”), (B) second phase (“feedback”) for

the yellow puck, (C) second phase (“feedback”) for the red puck, (D) third phase (“no feedback”), and (E) last phase (”collisions and no feedback”) after having seen 24

collisions.

https://doi.org/10.1371/journal.pcbi.1007730.g002
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was significantly lower with the new puck without obtaining visual feedback. Mean absolute

error was 2.87m (0.104m SEM), see Fig 3. The correlation between tpre and the initial distance

was 0.599 (p< 0.001) while the correlation between tpre and the square-root of the initial dis-

tance was 0.603 (p< 0.001). Given that subjects had already obtained feedback about two

pucks in phase two but did not obtain feedback in this phase, their press-time distribution

could potentially be the mixture of the two press-time distributions of the two previous pucks,

which were different in the conditions ‘light-to-heavy’ and ‘heavy-to-light’. We compared the

combined press-time distributions of phase two with the press-time distribution of phase three

for each condition with the Kolmogorov-Smirnov test. Press-times in phase three reflected the

behavior of both previous pucks combined for condition ‘heavy-to-light’ (Kolmogorov-Smir-

nov, D = 0.0538, p = 0.092, see S1 Appendix, “Kolmogorov tests—press-times in phase two &

phase three”) and approximately for condition ‘light-to-heavy’ (Kolmogorov-Smirnov,

D = 0.156, p< 0.001, see S1 Appendix, “Kolmogorov tests—press-times in phase two & phase

three”).

At the beginning of phase four subjects watched a movie showing 24 collisions between the

pucks from phase two, for which visual feedback of the gliding had been available, and the

unknown puck from phase three. Thus, this condition allowed testing whether observation of

the collisions was used to infer the mass ratios of pucks and to subsequently adjust the pressing

times for that puck from phase three. Performance was significantly higher than in phase three

Fig 3. Task performance and pucks’ traveled distance for three phases of experiment. (A) Participants’ performance by experimental phase as quantified by pucks’

average absolute error in final position. The number of the ring at which the center of the puck stopped was used for coding performance, e.g. 1 and 3 in the shown

cases. (B) Aggregated final positions of pucks versus initial distance of pucks to target. Phases of the experiment are separated by columns and conditions are separated

by rows. The line of equality representing final positions prescribed by the Newtonian model with perfect knowledge of all parameters is shown in blue.

https://doi.org/10.1371/journal.pcbi.1007730.g003
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with a mean absolute error of 1.63m (0.0440m SEM), although the puck was the same as in

phase three and although subjects did not obtain visual feedback, see Fig 3. This effect was sig-

nificant for both conditions as tested with Wilcoxon Signed Rank test for the absolute error

(light-to-heavy: W = 339300, p = 0.018; heavy-to-light: W = 441330, p< 0.001). This shift

towards longer and shorter press-times in the light-to-heavy and heavy-to-light condition

respectively is depicted in S1 Appendix, “Press-time distributions”. The shift was statistically

significant by testing with a Wilcoxon Signed Rank test for shorter and longer press-times

for both conditions respectively (light-to-heavy: W = 158580, p< 0.001; heavy-to-light:

W = 490620, p< 0.001). For more detail of the error distributions across phases two to four

see S1 Appendix, “Distance error distributions”.

Taken together, these analyses suggest, that subjects adjusted their press-times both

depending on the distance of the pucks to the target and depending on the pucks’ masses used

in the simulation. Furthermore, the analyses provide a very weak initial hint that subjects may

have scaled their press-times with respect to mass and with a non-linear function of initial dis-

tance after having obtained visual feedback about the pucks’ motion. Finally, observing colli-

sions between pucks lead subjects to adjust their press-times even without obtaining visual

feedback. In the following section we provide two computational generative models, one for

the sliding task and one for the collision observation task to quantitatively analyze participants’

press-times in terms of perceptual, physical, and behavioral quantities.

Interaction model results

The above analyses give only a weak indication that our participants were able to adjust their

press-times consistent with Newtonian physics and that they transferred the inferences about

relative mass ratios from observing collisions to the press-times, and are limited in several

ways. First, perceptual variables such as the initial distance of the puck to the target were

uncertain for our subjects, which is not quantitatively entering the correlation analyses of

press times with physical predictions under the assumption of perfect knowledge of all param-

eters. Secondly, our participants had to press a button to propel the puck. For longer press-

times, subjects are known to demonstrate variability in pressing times, which scales linearly

with its mean and which may vary considerably between subjects. Thirdly, while subjects

pressed a button and observed the simulated motion of the pucks from a bird’s eye view on

a monitor, it would be desirable to be able to estimate subjects’ belief about the masses of the

different pucks implicit in their press-times. Therefore, we devised a hierarchical Bayesian

model of the full visuomotor decision task to provide a computational account of our subject’s

behavior.

