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ABSTRACT Despite distinct nasopharyngeal microbiome (NPM) profiles between
asthmatics and healthy subjects, little is known about the NPM dynamics and its rela-
tion to childhood asthma exacerbation (AE). We investigated NPM changes by longitu-
dinally collecting 135 flocked nasopharyngeal swabs (FNPSs) from 33 school-age asth-
matic children at six time points (2 to 4-week intervals) from September to December
2017 in Hong Kong. Subjects were categorized into AE and stable asthma (AS) groups
according to whether they experienced any exacerbation during follow-up. One-off
FNPSs from nine nonasthmatic children were included as controls. Microbiota profiles
were analyzed using 16S rRNA gene sequencing. All 144 NPMs were classified into six
microbiome profile groups (MPGs), each dominated by Moraxella, Corynebacterium 1,
Dolosigranulum, Staphylococcus, Streptococcus, or Anoxybacillus. The microbial diversity
and compositions of NPM in exacerbation samples were different from both baseline
samples and those from healthy controls. Moraxella and Dolosigranulum-dominated
NPM exhibited high temporal stability revealed by MPG transition analysis. NPM diver-
sity decreased whereas microbial composition remained similar over time. The relative
abundances of Moraxella increased while Corynebacterium 1, Anoxybacillus, and
Pseudomonas decreased longitudinally. However, these temporal patterns did not dif-
fer between AE and AS groups, suggesting that short-term dynamic patterns were not
sufficient to predict AE occurrence. Asthmatic NPM underwent Moraxella expansion
during AE and presented a high microbiome resilience (recovery potential) after AE re-
solution. Microbial pathways involved in methane, ketone bodies, and vitamin B3
metabolisms were enhanced during AE and primarily contributed by Moraxella.

IMPORTANCE Evidence on the dynamic changes of NPM in asthmatic patients remains
limited. Here, we present that asthmatic NPMs deviating from a healthy status still
showed resilience after disturbance. Our data imply from a longitudinal perspective that
Moraxella increase is closely related to AE occurrence. The finding of functional dysbiosis
(imbalance) during AE offers a plausible explanation for the known association between
nasopharyngeal Moraxella expansion and increased AE risk. This work serves as a basis
for future long-term prospective studies leveraging multiomics approaches to elucidate
the temporal association between NPM and pediatric AE.
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Asthma is a chronic respiratory disorder characterized by recurrent, reversible constric-
tion of the lower airways (1). Despite the standardized management, asthma exacerba-

tion (AE) continues to occur, which leads to compromised health-related quality of life for
patients and families as well as a considerable health care burden to society (2, 3). Although
childhood AE has long been attributed to respiratory viral infection, emerging evidence indi-
cates that airway bacteria also play a part in modulating this event (4–7). Ever since the con-
ceptual misunderstanding of “sterile airway” was overthrown by studies based on advanced
culture-independent microbial detection technologies, the relationship between airway
microbiome and respiratory disorders has been widely investigated (8, 9). These studies
revealed that airway microbial dysbiosis was found in patients with different asthma pheno-
types (6, 10–12). However, the relationship between the airway microbiome and AE remains
poorly understood. Given nasopharynx is a reservoir for upper respiratory tract pathogens
involved in asthma pathophysiology, we previously reported that preschool children hospi-
talized for wheezing disorder harbored more abundant Proteobacteria and less abundant
Dolosigranulum (Firmicutes) in the nasopharynx than community control (13). This finding is
consistent with an adult study in which nasal Proteobacteria and Bacteroidetes were more
enriched in patients with AE than in healthy individuals (14). This study also reported higher
Prevotella (Bacteroidetes), Alkanindiges (Proteobacteria), and Gardnerella (Actinobacteria)
but lower Dialister (Firmicutes) in the nasal microbiome during AE. Nevertheless, these
cross-sectional studies provided a snapshot of the airway microbiome at only one time
point.

There were few longitudinal studies on the temporal dynamics of the nasopharyn-
geal microbiome (NPM) in asthmatic children. Zhou et al. reported that nasal micro-
biome transition from Corynebacterium and Dolosigranulum cluster at baseline to
Moraxella cluster at the time of loss of asthma control had the highest risk for AE in
school-age asthmatics (15). The relatively long sampling interval (1 year) in this study,
however, had limited its ability to capture transient changes in NPM. Through biweekly
sampling from 478 asthmatic children in the PROSE study, McCauley et al. (16) demon-
strated that AE was associated with the Moraxella-dominated nasal microbiome. These
studies longitudinally interrogated the relationship between NPM and childhood AE
among American cohorts. Despite the similarity of a healthy microbiome in the upper
respiratory tract across geographically diverse populations (17), it remains unclear
whether different patterns exist regarding temporal dynamics of NPM diversity and
composition as well as its relationship with AE in Asian children compared to their
western counterparts.

In this prospective study, we performed 16S rRNA gene profiling of NPM to assess
its temporal dynamics among Hong Kong schoolchildren with asthma. We aimed to
address the following knowledge gaps: (i) longitudinal changes in NPM diversity and
composition and their association with AE, and (ii) taxonomical and functional changes
of NPM, especially for the dominant genera, at the time of AE.

RESULTS
Study population and clinical outcomes. A total of 33 asthmatics and 20 nonasth-

matic controls were recruited in this study (Fig. 1A). Flocked nasopharyngeal swabs
(FNPSs, n = 172) from the asthmatics were longitudinally collected from baseline until the
end of surveillance (i.e., six time points), whereas only one-off cross-sectional FNPSs were
obtained from controls at recruitment. Twenty-seven (81.8%) asthmatic children com-
pleted the follow-up period, during which a total of 12 episodes of exacerbation occurred
in 11 (40.7%) subjects (AE group) (Fig. 1A). Six of these 12 exacerbation events occurred
within 2 days of the scheduled visits and thus no extra visits were arranged; one of these 6
exacerbation samples was excluded due to amoxicillin-clavulanate treatment for otitis
media before sample collection. The exacerbation samples from the other six episodes
were collected at extra illness visits (Fig. 1A). The remaining subjects who did not experi-
ence any exacerbation events during the surveillance period were considered the stable
asthma (AS) group. Among the 172 asthmatic FNPSs obtained, human rhinovirus (HRV)
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FIG 1 Study design and sample collection. (A) Flowchart of subject selection. N, number of subjects;
n, number of samples. Samples in elliptic boxes colored in gray were used for cross-sectional

(Continued on next page)
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was detected in 41 (23.8%) samples, including 26.8% HRV-A (n = 11), 34.1% HRV-B
(n = 14), and 36.6% HRV-C (n = 15). One sample with inconclusive sequences did not map
to any HRV subtype. HRV was also detected in three control samples, for which no geno-
typing was conducted due to weak signals.

Six major genera in NPM. NPM profiles were successfully recovered from 144 sam-
ples (135 asthmatics and 9 controls, Fig. 1A). An average of 5.3 samples per patient
were available for downstream analyses (Fig. 1B). We obtained over 9.29 million high-
quality sequences (median 75,365, interquartile range [IQR] 46,501-79,697) after
denoising using DADA2. These sequences corresponded to 5,209 ASVs with 10 to 476
ASVs (mean 99) per sample after excluding the rare (total frequency ,2) ones, which
were taxonomically assigned to 30 phyla and 736 genera. The major phyla of NPM in
schoolchildren were Firmicutes (35%), Proteobacteria (34.5%), Actinobacteria (29%),
Bacteroidetes (0.7%) and Fusobacteria (0.3%) (Fig. 2A). All samples were categorized
into six MPGs, with each dominated by one of the following genera: Moraxella (34%,
49 samples), Corynebacterium 1 (28.5%, 41 samples), Dolosigranulum (22.2%, 32
samples), Staphylococcus (6.9%, 10 samples), Streptococcus (3.5%, 5 samples) and
Anoxybacillus (4.9%, 7 samples). Additionally, hierarchical clustering of samples based
on relative abundances of these six genera revealed that the Moraxella MPG was
mainly from longitudinal asthmatic samples, whereas baseline and healthy control
samples primarily belonged to Dolosigranulum or Corynebacterium 1 MPGs (Fig. 2B). Of
note, a high abundance of Corynebacterium 1 was also found in some nonexacerbated
samples assigned to the Dolosigranulum-dominated MPG.

Cross-sectional comparison of NPM diversity and composition between asthmatics
and controls. Asthmatic NPM composition (beta-diversity) at baseline was significantly
associated with age (permutational multivariate analysis of variance [PERMANOVA] test
on Bray-Curtis distance, P = 0.014), concomitant atopy and exposure to house dust
mites (HDM, P = 0.016), whereas it did not correlate with AE occurrence (R2 = 0.006, P =
0.993) and HRV infection (R2 = 0.061, P = 0.306; Table 1). Notably, NPM alpha diversity
represented by the Shannon diversity index (SDI) at baseline was not correlated with
age (Spearman’s r = 0.04, P = 0.842).

To evaluate the NPM variations at different clinical asthma statuses relative to a
healthy NPM, we compared the alpha and beta diversity among asthmatic baseline
(n = 24), exacerbation (n = 10), and healthy control (n = 9) samples (Fig. 1A). Overall,
SDI was lower in exacerbation samples than that at baseline (geometric mean 1.71 ver-
sus 2.18, Padj = 0.033) and controls (geometric mean 2.75, Padj = 0.034; Fig. 3A). The mi-
crobial composition of the nasopharynx was also different across these three sample
categories after adjustment for age (R2=0.1, Padj = 0.007). This was also confirmed by a
clear separation of control samples from both exacerbation and baseline samples (pair-
wise adonis, Padj = 0.003 and Padj = 0.044, respectively; Fig. 3B) as shown in the principal
coordinate analysis (PCoA) plot based on Bray-Curtis distance. To further understand
the NPM shifts during exacerbation within the same asthmatic patient, we performed a
pairwise comparison of microbial diversity in eight pairs of baseline-exacerbation sam-
ples. A lower alpha diversity (Wilcoxon signed-rank test, P = 0.031; Fig. S2A) was
observed in exacerbation samples than in the paired baseline group. Procrustes analy-
sis of Bray-Curtis distances also revealed an insignificant correlation (Mantel test, P =
0.116, R2 = 0.073; Fig. S2B) between paired samples, suggesting a remarkable variation