The Bayesian network model in Fig 4 expresses the relationship between variables on a sub-

ject-by-subject and trial-by-trial basis. While as experimenters we have access to the true initial

distance x used in the simulation of the puck and displayed on the monitor as well as the mea-

sured press-time tpre chosen by the subject on a particular trial i, subjects themselves do not

know these values. Instead, each participant j has some uncertain percept of the puck’s dis-

tance xperi;j and, potentially, some belief about the mass mj,k of the puck, which depends on its

color and the phase of the experiment k. This structure of the graphical model from the experi-

menter’s view leads to the following joint distribution p(d, l) with observed data d = {x, tpre}
and latent variables l = {xper, σx, m, σt}, where trial, puck and participant subscripts were omit-

ted for clarity:

pðd; lÞ ¼ pðxÞ pðsxÞ pðxperjx; sxÞ pðmÞ pðstÞ pðtprejxper;m; st; yÞ ð2Þ

Here, p(x) is known to the experimenter as the actual distribution of distances to target used in
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the simulations. By contrast, the distribution of perceived distances p(xper|x, σx) is the noisy

perceptual measurement by our participants described as a log-normal distributed variable,

ensuring that samples are strictly positive and including uncertainty scaling according to

Weber-Fechner [30]. p(σx) describes the prior distribution over possible values of this percep-

tual uncertainty. Participants’ prior beliefs about the masses of the different pucks p(m) are

described by gamma distributions, which entail the constraint that masses have to be strictly

positive. The log-normal distribution of actually measured press-times p(tpre|xper, m, σt)
depends on the noisy perception of the distance to target xper, the belief about the mass of the

object and the variability in acting, which is the press-time variability σt with its gamma distri-

bution p(σt). We additionally summarize all constant factors, i.e the surface friction coefficient,

the gravitational acceleration, the constant interaction force in the parameter θ.

The potential functional relationship between the perceived distance of the puck to the tar-

get and the required press-time is expressed in the deterministic node representing tint in the

Bayesian network. We consider two possible functional relationships between the press-time

and the distance to be covered: subjects may use a linear relationship between press-time and

initial distance as a simple heuristic approach:

H1 : tint / xper ð3Þ

or may use the square-root relationship as prescribed by Newtonian physics according to Eq 1:

H2 : tint /
ffiffiffiffiffiffiffi
xper
p

ð4Þ

As experimenters, we only have access to the observed data d, i.e. the actual distances given the

experimental setup and the measured press-times. We use Bayesian inference employing Mar-

kov-Chain Monte-Carlo to invert the generative model and infer the latent variables

Fig 4. Hierarchical Bayesian network for the Newtonian interaction model. The model expresses the generative

process of observed press-times tprei;j across trials i, participants j, and pucks k including Weber-Fechner scaling given

perceptual uncertainties of distance xi,j and mass mj,k of the pucks and subjects’ press-time variability. The parameter

values refer to the prior probability distributions. See the text for details.

https://doi.org/10.1371/journal.pcbi.1007730.g004
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describing subjects’ internal beliefs given the observed data d:

pðljdÞ ¼
pðd; lÞ
pðdÞ

¼
pðsxÞ pðxperjx; sxÞ pðmÞ pðstÞ pðtjxper;m; st; yÞ

pðtjxÞ
ð5Þ

However, modeling perception as inference may not be sufficient to describe our partici-

pants’ behavior and their selection of actions. Given a posterior over mass and distance

describing the perceptual belief of a subject on a particular trial, a specific press-time needs to

be selected. In order to model this selection process we take action variability and potential

cost functions into account. Cost functions govern which action, here the press-time, should

be chosen given a posterior belief. Specifically, the cost function quantifies how the decision

process penalizes errors on the task. This means that it is assumed that participants select an

action that minimizes potential costs associated with missing the target. Loss functions,

describing the rewards or costs for every action in the action space, can have any arbitrary

form, nonetheless we chose a set of three standard loss functions and compare their predic-

tions: 0-1, absolute and quadratic loss functions. These three canonical loss functions express

subjects’ implicit preferences for reaching a decision about press-times based on a putative

perceptual posterior: the 0-1 loss corresponds to penalizing equally all deviations between the

chosen value and the correct value, the absolute loss corresponds to penalizing deviations from

the true value linearly, and the quadratic loss penalizes the deviations quadratically. It can be

shown that these loss functions lead to different decisions for a continuous variable with a

non-symmetric distribution [31]. Applying these three cost functions to a log-normal poste-

rior results in the optimal decision being the MAP in case of the 0-1 loss function, the median

for the absolute loss function, and the mean in case of the quadratic loss function. Thus,

assuming that humans do have costs for missing the target and associated policies to minimize

these costs, leads to three different model versions for each model class (see S1 Appendix,

“Implementation of cost functions”).

In order to evaluate participants’ behavior computationally we first utilized subjects’ data

from phase two of the experiment to estimate their perceptual uncertainty and behavioral vari-

ability. We chose to start with analyzing phase two for two reasons: first, if participants are able

to use visual feedback about the pucks’ dynamics to adjust their press-times, predictions of the

model with the correct physical relationships should capture the behavior better than the linear

heuristics model. Secondly, inferred values for latent variables describing visual uncertainty in

distance estimation and variability in press-times are less prone to be assigned additional

uncertainty. Additional uncertainty arising in all other phases of the experiment due to the

lack of visual feedback should be assigned to the uncertainty about the mass or the linear scal-

ing rather than to the variability of press-times in general. Therefore, by evaluating data from

phase two “feedback” first, values for the press-time variability and uncertainty in the percep-

tion of distances can be estimated for each participant.

First, we used the data of phase two “feedback” to investigate, which of the three loss func-

tions best describes our participants’ data. In order to choose the appropriate cost function

explaining participants’ actions most accurately, we computed the press-times predicted by the

linear heuristics and the Newtonian model and applied the three cost functions to both mod-

els. This was achieved by using the inferred maximum a posteriori (MAP) values for the latent

variables in both model classes, i.e. the mass m in the Newtonian and a linear factor in the heu-

ristic linear model class. This allowed calculating the residuals, i.e. the difference between sub-

jects’ actual press-times and the predicted press-times for all six combinations of two models

and three cost functions. The residuals are shown as a function of the distance to the target in

Fig 5. The strong correlation of residuals and distance to target indicates a systematic bias of
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the linear heuristics model, whereas the weak correlation of the Newtonian model demon-

strates its superiority in explaining the measured data. These relationships were tested with

Spearman correlation tests for each model and cost function. The data show highly significant

correlations for all models (p< 0.001 in all cases; 0-1 loss function: ρNew = 0.167, ρlin = −0.550;

abs. loss function: ρNew = 0.124, ρlin = −0.643; quadratic loss function: ρNew = 0.0976, ρlin =

−0.686) and higher correlation in the linear model for each cost function (p< 0.001 in each

case, with Bonferroni corrected αcrit = .017).

Secondly, the posterior predictive distributions for press-times estimated from data in

phase two (see S1 Appendix, “Posterior predictive checks for press-times”) match the actual

behavior of the participants more closely compared to the linear heuristics model. Kullback-

Leibler divergence for each pair support this with divergence values at 0.0558 and 0.0851 for

the Newtonian and linear model, respectively. Not only did the Newtonian model capture par-

ticipants’ press-times in phase two better than the linear heuristics model, but this also affected

the inferred variabilities. While perceptual uncertainty only varied marginally (see Fig 6(A)),

the posterior distributions of the press-time variability stj show higher values for the linear

model (see Fig 6(B)) compared to the Newtonian model. This was confirmed by calculating a

repeated measure ANOVA on the posterior distributions of press-time variability for both

models, showing that the difference was highly significant (F = 39.2, p< 0.001). This elevated

Fig 5. Residuals of estimated press times and inferred masses in phase two for three cost functions. (A) Residuals

were calculated for each participant and each puck in phase two (”feedback”) given the actual press-times and the best

fits for the linear heuristics and the Newtonian model. Residuals for both models were calculated for all three cost

functions. (B) MAP estimates of the masses used by individual subjects inferred according to the Newtonian model for

the the three cost functions. Red and yellow pucks had different masses for subjects in the two conditions “heavy-to-

light” and “light-to-heavy”.

https://doi.org/10.1371/journal.pcbi.1007730.g005

PLOS COMPUTATIONAL BIOLOGY Intuitive physical reasoning transfers to a visuomotor control task

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007730 October 19, 2020 13 / 26

https://doi.org/10.1371/journal.pcbi.1007730.g005
https://doi.org/10.1371/journal.pcbi.1007730


level of uncertainty is necessary for the linear heuristics model to compensate for the dimin-

ished ability to capture the relationship of initial distances and participants’ press-times.

Therefore, in the following analysis we used the Newtonian model with quadratic cost, because

it shows the lowest residual correlation, smallest divergence in posterior predictive distribu-

tions of press-times, and smallest press-time variability.

A consequence of selecting the quadratic cost function on the basis of the analyses of

press-time residuals and posterior predictive distribution of press-times allows comparing the

masses inferred on the basis of participants’ behavior. Remarkably, posterior distributions

inferred with data aggregated over participants only from phase two match actual masses

implemented in the physical simulations better for the quadratic cost function (see Fig 5(B)

and S1 Appendix, “Latent masses by cost function: aggregated data from phase ‘feedback’”). In

both conditions inferred beliefs about the masses are closer to the actual masses implemented

in the simulations when presuming that participants use a quadratic loss function. This was

confirmed by testing for the absolute differences between the posterior belief and the actual

mass for each condition, puck and cost function. An ANOVA revealed highly significant dif-

ferences (F = 486, p< 0.001) and post-hoc tests showed that the posterior belief when using

the quadratic cost function is the closest fit for all pucks (p< 0.001 condition light-to-heavy,

yellow diamond puck; p = 0.002 red dots puck; p< 0.001 condition heavy-to-light, yellow dia-

mond puck; p< 0.001 red dots puck). This result also held at the individual participant levels

as illustrated in Fig 5(B)). Thus, the quadratic cost function, which best described participants’

press times, revealed that participants’ mass beliefs were more accurate compared to assuming

other cost functions.

Subsequently, we used the MAP values of the inferred press-time variabilities ŝt
MAP for each

subject as fixed values for the analyses of data of all experimental phases. The same applied for

Fig 6. Posterior estimates of perceptual uncertainty and press-time variability inferred with data from phase two

“feedback”. (A) Inferred posterior distributions of perceptual uncertainty for the linear heuristics model and the

Newtonian physics model. Dark green distributions display posterior distributions for the Newtonian model class,

dark blue ones for the linear model class. A separation into cost functions is not included since the different cost

functions did not lead to significant differences. (B) Inferred posteriors for individual press-time variability varied

significantly between subjects between the two models. All but one participant show lower or equal values of variability

regarding the press-time for the Newtonian model class.

https://doi.org/10.1371/journal.pcbi.1007730.g006
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the MAP values of the inferred perceptual uncertainties ŝx
MAP which did not differ across sub-

jects or models (see Fig 6(A)) and therefore were set to one fixed value for all subjects. Note

that the mean was 0.05m in simulation space, which, given the current setup corresponded to

approximately 4.7 pixels on the monitor. Using the hierarchical Bayesian interaction model,

samples of the posterior predictive distributions of press-times and of the perceptual uncer-

tainty are used to infer latent variables for both the linear and the Newtonian models. The

posterior predictive distributions of press-times are shown in the S1 Appendix, “Posterior pre-

dictive checks for press-times in both models”. Evidence was in favor of the Newtonian model

compared to the heuristics model across all phases of the experiment with the exception of the

Prior phase. The largest differences in prediction power appears in the Feedback phase with

the Newtonian model being the considerably better choice to describe the actual press-times.