FIG 1 Legend (Continued)
comparisons; samples in polygon boxes colored in gray were included for longitudinal NPM analyses.
† Four subjects withdrew after baseline sample collection, and 2 subjects withdrew after the first visit.
Their samples were sequenced but were excluded from longitudinal analyses. *, these 4 samples were
from the AS group, including 1 baseline and 3 longitudinal samples collected at scheduled visits. FNPS
flocked nasopharyngeal swab; AE, asthma exacerbation; AS, stable asthma. (B) Horizontal lines show the
collection timing of 135 longitudinal samples that were successfully sequenced in all asthmatic subjects.
Dots refer to samples colored by time point. Triangles indicate exacerbation samples and circles
longitudinal nonexacerbation samples. The exacerbation sample from subject number RA012 and the
baseline samples from number RA019 and number RA033 were not successfully sequenced. The latter
two subjects were not shown as they withdrew before the follow-up period.
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in NPM composition during AE. Taken together, these observations suggested aberrant
microbial diversity and composition of the nasopharynx at AE compared to both base-
line and healthy controls.

Temporal stability of Moraxella-and Dolosigranulum-dominated NPM. We next
investigated the MPG transitions between consecutive time points in 121 asthmatic longi-
tudinal samples, regardless of whether they were from AE or AS subjects. Stable MPG transi-
tion was defined as the same MPG being observed in samples at the subsequent time point
from the same subject. For all asthmatic subjects, a pairwise assessment of transitions
between the six MPGs was performed to determine the frequency of stable transition for
each MPG. For theMoraxellaMPG and DolosigranulumMPG, the observed frequency of sta-
ble transition was significantly higher than the expected frequency (Fig. 4A), suggesting
temporal stability of NPMs dominated by each of these two genera. When stable coloniza-
tion of a given genus was defined as .50% of a patient’s longitudinal samples belonging
to the MPG dominated by that genus, we observed that 30.8% (4/13) of AS patients had
NPM stably colonized by a Corynebacterium 1 whereas none of AE patients’ NPM was stably
colonized by this genus (Fisher’s exact test, P = 0.098). Such observation implied that
Corynebacterium 1might protect against AE. Furthermore, we assessed the temporal trends
in relative abundances of these MPG genera using linear mixed-effect (LME) models. The

FIG 2 The major phyla and genera of the nasopharyngeal microbiome in all 144 samples. (A) Bar plots showing the average
relative abundances of the major phyla and their corresponding genera across all samples. (B) Complete linkage hierarchical
clustering based on Bray-Curtis distances assigned samples into six MPGs according to the most abundant genus in each sample.
MPGs were color-coded as to their dominant genera. Time points, age, and sample type were also color-coded as indicated.
Timepoint 0 refers to baseline. Control, nonasthmatic controls; Baseline, asthmatic samples collected at baseline; Nonexacerbation,
longitudinal samples collected when AE episodes did not occur; Exacerbation, all exacerbated samples collected at both
scheduled and extra visits.
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results indicated that Moraxella steadily increased (P = 0.001), whereas Corynebacterium 1
(P = 0.019) and Anoxybacillus (P = 0.031) decreased over time (Fig. 4B). The other three MPG
genera (Dolosigranulum, Staphylococcus, and Streptococcus) remained relatively stable dur-
ing the follow-up period (P. 0.05 for all).

Dynamic patterns of NPM are comparable between AE and AS patients.
Twenty-four asthmatic patients who had $ 3 longitudinal FNPS samples (including
baseline and scheduled visits) were included in the longitudinal analyses (n = 121,
Fig. 1A). These patients were categorized into AE (N = 11) and AS (N = 13) groups, with
the baseline clinical characteristics being comparable between the two groups
(Wilcoxon rank-sum test or Fisher’s exact test, P . 0.05 for all; Table S1). We assessed
the temporal variations of alpha and beta diversity as well as taxa abundances using
LME models. In these models, time points, asthma groups, and their interactions were
included as fixed effects and the subject as a random effect of both the intercept and
the slope of time points. We found that NPM alpha diversity (SDI) significantly
decreased (P , 0.001; Table 2) over time. However, the changing patterns were com-
parable (P = 0.727; Fig. 5A and Table 2) between AE and AS children. These observa-

TABLE 1 Relationship between clinical factors and NPM composition at baseline

Variable R2 P value
Asthma groupa 0.006 0.993
Gender 0.036 0.636
Age 0.135 0.014
Human rhinovirus infection 0.061 0.306
Inhaled corticosteroid treatment 0.026 0.828
Underweight 0.072 0.190
Pet keeping 0.064 0.241
Smoking exposure 0.022 0.920
Shared bedroom 0.021 0.928
Presence of siblings 0.043 0.544
Asthma control 0.036 0.657
Concomitant HDM atopy and exposure 0.132 0.016
aAsthma exacerbation (AE) versus stable asthma (AS). P value and R2 were calculated based on Bray-Curtis
distance with Adonis PERMANOVA (1000 permutations) test using vegan R package; significant P values (,0.05)
were shown in bold.