This superiority of the Newtonian model over the linear heuristic one remains in the subse-

quent phases even without any visual feedback. This was again tested by running two-sample

Kolmogorov-Smirnov tests for posterior predictive distributions of phase three of both models

and the actual data, as well as calculating the Kullback-Leibler divergence for each pair, result-

ing in lower K-S statistic values for the Newtonian model (D = 0.0436, p = 0.00521) compared

to the linear one (D = 0.0851, p< 0.001). KL divergence values are 0.0582 and 0.0599 for the

Newtonian and linear model, respectively.

Finally, to confirm that the behavioral data of our subjects was best described by the Newto-

nian model with quadratic cost function we carried out model selection using the product
space method [32]. In this approach, a mixture model combines both the linear and the Newto-

nian model to account for the data. An index variable indicates, which of the two models is

selected at each iteration to explain the data. Given that both models have the same a priori

probability to be chosen, the Bayes factor equates to the posterior odds of the index variable.

Resulting Bayes factors are shown in Fig 7. Given the complete data set from all phases there is

small support for the Newtonian model (Bayes factor K of 2.33). When only considering data

from the Prior phase there is weak support for the linear model (K = 1.88). Instead, when

Fig 7. Bayes factors calculated from posterior odds sampled using the product space method. Bayes factors are

displayed for different phases and combinations of phases. Blue line at 1 marks the point where neither model is

stronger supported by evidence. Red line at 3.2 marks the transition from Bayes factors being only worth mentioning

to substantial evidence in favor of one the models. Colors of bars indicate the model favored by the Bayes factors.

https://doi.org/10.1371/journal.pcbi.1007730.g007
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considering all phases but the first phase there is substantial support for the Newtonian model

(K = 3.71) and strong evidence for the square-root model in the feedback phase (K = 9.71).

The hierarchical Bayesian interaction model also allows inferring the masses best describing

our subjects’ internal beliefs given the Newtonian model and the measured press-times. Not

surprisingly, mean mass beliefs vary strongly across subjects in the Prior phase, where partici-

pants had to make decisions without any observations of the pucks, only relying on their prior

beliefs about the potentially underlying dynamics and environmental conditions (see S1

Appendix “Latent masses: phase ‘prior’ and ‘feedback’” for gray posterior distributions). Nev-

ertheless, the variances of mass beliefs within the first phase were surprisingly small for indi-

vidual subjects with a mean of 0.0023 kg, potentially indicating that each subject consistently

used a belief about the mass of the puck. Inferred values for these prior mass beliefs are dis-

played in the S1 Appendix “Latent masses: phase prior and feedback” for each participant.

When obtaining visual feedback in the Feedback phase of the experiment, subjects only needed

on average six trials to adjust their press-times so that mass beliefs were stable thereafter.

Implicit mass beliefs were quite accurate with the mean of inferred MAP values at 1.5218 and

1.8818 kg in the condition light-to-heavy (1.5 and 2.0 kg) and 1.9415 and 2.3068 kg in condi-

tion heavy-to-light (2.0 and 2.5 kg). Fig 8 shows the MAP estimates of the masses for both con-

ditions and phases two to four for all subjects.

In phase three No Feedback participants faced an unknown puck without any visual feed-

back but with the acquired knowledge about the relationship of press-time and distance. Note

however, that participants had learned two different mappings from distances to press-times

in phase two, one for the red puck and one for the yellow puck. Thus, participants had to select

press-times without knowing the mass of the unknown puck. As reported above, the press-

time distributions in this phase of the experiment were close to the combined press-times that

subjects had used for the two pucks in the previous phase two of the experiment. The corre-

sponding MAP mass beliefs were accordingly approximately the average of the two previous

pucks’ masses with 1.87 and 2.19kg and corresponding mass distributions differed significantly

for the two conditions light-to-heavy and heavy-to-light (ANOVA: F = 1060, p< 0.001; see

also S1 Appendix, “Latent masses: phase “no feedback” and “collision and no feedback””). But

Fig 8. MAP values of inferred latent mass in Newtonian model class with quadratic loss function for each

participant and condition.

https://doi.org/10.1371/journal.pcbi.1007730.g008
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after observing the 24 collisions in phase Collisions + No Feedback of the two known pucks

with the unknown puck participants were able to adjust their press-times so that the estimated

mass beliefs were significantly closer to the true values used in the simulations than in the pre-

vious phase. This was quantified by running a repeated measures ANOVA of the deviations

from the actual mass (F = 7.103, p = 0.0176). Thus, the mass beliefs implicit in our participants’

press-times reflected the inferred mass ratios and transferred from having observed the pucks’

collisions to the subsequent visuomotor control task. Note that this implies that subjects must

have interpreted the dynamics of the red and yellow pucks in the second phase as stemming

from objects’ masses, as otherwise a physically consistent transfer to a new puck would be very

difficult to explain.

Observation model result

Participants in our experiment were apparently able to make appropriate inferences in phases

with feedback, altering their beliefs about unknown objects based on previous inferences and

new observations, and to transfer this knowledge to an action-control task. But how were they

able to make these adjustments after observing collisions and perform well with a continuous

range of responses? Here, we want to look at another Bayesian model capturing the learning

process through observations. To this end, we adapted a hierarchical Bayesian observation

model similar to [9, 11], which describes how subjects could infer the relative mass ratios of

two pucks from observing their elastic collisions. But here we used the mass beliefs inferred

from phase two of the experiment with the interaction model as initial prior mass beliefs in the

observation model for phase four of the experiment on-a-subject-by-subject basis. This allows

comparing how subjects’ uncertainty decreases on the basis of perceptual observations com-

pared to visuomotor interaction.