FIG 3 Distinct alpha and beta diversity of NPM between asthmatic and healthy subjects. (A) Shannon diversity index in controls,
asthmatic baseline, and exacerbated samples. Kruskal-Wallis test was conducted followed by Dunn’s post hoc test with FDR
correction. Boxes represent the median, lower and upper quartiles, respectively. The ends of the whiskers indicate the minimum and
maximum of the data after the removal of outliers. (B) Principal coordinate analysis (PCoA) plot based on Bray-Curtis distances. Points
refer to samples that were colored by the group. Control, nonasthmatic controls; Baseline, asthmatic samples collected at baseline.
Exacerbation, all exacerbated samples were collected at both scheduled and extra visits.
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tions were robust to other alpha diversity measures (Fig. S3A to C and Table 2).
Regarding beta diversity, we did not detect a significant trend over time in Bray-Curtis
distance between same-subject NPMs sampled in consecutive time points (P = 0.398;
Table 2). However, although AE and AS groups exhibited a similar temporal pattern in

FIG 4 Stability and temporal dynamics of NPM in asthmatic children (n = 121). (A) MPG transition matrix between
consecutive samples from the same subject for all patients. T1, 1st-time point; T2, next time point. Cell numbers refer
to the number of cases in which the corresponding transition from T1 to T2 was observed. Cells are color-coded to
indicate row proportions as shown in the legend. The numbers of stable transitions for each MPG were shown as the
second diagonal of the matrix, meaning that the same MPG was observed at T1 and T2. The table in the right panel
shows observed and expected frequencies of stable transitions for the corresponding MPG with their names labeled
on the left side of the matrix. (B) Stacked bar plots showing the relative abundances of the top 20 most abundant
genera by time point. Genera were ordered by their average relative abundances and those beyond the top 20 were
collapsed as ‘Others’. Time point 0 refers to baseline.
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beta diversity (Bray-Curtis distance, P = 0.185), we observed a trend toward increased
dissimilarity between consecutive NPM in AE patients and an opposite trend in AS
group (Fig. 5B), which was particularly so based on Jaccard distance (Fig. S3D, P =
0.023). Similar findings were also obtained using other beta diversity measures
(Fig. S3D to F, Table 2), suggesting higher temporal stability of NPM composition in AS
than AE patients. Furthermore, these changing patterns in the alpha and beta diversity
of NPM held even when we considered nonexacerbated samples only (n = 116,
Fig. S4).

We next examined temporal patterns of the top eight most abundant genera
(mean relative abundance.1%) that accounted for 92.6% of quality-filtered sequences
in the data set. Consistent with previous findings (Fig. 4B), Moraxella (P = 0.006) signifi-
cantly increased while Corynebacterium 1 (P = 0.021), Anoxybacillus (P = 0.035) and
Pseudomonas (P , 0.001) decreased over time (Fig. 5C and Table 2). Nevertheless, lon-
gitudinal patterns in the abundances of all top eight genera were similar between AE
and AS groups (LME models, P. 0.05 for all; Table 2). Dynamic changes in relative pro-
portions of these eight genera were further visualized with volatility analysis (Fig. S5 to
S7). Collectively, these findings implied that short-term temporal dynamics of NPM
communities were not related to AE in children.

NPM underwent Moraxella expansion during AE and showed remarkable
resilience afterward. To investigate the temporal fluctuations of NPM during AE, we
assessed changes in microbial diversity and taxa abundances for AE subjects over three
phases of exacerbation (i.e., pre, during, and post). Twenty-eight samples from 10 AE
patients were included and one AE patient with an NPM profile available at only one time
point was excluded. Alpha diversity (SDI) was lower in exacerbation than pre-exacerbation
(PreE, P = 0.094) and postexacerbation (PostE, P = 0.297, Wilcoxon signed-ranked test) sam-
ples (Fig. 6A). Intriguingly, the abundances of MPG genera experienced dramatic fluctua-
tions during AE and exhibited extraordinary resilience after AE resolution. The mean relative
abundance of Moraxella (48.5%) almost doubled at exacerbation compared to that in PreE
(21%) and PostE (25%) samples. In contrast, Corynebacterium 1 accounted for 17.1% of NPM
at exacerbation, decreasing by more than 40% compared to both PreE (29.4%) and PostE
(30.8%), respectively; Dolosigranulum also decreased by 39% at exacerbation (16.4%) com-
pared to before and after exacerbation (27% for both PreE and PostE) (Fig. 6B). These fluctu-
ations were further corroborated by MPG transition analyses. We observed that half of the
samples (3/6) switched to Moraxella MPG during exacerbation from Dolosigranulum-
dominated (two samples) or Corynebacterium 1-dominated (one sample) MPGs before

TABLE 2 Linear mixed-effect (LME) model results for NPM alpha, beta diversity, and taxa abundances

Category Response

Fixed effects
Interaction terms

Timea Asthma group Time: asthma group
Alpha diversity Shannon diversity index ,0.001 0.537 0.727

Pielou’s evenness index ,0.001 0.577 0.419
Observed ASVs ,0.001 0.670 0.431
Faith’s phylogenetic diversity ,0.001 0.674 0.316

Beta diversity Bray-Curtis distance 0.398 0.342 0.185
Jaccard distance 0.403 0.665 0.023
Unweighted UniFrac distance 0.363 0.614 0.144
Weighted UniFrac distance 0.193 0.782 0.198