The Bayesian network model for the observation task in Fig 9 expresses the relationship

between variables on a subject-by-subject basis for observing 12 collisions for each of the two

pucks. The model incorporates the generative physical relationship of velocities and masses in

elastic collisions as shown in [9]. The grey nodes are known to the experimenter: the initial

velocities vF and the mass mF of the known feedback puck and vNF of the unknown no-feed-

back puck, the resulting velocities uF and uNF. Individual subjects’ posterior mass beliefs at the

end of phase two inferred with the interaction model, shown on the left panel of Fig 9, were

used as prior mass beliefs of the yellow and red pucks in the observation model for each partic-

ipant. Unknown parameters are depicted as white nodes and were inferred with MCMC. Sub-

jects’ uncertain beliefs about the pucks’ velocities are incorporated for the initial velocities vF
and vNF as well as for the resulting velocities uF and uNF after the elastic collision. To describe

the perceptual uncertainty of velocities we used a log-normal distribution with σvel fixed at 0.2

and its mode at the actual velocity (see Fig. 6 in [9] or section “Subject Performance” in [11]

for comparison). Inferred posterior mass beliefs for the new puck are shown in the right panel.

This structure leads to the following joint distribution p(d, l) with observed data d = {vF, vNF,

uF, uNF, mF} and latent variables l ¼ fvperF ; v
per
NF; u

per
F ; u

per
NF;mNFg, where actual and perceived

velocities are summarized for both pucks using an index i to vi and ui for abbreviation pur-

poses:

pðd; lÞ ¼ pðviÞ pðuiÞ pðmFÞ pðv
per
i jvi; svelÞ pðmNFÞ pðu

per
i jui; v

per
i ;mF;mNF; svelÞ ð6Þ

The observation model allows inferring participant’s mass beliefs for the puck, which they

had first interacted with in phase three of the experiment. Importantly, the two Bayesian mod-

els allow inferring the uncertainty in participants’ mass beliefs after only six and after 24 trials,
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both for the interaction phase two and the observation of the collision movies, see S1

Appendix, “Learning progress of mass beliefs during interaction and observation”. These

results quantify, how uncertainty in mass beliefs decreased over trials and the difference in

uncertainty reduction due to interactions versus observations. More specifically, as expected,

subjects’ variance in inferred posterior mass beliefs for each puck decreased with the progres-

sion of trials when using the interaction model with data from phase 2 (Friedman chi-

squared = 62.06, p-value< 0.001 & Conover’s PostHoc p< 0.001 for all comparisons) and, as

well, when using the observation model with mass beliefs from phase 2 with the highest preci-

sion after 100 trials (Wilcoxon signed rank test, V = 136, p< 0.001). Additionally, the variance

in resulting inferences about the mass in the observation model is significantly higher than

the variance of the mass beliefs used as input, as we compared variances on subject basis for

columns three, four and five (Kruskal-Wallis chi-squared = 37.43, p-value < 0.001 & Dunn

PostHoc for grey compared to red and green, each p< 0.001, see S13 Fig). Thus, the larger var-

iance in participant’s mass estimates after observing the pucks’ collisions compared to interact-

ing with them, see e.g. Fig 8, stems from the fact that subjects needed to use the uncertain mass

beliefs of the red and yellow pucks when observing the collisions and had additional uncer-

tainty stemming from inferring pucks’ velocities. Furthermore, the predictions of the idealized

Fig 9. Bayesian model for learning through observing collisions with prior and posterior mass beliefs. The left panel shows inferred posterior mass beliefs for the

pucks from feedback phase 2 for each participant. All 100 trials were used to infer the mass beliefs. These posteriors were used as priors for the inference from

observations. The graphical model for learning by observing collision is shown in the middle panel. Uncertainty about the pucks’ velocities is introduced for the initial

velocities vF and vNF as well as for the resulting velocities uF and uNF after the elastic collision. Utilizing the physical relationship of velocities and masses in an elastic

collision enables inferring beliefs about the unknown puck based on previous mass beliefs of pucks in phase 2. Resulting posterior mass beliefs are shown in the right

panel for inferences based on 6 and 24 observations of collisions.

https://doi.org/10.1371/journal.pcbi.1007730.g009
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observation model deviate quantitatively from mass beliefs inferred using the interaction

model for two reasons: First, participants would need to remember their belief about the mass

of both feedback pucks perfectly while performing in phase 3 and 4. However, these beliefs

may suffer from memory effects and thus potentially introduce biases and additional variabil-

ity. Second, initial and uninformed guesses in phase 3 before seeing any collisions may gener-

ate biases, too, that potentially could lead to recency effects (see e.g. participant 7 & 8 in S10

Fig).

Discussion

Although people are able to interact with the physical world successfully in every-day activities,

classic research has contended that human physical reasoning is fundamentally flawed [1–4].

Recent studies instead have shown that biased human behavior in a range of perceptual judge-

ment tasks involving physical scenarios can be well described when taking prior beliefs and

perceptual uncertainties into account [9–12]. The reason is that, inferences in general need to

integrate uncertain and ambiguous sensory data and partial information about object proper-

ties with prior beliefs [5–8]. Much less is known about how intuitive physical reasoning guides

actions. Here, we used a perceptual inference task involving reasoning about relative masses of

objects from the intuitive physics literature and integrated it with a visuomotor task. Subjects

had to propel a simulated puck into a target area with a button press whose duration was pro-

portional to the puck’s release velocity. The goal was to investigate how people utilize relative

masses inferred from watching object collisions to guide subsequent actions.