Relative abundances of the top eight genera Moraxella 0.006 0.561 0.465
Corynebacterium 1 0.021 0.602 0.311
Dolosigranulum 0.106 0.593 0.420
Staphylococcus 0.172 0.084 0.507
Streptococcus 0.294 0.687 0.546
Anoxybacillus 0.035 0.386 0.381
Pseudomonas ,0.001 0.131 0.226
Geobacillus 0.051 0.515 0.476

aLME modeling was performed using the nlme::lme function in R. Significance (P values) of LME model analyses was determined by ANOVA. Significant P values (,0.05)
were indicated in bold.
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exacerbation. These samples switched back to Dolosigranulum, Corynebacterium 1, or other
MPGs after an exacerbation (Fig. 6C). These lines of evidence supported thatMoraxella over-
growth played a pathogenic role in AE among schoolchildren.

Altered metabolic pathways of NPM during AE were mainly contributed by
Moraxella. Taxonomic changes during exacerbation also corresponded to alternations
in the functional potential of NPM communities. Through functional prediction of NPM
on these 28 samples (PreE, Exacerbation, and PostE) using PICRUSt2, we identified a
total of 168 KEGG pathways, among which 107 pathways (mean relative abundance
.0.1%) were subjected to differential abundant test using ALDEx2. Eight pathways dif-
fered significantly (P , 0.05, Wilcoxon signed-rank test) in their community-total rela-
tive abundances across groups (Fig. 6D, Fig. S8, and Table S2). At a threshold effect size
.0.3, abundances of D-arginine and D-ornithine metabolism (P = 0.013) was higher in
the PreE group, while nicotinate and nicotinamide metabolism (P = 0.048), synthesis
and degradation of ketone bodies (P = 0.045), and methane metabolism (P = 0.032)
were more abundant in the exacerbation group. Biosynthesis of antibiotics and other
secondary metabolites like streptomycin (P = 0.032) and vancomycin (P = 0.007) were

FIG 5 Dynamic changes in NPM diversity and composition over time among asthmatic children using LME modeling. (A and B)
Alpha diversity based on Shannon diversity index (A), and beta diversity based on Bray Curtis distance (B) are plotted against time
points. Red and blue lines are regression lines from LME models for AE and AS groups, respectively. Shading indicates the 95%
confidence interval (CI). Points denote samples from AE (in red) and AS (in blue) groups. (C) Heatmap shows the average relative
abundances of the top 8 most abundant genera by time point in AE and AS groups. AE, asthma exacerbation; AS, stable asthma.
Time point 0 refers to baseline.
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enriched in postexacerbation samples (Fig. 6D and Table S2). Importantly, we observed
a trend that the mean relative contribution of Moraxella to nicotinate and nicotinamide
metabolism, commonly known as vitamin B3, has more than doubled at exacerbation
(56.96 32.5%) compared to both PreE (27.16 37.2%) and PostE (23.26 36.1%) groups
(P = 0.094; Fig. S9 bottom). Similar trends were also observed for ketone bodies and
methane metabolism (unpublished data). These findings echoed our previous result of
doubled relative abundance of this genus at exacerbation (Fig. 6B), supporting that
overrepresentation of Moraxella in the nasopharynx might provoke AE through modu-
lating changes in microbial metabolism.

DISCUSSION

In this prospective study, we comprehensively characterized the temporal dynamics
of NPM associated with AE by triweekly sampling at six time points over the autumn-
winter period among Hong Kong children. Alpha diversity decreased while microbial
composition remained stable over time in these children. The longitudinal patterns of
NPM diversity and composition did not differ significantly between AE and AS patients,
which suggested that the short-term temporal dynamics of NPM in asthmatics might
not predict pediatric AE. NPM exhibited transient Moraxella expansion during AE and
remarkable resilience after its resolution. Microbial pathways implicated in the metabo-
lisms of vitamin B3, ketone bodies, and methane were markedly heightened at

FIG 6 Taxonomical and functional changes in NPM at three phases of exacerbation. (A) SDI of nasopharyngeal microbial communities showed a trend
toward decrease during exacerbation. Black lines connect samples from the same AE subject. Boxes represent the median, lower and upper quartiles,
respectively. The ends of the whiskers indicate the minimum and maximum of the data after the removal of outliers. (B) Stacked area chart showing the
relative abundances of the top 15 ASVs based on 90th percentiles. ASVs were color-coded according to their phylum-level and genus-level taxonomic
classification. ASVs from the five most abundant phyla were further stratified by genera, with other ASVs collapsed as “residuals”. (C) Sankey diagram
indicating MPG transitions throughout the pre-exacerbation, during, and postexacerbation stages. Genera names representing MPGs were shown beside
the colored boxes. Numbers denote the number of samples belonging to the respective MPGs. (D) KEGG pathways were significantly differentially
abundant during exacerbation compared to PreE (upper panel) or PostE (bottom panel). PreE, pre-exacerbation; Exacerbation, during exacerbation; PostE,
postexacerbation.
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exacerbation compared to nonexacerbated states; these enhanced functions were pri-
marily contributed by Moraxella.