Specifically, we devised an experiment consisting of four phases, which differed in the avail-

able sensory feedback and prior knowledge about objects’ masses available to participants. The

physical relationship underlying the task requires subjects to press a button for a duration that

is proportional to the mass of the puck and proportional to the square-root of the initial dis-

tance. This allowed examining peoples’ prior assumptions about the underlying dynamics of

pucks’ gliding, their ability to adjust to the pucks’ initial distances to the target and to the vary-

ing masses of pucks, and the transfer of knowledge about relevant properties gained by observ-

ing collisions between pucks. A hierarchical Bayesian generative model of the control task and

one of the collision observation task accommodating individual differences between subjects

and trial by trial variability allowed analyzing subjects’ press-times quantitatively. Importantly,

we also tested which of three cost functions best describe our subjects’ choices of press-times.

In the prior phase without visual feedback, subjects adjusted their press-times with the ini-

tial distance of the puck to the target. Not surprisingly, because subjects did not obtain any

feedback about their actions and therefore the degree of friction, the magnitude of the applied

force, and the scale of the visual scene, could only hit the target by chance. Nevertheless, model

selection slightly favored the linear heuristics model compared to the square-root model, i.e.

subjects approximately scaled the press-times linearly with the initial distance to target. Thus,

subjects came to the experiment with the prior belief that longer press-times would result in

longer sliding distances but did not scale their press-times according to the square-root of

the initial distance of the pucks as prescribed by Newtonian physics. As subjects did not sense

the weight of the pucks and did not obtain any visual feedback about the pucks’ motion, the

observed behavior in this phase of the experiment may be dominated by the uncertainty about

the underlying mapping between the duration of button presses and the pucks’ release veloci-

ties, the effects of friction, and the visual scale of the simulation. Remarkably, while no feed-

back was available, each participants’ scaling of press-times was consistent as indicated by

individuals’ variance in posterior mass estimates being of the same order of magnitude as in

feedback trials, see S1 Appendix, “Latent masses: phase ‘prior’ and ‘feedback’”.
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When visual feedback about the pucks’ motion during the feedback phase was available,

subjects needed on average only six trials to reach stable performance. This is particularly

remarkable, because it corresponds to adjusting the press-times to a single puck’s mass over

the four initial trials and then adjusting the press-times within only two subsequent trials to a

new puck with a different mass. Thus, the observation of the pucks’ dynamics over six trials

was sufficient to adjust the press-times with the square-root of initial distance, but differently

for the two pucks, see Fig 2. Note that in phase two, subjects only had a contextual color cue

distinguishing the two pucks. Therefore, subjects needed to learn two different functions relat-

ing the pucks’ initial distances to the required press-times, one for each puck, without any

explicit reference to mass. Data from this phase of the experiment were utilized to infer param-

eters describing individual subjects’ perceptual uncertainty and motor variability. Perceptual

variability was consistent across subjects and varied only marginally so that a constant value

of σx = 0.05m was used across subjects and models for all other phases of the experiment.

Remarkably, this corresponds to a distance of 4.7 pixels in the vertical direction on the display

monitor with a resolution of 1080 pixels. By contrast, the variability of press-times σt varied

substantially across subjects with almost all subjects lying between 0.15s and 0.33s, so that indi-

viduals’ parameters were used in all subsequent models.

Given that the variability of peoples’ press-times scales with the mean of the duration, lon-

ger press-times can lead to larger deviations from the targeted press-time. This can result in

larger errors by overshooting the target. To reduce possible overshoots, participants may

implicitly aim at a shorter distance, which can be quantified through a cost function incorpo-

rating the relative desirability of the pucks’ final distance to the target. Therefore, we tested

which of three commonly used cost functions best described subjects’ press-times: the 0-1 cost

function, the quadratic cost function, and the absolute value cost function. Model selection

using the product space method showed that the press-times were best explained by the New-

tonian physics model when taking into account perceptual uncertainty, motor variability and

the quadratic cost function. Similarly, this was confirmed through posterior predictive checks

of press-times and the analysis of the correlation of the residuals between predicted and

observed press-times with the initial distance to target.

Thus, participants adjusted the press-times with the square-root of the initial distance to

the target and used the contextual color cue of the pucks to adjust the press-times. Subjects

only had the contextual cue of different colors between the two pucks but adjusted the press-

times in such a way that this was interpretable in terms of the two different masses used in the

puck’s simulations. Therefore, just on the basis of these adjustments alone, one might argue

that subjects may have adjusted their press-times based on the available visual feedback about

the pucks’ motion without any recurrence to a the concept of physical mass. That this is

unlikely, is due to the following two phases of the experiment.

Previous research has demonstrated, that people can infer the mass ratios of objects from

observing their collisions [9, 11–13]. Here, subjects were asked to propel one particular puck

before and after seeing 24 collision between this puck and the two pucks for which they had

previously obtained visual feedback. Note that the two pucks in phase two were only distin-

guished by a color cue and that subjects might have only learned two different mapping from

initial distances to press-times, as no explicit cues about mass were available. But subjects read-

ily utilized the inferred mass ratios to adjust their press-times to reach the target more accu-

rately in phase four of the experiment. That the different dynamics were to attribute to

different masses and that relative masses from observing the collisions could be transferred to

press-times entirely relied on subjects intuitive physical reasoning. This is strong evidence that

participants in our experiment interpreted the dynamics of the red and yellow pucks from

phase two to be caused by their respective masses. Model selection provided evidence, that
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subjects continued to use the square-root relationship of initial distance and scaled their press-

times consistent with Newtonian physics to successfully propel the puck to the target.