This study analyzed the microbiome in the upper airway of children which repre-
sented the main literature due to ethical concerns for performing bronchoscopy in this
age group (18–20). Several pediatric studies indicated that a nasopharyngeal swab was
a good surrogate for endotracheal aspirates or bronchoalveolar lavage to investigate
the airway microbiome (21, 22). Exacerbated nasopharyngeal samples showed lower
microbial diversity compared to baseline and control groups, which contradicted a pre-
vious study showing higher NPM diversity in adults with AE than healthy subjects (14).
This discrepancy might be explained in part by the age difference, with this factor
being associated with baseline NPM composition in our study and that also reported
by McCauley et al. (16).

During the surveillance period, we observed a steady decrease over time in the rich-
ness and evenness of NPM. This was discrepant from previous work by Pérez-Losada et
al. (23) that reported no difference in NPM alpha diversity based on two sequential
samples collected 5.5 to 6.5 months apart. One possible reason is fewer time points
(only two) and the longer sampling interval across different seasons in that study
might fail to capture short-term changes in NPM. Seasonal changes in NPM have been
reported in healthy young children (24). The more frequent (every 2 to 4 weeks) and a
larger number of sampling time points (six) in this study allowed more accurate and
reliable characterization of NPM dynamics in asthmatic children. In contrast, we and
others (23) found that NPM composition did not change over time, suggesting tempo-
ral stability of NPM community structure in asthmatics. Interestingly, although the lon-
gitudinal patterns of both alpha and beta diversity were similar between AE and AS
groups, we did observe a trend toward lower Bray-Curtis dissimilarity of NPM between
consecutive time points in AS patients and an opposite trend among patients with AE.
This might reflect higher stability in the upper airway microbiome among the former
that reduced their susceptibility to AE.

The major genera in NPM showed differential longitudinal changes in their relative
abundances during the surveillance period. Moraxella gradually increased over time and
MPG dominated by this genus exhibited temporal stability, supporting a previous finding
of Moraxella being a stable colonizer in the nasopharynx of asthmatic children (16).
Dolosigranulum-dominated MPG also showed temporal stability in asthmatic children,
which has not been reported before. Our observation that MPGs changed from being
dominated by Dolosigranulum or Corynebacterium 1 before exacerbation to Moraxella
dominance at the time of AE was strikingly consistent with the finding from a prospective
US cohort (15). This phenomenon might indicate an antagonistic relationship through
competitive colonization betweenMoraxella and these two genera during AE. Indeed, anti-
bacterial products produced by Corynebacterium and Dolosigranulum prevented the
growth and nasal colonization of Streptococcus (25, 26), a pathogen associated with recur-
rent wheezing and childhood asthma (27, 28). It is worth noting that the role of the
Dolosigranulum in asthma remains controversial. We previously found Dolosigranulum to
be associated with a lower risk of wheezing illnesses in preschool children (13), whereas
Kim et al. (29) reported a higher proportion of this genus in asthma and proposed that
Dolosigranulum could increase the risk of respiratory tract infection. Further investigations
are needed to elucidate mechanisms of nasopharyngeal cocolonization interactions
among Dolosigranulum, Corynebacterium 1, andMoraxella in AE.

All the six identified MPGs except Anoxybacillus have been reported previously (16, 30).
In Western asthmatic children, Haemophilus-MPG was more commonly identified from the
nasopharynx (16, 20). Anoxybacillus was one of the most abundant airborne thermophilic
bacterial genera in China (31) that contaminated processed food products, which were
not initially considered human colonizers (32). However, a recent study reported that
Anoxybacillus enrichment in the lower respiratory tract might suppress allergies in Chinese
children (33). We revealed that this genus decreased with time independent of AE, sug-
gesting Anoxybacillus to be a transient colonizer of NPM with a potentially protective role
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in Asian asthmatic children. This finding may reflect distinct NPM dynamics of asthmatic
children across geographically different populations.

We found significantly enhanced functions related to microbial metabolism of vitamin
B3, ketone bodies, and methane at AE. Kelly et al. (34) reported a higher level of nicotina-
mide pathway metabolites in the plasma of asthmatic children. Elevated expression of
NADP oxidase 4 (NOX4) in asthmatics promoted aberrant contractility of airway smooth
muscle (35). Additionally, increased synthesis and degradation of ketone bodies at exacer-
bation suggests that NPM might regulate its ketone body metabolism during AE. This
finding has not been reported previously in asthmatic patients although a previous study
suggested that the gut microbiome could contribute to the elevated serum level of ke-
tone body b-hydroxybutyrate in a mouse model of allergic asthma (36). Furthermore,
methane metabolism, as an important pathway related to cellular energy production,
was altered in asthmatic airways of Asian children based on the metabolomics of exhaled
breath condensate (37). Another metabolomics study suggested perturbation of this
pathway in AE children after combination treatment of inhaled budesonide and salbuta-
mol (38). The elevated microbial methane metabolism during AE in this study corrobo-
rated these findings from the perspective of metagenomics, suggesting that dysregulated
energy metabolism derived from methanogenic bacteria in the nasopharynx might play a
role in AE. Given a higher abundance of Moraxella during AE has been observed in our
study and others (16, 39), we further revealed that Moraxella’s relative contribution to
these above-mentioned increased pathways also doubled at AE compared to non-AE
time points, which provided a functional explanation for Moraxella species pathogenesis
in AE. On the other hand, weakened biosynthesis of antibiotics such as streptomycin and
vancomycin at AE might foster airway pathogens sensitive to these antibiotics and thus
aggravate asthma.

In summary, we demonstrated that asthmatic children presented a dynamic pattern of
NPM with reduced diversity and stable composition independent of AE when viewed at a
tri-weekly timescale over 4 months. Transient expansion of Moraxella with altered NPM
metabolic pathways during AE provided a clue to the mechanisms underlying Moraxella-
related AE risk. Future multiomics studies aiming at unveiling the pathogenicity mecha-
nisms of NPM in AE occurrence could pave the way for new therapeutic and preventive
strategies for asthma.

MATERIALS ANDMETHODS
Study design and sample collection. Thirty-three school-age (6 to 17 years) children of Chinese eth-

nicity were recruited from the allergy clinic of Prince Wales Hospital, a university-affiliated teaching hospital
in Hong Kong. These children suffered from physician-diagnosed asthma, and they were exacerbation-prone
as defined by a history of at least one AE within the past 12 months. These asthmatic subjects were prospec-
tively followed up for asthma control status at regular intervals to investigate the relationship between NPM
dynamics and AE occurrence.

AE was defined by one of the following criteria: (i) regular use of $3 doses of short-acting b2-agonist
daily for $2 days, (ii) prescription of short-course oral prednisolone, or (iii) asthma-related unscheduled phy-
sician visit, emergency room visit or hospitalization. All patients received standardized asthma treatment
according to Global Initiative for Asthma guidelines. Exclusion criteria for subjects include (i) history of struc-
tural lung disease; (ii) coexisting primary or secondary immunodeficiency; (iii) unwillingness for serial follow-
up; and (iv) non-Hong Kong residents. Demographics, personal and family history of allergic diseases, and
environmental exposures were collected by Chinese questionnaire of International Study of Asthma and
Allergy in Childhood (ISAAC) (40). Subjects’ atopic status to common aeroallergens was assessed by skin
prick test (SPT), and HDM exposure was evaluated by measuring Der p 1 concentration in settled mattress
dust samples (41) by enzyme-linked immunosorbent assay (Indoor Biotechnologies, Cardiff, UK).

Samples and clinical metadata obtained at recruitment were treated as the baseline. Asthmatic sub-
jects were then followed from September to December 2017, the peak season of HRV infection in Hong
Kong (42), to collect FNPSs (Copan FLOQSwab, Brescia, Italy) from both nostrils at five planned home vis-
its with 2-week to 4-week intervals. Patients’ asthma control status was evaluated by asthma diary,
asthma control test (ACT) or childhood-ACT (C-ACT, for subjects under 12 years old), spirometry (MIR,
Italy), and exhaled nitric oxide levels (eNO; NIOX VERO, Circassia, USA). ACT or C-ACT score.19 was con-
sidered good asthma control (43). Subjects who experienced any AE episodes during the surveillance
period were deemed as AE group, and those without exacerbation events were considered the stable
asthma (AS) group. Exacerbation samples were collected within 2 days from the onset of worsened
asthma symptoms. Extra illness visits were arranged when AE occurred during the intervals that were
beyond 2 days from the scheduled visits. Additionally, 20 schoolchildren without asthma history ever
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were recruited from the community in the same district as controls, for whom one cross-sectional FNPS
sample was collected at recruitment. All subjects were free from upper respiratory tract infection (URTI)
for at least 2 weeks and not exposed to any antibiotics within 4 weeks before recruitment. FNPS samples
were transported to the laboratory on ice and stored at –80°C until analyses.

DNA extraction, amplification, and 16S rRNA gene sequencing. Fifty microliters of each FNPS
sample was aliquoted for HRV detection by RT-PCR. RNeasy Minikit (Qiagen) was used for viral RNA
extraction and PrimeScript RT reagent kit (TaKaRa, Japan) for reverse transcription-PCR (RT-PCR) using
HRV-specific primers. Total genomic DNA was extracted using MO BIO Power Soil DNA isolation kit
(Qiagen) according to the manufacturer’s protocol for low biomass samples. Extracted DNA was quanti-
fied with a Qubit 4 Fluorometer, and samples with $50 ng DNA were retained for further processing.
Library preparation was performed using GeneRead DNA Library I kit (Qiagen), and the V4 region of the
bacterial 16S rRNA gene was amplified using the 515F/806R primer pair and purified as described previ-
ously (44). Quantified and pooled amplicons were sequenced on Illumina HiSeq 2500 platform (Illumina
Inc., San Diego, CA, USA) to generate paired-end (2 � 250-bp) reads.