Different from tasks requiring a forced choice response [1–4, 9, 11–13], participants in the

current experiments provided a continuous action by pressing a button for variable durations.

Therefore, it is not sufficient to model our participants’ actions as in an inference task, e.g. by

assuming that subjects choose a press-time on the basis of the mass belief with highest proba-

bility, i.e. the MAP. Instead, modeling continuous actions requires a cost function, which addi-

tionally incorporates people’s variability in press-times. This is evident when comparing the

press-times according to the different models considered here, see S1 Appendix, “Deviations

from fully-observed Newtonian physics and model predictions”. Remarkably, posterior means

of masses best explaining our participants’ press-times were closer to the true masses used in

the pucks’ simulations for the quadratic cost function compared to the other cost functions.

Thus, the current study establishes that people’s deviations from the predictions of Newtonian

physics are not only attributable to prior beliefs and perceptual uncertainties but also to

implicit cost functions, which quantify internal costs for errors due to participants’ action

variability.

Taken together, the present study is in accordance with previous studies on intuitive phys-

ics within the noisy Newton framework [14]. The systematic deviations in our subjects’ press-

times from the those prescribed by Newtonian physics under full knowledge of all parameters

were explained quantitatively as stemming from perceptual uncertainties interacting with

prior beliefs according to probabilistic reasoning. Previous studies had also shown, that people

are able to infer relative masses of objects from their collisions [9, 11, 12]. The present study

additionally shows, that subjects can utilize such inferences and transfer them to a subsequent

visuomotor task. This establishes a connection between reasoning in intuitive physics [9–12]

and visuomotor tasks [21, 23, 25, 27]. Crucial in the quantitative description of participants’

behavior was the inclusion of a cost function. Commonly, cost functions in visuomotor behav-

ior are employed to account for explicit external rewards imposed by the experimental design,

e.g. through monetary rewards [21, 33] or account for costs associated with the biomechanics

or accuracy of movements [23, 24]. The present model used a cost function to account for the

costs and benefits implicit in our participants visuomotor behavior and may encompass exter-

nal and internal cost related to different task components, perceptual, cognitive, biomechani-

cal costs and preferences. Inferring such costs and benefits has been shown to be crucial for

the understanding of visuomotor behavior [34–36].

The results of the present study furthermore support the notion of structured internal

causal models comprising physical object representations and their dynamics. Although our

participants never sensed the weight of pucks, they readily transferred their visual experiences

by interpreting them in terms of the physical quantity of mass. A recent study [37] found sup-

port at the implementational level for representations of mass in parietal and frontal brain

regions that generalized across variations in scenario, material, and friction. While our results

do not provide direct evidence for the notion of internal simulations of a physics engine [38],

they also do not contradict them. While it could be argued that structured recognition models

may be sufficient for the inference of object properties such as mass, in our experiment sub-

jects had to act upon such inferences, which strongly suggest the availability of representations

of mass.

Finally, the present study also shows the importance of using structured probabilistic gener-

ative models that contain interpretable variables when attempting to quantitatively reverse

engineer human cognition [39]. Previous research has demonstrated pervasive and systematic

deviations of human reasoning from probabilistic accounts [40]. Similarly, systematic devia-

tions in physical reasoning [1–4] have been interpreted as failures of physical reasoning. It is
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only more recently, that a number of these deviations have been explained through computa-

tional models [9–12, 38] involving structured generative models relating observed and latent

variables probabilistically. These models involve the explicit modeling of prior beliefs and per-

ceptual uncertainties [5, 6] as well as uncertainties in visuomotor behavior [21–23], which

have been modeled successfully in a probabilistic framework. As such, the present study is in

line with efforts of understanding perception and action under uncertainty through computa-

tional models, which use structured probabilistic generative models and external as well as

internal costs [8].

Supporting information

S1 Appendix. Puck motion.

(PDF)

S1 Fig. Distance error distributions. Final discrepancy between target and puck pooled for all

participants. Pucks being shot too short are shown with negative values, pucks with a positive

deviation were shot too far. Columns showing the the data for both conditions and rows divide

into puck and phase combinations. The first two rows (in gold and red) showing the error dis-

tributions for both pucks with feedback in phase 2. The error distribution for the unknown

puck in phase 3 before seeing the collisions is shown in the second last row (in purple) with

greater deviation, with a clear bias and bigger spread. In the last row the error distributions are

depicted for the unknown puck after having seen the collisions with the previous learned

pucks, showing a reduced bias.

(TIF)

S2 Fig. Press-time distributions. Pooled press-time distributions for all participants. Columns

showing the the data for both conditions and rows divide into puck and phase combinations.

First two rows showing the press-times for the pucks with feedback. Press-time distributions

in phase 3 without feedback are shown in row three in blue. Without further information par-

ticipants’ behavior in phase 3 is strongly influenced by the previous phase and its press-time

distribution: press-time distributions for the unknown puck in phase 3 reflect roughly the

combined distributions of press-times of the previous pucks in phase 2 (Kolmogorov

D = 0.0538; p = 0.092 for heavy-to-light, D = 0.156; p = 9.8 × 10−12 for light-to-heavy).