Microbiome data analyses. Demultiplexed reads from two separate sequencing runs were imported
into QIIME2 (45) (version 2020.2) and subjected to quality control using DADA2 (46), respectively. DADA2
trimming parameters were: 19 to 230 bp forward and 20 to 220 bp reverse reads for run 1,19 to 209 bp for-
ward and 20 to 136 bp reverse reads for run 2, which removed low-quality bases with Phred33 quality score
,35. The filtered sequences were then subjected to a high-resolution sample inference process by the
DADA2 algorithm to retrieve exact amplicon sequence variants (ASVs). ASV tables from the two runs were
merged into one, and taxonomy assignment of the resulting ASVs was performed based on SILVA 132 refer-
ence database with 99% similarity. To minimize the impact of various sequencing depths, we rarefied the
samples to an even sampling depth (22,201 reads) at which all samples were retained while all taxa present
within a sample were captured (Fig. S1). The rarefied ASV table was used for all downstream analyses.

We used four metrics to indicate alpha diversity: SDI, Pielou’s evenness index, observed ASVs, and
Faith’s phylogenetic diversity (Faith PD). Another four metrics were used to represent beta diversity:
Jaccard distance, Bray-Curtis distance, unweighted UniFrac and weighted UniFrac distances. All these
metrics were calculated using the QIIME2 q2-diversity plugin. Permutational multivariate ANOVA
(PERMANOVA) was applied to assess the association of between-sample community dissimilarity (beta
diversity) with a range of clinical variables using the adonis function in the vegan R package (1,000 per-
mutations). Procrustes analysis of Bray-Curtis distance was performed in QIIME2 to compare the principal
coordinate matrices between paired baseline and exacerbation samples, with the significance of the cor-
relation being assessed by a mantel test. A PCoA plot was generated using the R package ‘ampvis2’ (47)
to visualize dissimilarity between samples.

To analyze the NPM dynamics, we adopted a modified concept of microbiome profile groups (MPGs)
(20, 30) to classify samples. In brief, samples were assigned to MPGs based on the most abundant (domi-
nant) genus in each sample. The relative abundances of MPG genera in individual samples were sub-
jected to hierarchical clustering based on Bray-Curtis distance and complete linkage implemented by
hclust R function. Volatility analysis was performed using the ‘volatility’ action of the q2-longitudinal plu-
gin to display dynamic changes in the topmost abundant genera.

Metagenome prediction of NPM was conducted on a subset of 28 samples from AE patients using
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States version 2 (PICRUSt2,
v2.3.0-b) (48) to assess the metabolic alterations during AE compared with pre-AE and post-AE time
points. Specifically, the rarefied ASV table from QIIME2 was filtered to remove extremely rare ASVs
(present only in one sample or with a total frequency ,2), resulting in 366 ASVs to which PICRUSt2
was applied with the --per_sequence_contrib option. The generated gene family abundances were
employed to infer KEGG pathway-level information with MinPath (49). A weighted Nearest Sequence
Taxon Index (NSTI) score was calculated to assess the accuracy of PICRUSt2 predictions for each sam-
ple, which measured the similarity between bacteria from a given sample and the reference genome
sequences. Five ASVs with an NSTI score .2 were excluded from downstream analysis (50).

Statistical analysis. All statistical analyses were performed using R version 4.0.3 (51) unless stated
otherwise. The .qza files derived from QIIME2 were imported into R using qiime2R (52). Categorical and
continuous variables were compared between groups using the Chi-square test and Wilcoxon rank-sum
test, respectively. Alpha diversity across three or more groups was compared by the Kruskal-Wallis test
followed by Dunn’s post hoc test. LME models (50, 53, 54) were performed using the nlme::lme function
in R to determine the longitudinal changes in alpha and beta diversity as well as taxa abundances. We
modeled time points, asthma group (AE versus AS), and their interaction as fixed effects and used sub-
jects as a grouping variable in the random effect of time. Partial residual plots were generated using the
R package ‘visreg’ (55) to represent effects.

NPM transitions were evaluated by analyzing MPG stability between consecutive samples from the same
subjects (30). Specifically, transition into the same MPG between two consecutive time points (T1, T2) was con-
sidered a stable transition. The observed frequencies were calculated as the proportion of stable transitions
among all observed transitions, with 95% confidence intervals (CI) estimated from 1,000 bootstrapping. The
expected frequency of a particular MPG was defined as the square of the proportion of samples belonging to
that MPG at T1 under the assumption of constant frequencies and random transitions. An MPG was consid-
ered significantly more stable than expected if the expected frequency was less than the lower limits of 95%
CI of the observed frequency of stable transition, and less stable if the expected value was greater than the
upper limits.

For metagenome inference, pathway data were normalized by centered log-ratio transformation (CLR).
The R package ‘ALDEx2’ (version 1.22.0) (56) was used to identify significantly altered KEGG pathways
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based on Wilcoxon signed-rank test and Welch’s t test. A web tool BURRITO (57) was employed to visualize
the contributing taxa for significant pathways. Statistical significance was set as a P , 0.05. P values were
adjusted for multiple testing by Benjamini-Hochberg false discovery rate (FDR) method.

Ethics approval and consent to participate. The project was approved by the Joint Chinese
University of Hong Kong-New Territories East Cluster Clinical Research Ethics Committee (reference no.
2017.031). All participants provided written informed consent.

Data availability. Sequences were available in the NCBI Sequence Read Archive with the accession
number PRJNA748666. In-house R scripts used to generate figures were available on GitHub (https://
github.com/Jessie-HOU/microbiome/tree/master).
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