(TIF)

S3 Fig. Kolmogorov tests—Press-times in phase 2 & phase 3. In the light-to-heavy condition

both distributions of press times when seeing pucks and without feedback in phase 3 differ sig-

nificantly. However, considering the asymmetry within the task response—press-times and

potential masses are only constrained single-sided towards lower values with a minimum at

zero—this difference in press-time distributions is surprisingly small. (B) In the heavy-to-light

condition there was no significant difference between the distribution of press-times of both

combined feedback pucks and the unknown puck before observing the collisions as revealed

by the Kolmogorov-Smirnov test. This suggests that participants adhere to their previous

adjusted strategies when facing decisions in great uncertainty.

(TIF)

S4 Fig. Implementation of cost functions. Derivation of the three cost function models based

on the expressions for the measures of the central tendency of the log-normal distribution

with its mode exp(μ − σ2), median exp(μ) and mean exp mþ s2

2

� �
. Setting the intended press-

time to one of these measures for the press-time distribution is equivalent with choosing the 0-

1, absolute or quadratic loss function. Transformation with the intended press-time tint leads
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to expressions in S4 Fig.

(TIF)

S5 Fig. Posterior predictive checks of cost functions in phase 2. Posterior predictive distri-

butions for both model classes and all cost functions with data from phase 2 with feedback.

Posterior predictive distributions of press-times given data from feedback trials. Fifty distribu-

tions were drawn from each model after being fitted to the data. Dark green distributions arise

from models of the Newtonian model class, dark blue ones from the linear model class. Separa-

tion into rows is made on basis of the implemented cost function. For each cost function the

Newtonian model predicts values that match the actual data shown as red curve obviously bet-

ter than the model from the linear model class.

(TIF)

S6 Fig. Posterior predictive checks for press-times in both models. Posterior press-time pre-

dictions for both, the linear and the Newtonian model with quadratic cost function, and sepa-

rately for every phase. Actual data is shown as red line. Model predictions in dark green (50

iterations) of the fitted Newtonian model match the data closely and surpass the fitted linear

model in dark blue for the complete data set and in almost every phase individually.

(TIF)

S7 Fig. Latent masses by cost function: Aggregated data from phase 2. Inferred latent mass

beliefs with aggregated data from phase ‘feedback’ for each cost function. Posterior distribu-

tions for mass belief aggregated over all participants for each cost function. Colored, vertical

lines indicate actual mass of pucks. In comparison the quadratic loss function leads to poste-

rior distributions that fit closest to the actual masses in the experiment.

(TIF)

S8 Fig. Change point detection. Average absolute error as function of trials and posterior of

mean average error derived using the change point detection model. (A) Average absolute

error over participants as function of trial number. (B) Posterior over change point τ. Red dot-

ted line marks trial six. (C) Posterior of mean error before and after change point.

(TIF)

S9 Fig. Latent masses: Phase ‘prior’ and ‘feedback’. Inferred latent mass in Newtonian model

class with quadratic loss function for each participant and with data from Prior and Feedback
phase. Posterior mass distributions for each participant in Prior and Feedback phase. Gray dis-

tributions show the inferred mass distribution for an unknown puck before participants have

encountered the task dynamics. Resulting mass distributions for both pucks in feedback trials

in red (light puck) and yellow (heavy puck). Dotted lines indicate actually implemented mass

for each of the feedback pucks.

(TIF)

S10 Fig. Latent masses: Phase ‘no feedback’ and ‘collision and no feedback’. Inferred latent

mass in Newtonian model class with quadratic loss function for each participant with data

from Prior and both No Feedback phases. Posterior mass distributions for each participant in

Prior and Feedback phase. Gray distributions show again the inferred mass distribution for an

unknown puck before participants have encountered the task dynamics. Distributions in violet

and green are the posterior mass distributions of the unknown puck without feedback before

and after the participants saw collision with known pucks. Dotted line marks the actual mass

of the unknown puck.

(TIF)
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S11 Fig. Deviations from fully-observed Newtonian physics and model predictions (light

to heavy). Posterior predictive for press times, actual press times and ideal responses for

phases two to four and condition light-to-heavy. Black distributions show the actual data, red

and blue ones display samples from posterior predictive distributions of both, the linear and

Newtonian model, and green ones show the correct responses given perfect knowledge about

the underlying physics and all parameters. Visualizing the enhanced suitability of this noisy

Newtonian model framework compared to Newtonian models excluding prior preferences

and uncertainties in describing human behavior.

(TIF)

S12 Fig. Deviations from fully-observed Newtonian physics and model predictions (heavy

to light). Posterior predictive for press times, actual press times and ideal responses for phases

two to four and condition heavy-to-light. Black distributions show the actual data, red and

blue ones display samples from posterior predictive distributions of both, the linear and New-

tonian model, and green ones show the correct responses given perfect knowledge about the

underlying physics and all parameters. Visualizing the enhanced suitability of this noisy New-

tonian model framework compared to Newtonian models excluding prior preferences and

uncertainties in describing human behavior.

(TIF)

S13 Fig. Learning progress of mass beliefs during interaction and observation. Barplot of

averaged variance for both models and a given number of observations. First three columns

show the average variance in posterior mass beliefs for inferences with 6, 24 and 100 trials

per puck and participant. Two last columns show the average variance of mass beliefs of the

unknown puck resulting from inference using the collision model for 6 and 24 trials, while

using the posterior mass belief of the known pucks from the interaction model with 100 trials

each.

(TIF)
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