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Abstract

particular emphasis on genetic and epigenetic factors.

Multiple factors interact to trigger allergic diseases, including individual genetic background and factors related to
the environment such as exposure to allergens, air pollution and respiratory infections. The FOXP3 transcription
factor is constitutively expressed in CD4"CD25"FOXP3* regulatory T cells (Tregs) and is critical for the maintenance
of immune homeostasis. For example, FOXP3 is responsible for the suppression of the Th2 response following
exposure to allergens. Studies have shown that expression of the FOXP3 gene is reduced in patients with asthma
and allergies compared to healthy controls. Therefore, the impairment of FOXP3 function caused by genetic
polymorphisms and/or epigenetic mechanisms may be involved in the etiology of asthma and other allergic
diseases. This review discusses some aspects of the role of FOXP3 in the development of asthma and allergy, with a

Background

Allergic respiratory diseases such as asthma and rhinitis
are considered a serious public health problem and have
an increasing prevalence in all regions of the world,
regardless of the economic and social development of
these regions [1]. According to the World Health
Organization (WHO), each year approximately 250,000
deaths are due to asthma. and the estimated number of in-
dividuals affected by this disease has reached 300 million
people worldwide [2].

Despite the increasing technological advancements of
molecular biology research and the substantial explor-
ation of the genetics and epigenetics of asthma and
other allergic diseases, the immune mechanisms of such
diseases remain unclear. However, in recent years, these
studies have raised new interest in the regulatory mole-
cules of the immune system [3, 4]. Some researchers
have hypothesized that the genetic variations and epigen-
etic changes that affect molecules found in regulatory T
cells, such as the FOXP3 gene, can cause dysfunction of
regulatory T cells and can thus influence the development
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of immune-mediated diseases. The present review aims to
provide an overview of FOXP3 role in immune regulatory
processes as well as a discussion of the implications
of this activity on allergic diseases, specifically asthma
and allergic rhinitis.

FOXP3, Asthma and Allergies

Respiratory allergies are complex diseases that are trig-
gered by multiple interacting factors, including an indi-
vidual’s genetic background and factors related to the
environment, such as allergen exposure, air pollution
and respiratory infection [5, 6]. Allergic asthma is char-
acterized by the activation of Th2 CD4+ T cells, which
promotes an IgE-mediated response, activates mast cells,
triggers an increase of eosinophils in the tissue and pro-
motes bronchial hyperactivity. Upon allergen exposure
and subsequent sensitization, a group of cytokines, IL-3,
IL-4, IL-5, IL-9, IL-13 and GM-CSE, which are primarily
Th2 type-cytokines, are released and may play a role in
allergic asthma [7-9]. Recent studies have suggested that
the mechanism of the Th2 response involves the epithelial
production of TSLP (Thymic Stromal Lymphopoietin)
during dendritic cell activation, which also leads to Th17
cell differentiation [10, 11]. IL-33 produced by endothelial
and epithelial cells seems to potentiate the Th2 response,
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which worsens asthma [11]. In non-atopic asthma, skin
tests are negative for specific allergens, and the serum
levels of total IgE are normal or low [12, 13]. In adults,
such a phenotype of asthma is characterized by a poor re-
sponse to bronchodilators and thus requires the pro-
longed use of corticosteroids and presents a more rapid
decline in PFT (Pulmonary Function Testing) parameters.
Symptoms of non-atopic asthma are induced by nonspe-
cific triggers, but the pathophysiological mechanisms are
not yet fully understood [14]. With the recent discovery of
iNKTs cells and innate lymphoid cells, researchers have
suggested a possible role for these cells in both a mechan-
ism for increasing asthma severity [15, 16] and a mechan-
ism for the non-atopic asthma phenotype [15]. In addition,
severe asthma phenotypes may be associated with the pres-
ence of Th17 cells, and the production of a Th17 profile
(IL-17A, IL-17 F, IL-22, and IL-21) and IL-1p, which was
shown to induce a Th17 profile and induces an increase in
airway inflammation predominantly within neutrophil cells
[17, 18]. According to the hygiene hypothesis, a reduction
in exposure to variety of microorganisms, improvement of
hygiene and sanitation, vaccines and the advent of wide-
spread use of antibiotics has increased the prevalence of al-
lergic diseases worldwide, linking the lack of microbial
exposures in early childhood to increased susceptibility
and the development of allergic diseases [4, 17]. An exten-
sion of the hygiene hypothesis, the “Old Friends” mechan-
ism, suggests that urbanization over the last centuries has
restricted human exposure to pathogens that are consid-
ered “old friends” of humanity, such as ancestral strains of
Mycobacterium tuberculosis and Helicobacter pylori, intes-
tinal helminthes and the Hepatitis A virus. This lack of ex-
posure may have increased the prevalence of many allergic
diseases in urban populations, including asthma [19, 20].
In this way, exposure to these “old friend” pathogens ap-
pears to be important to maturate immune cells and, more
importantly, to mount a proper immune response and
teach immune cells how to properly control inflammation
[21]. The main mechanism whereby this can occur is
through the activation of Treg cells [22] by pathogens such
as viruses, bacteria and parasites [23]. There are twoTreg
cell subtypes: FOXP3+ Treg cells and the Type 1 regula-
tory cells (Trl). The first cell subtype expresses FOXP3
and is subdivided into thymus-derived Treg cells (tTreg)
and peripheral Treg cells (pTregs). The second Trl cell
subtype does not express the FOXP3 transcription factor to
exert its functions [24]. The regulatory effects of FOXP3+
Treg cells are due to its repression of IL-2 production and
its induction of CTLA-4 expression. In contrast, the activ-
ity of Tr1 cells are dependent on IL-10 production, regard-
less of the FOXP3 expression levels [25-27].

Evidence suggests that the transcription factor FOXP3,
which is constitutively expressed in CD4"CD25"Foxp3*
regulatory T cells (Tregs), are critical for the maintenance
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of immune system homeostasis and are responsible for
the suppression of Th2 responses following exposure to
allergens [28] (Fig. 1).

Several studies have shown that allergic patients, includ-
ing asthmatics, have lower levels of Tregs in both the
bronchoalveolar lavage and peripheral blood monocytes
cells (PBMC) compared with healthy subjects [29, 30].

However, these associations remain unclear. Provoost
et al. 2009 showed that the numbers of peripheral blood
Treg-cells were similar in control subjects and asthmatic
patients [31]. Other authors have shown that patients
with atopic asthma have increased levels of Treg in per-
ipheral blood compared with healthy individuals, but not
non-atopic asthmatic individuals [4, 18].

Also, the FOXP3 levels in asthmatic patients are contro-
versial. Several studies have shown that FOXP3 protein
expression within Treg-cells is significantly decreased in
asthmatic patients [4, 31, 32], which may result in failure
of Treg cells to suppress Th proliferation and the produc-
tion of cytokines observed in those patients [4, 30, 33].
However, in a recent study was described a higher FOXP3
expression in asthmatic patients than healthy individuals
and the Treg cell-suppressive capacity was observed in
both groups [18].

These divergence can be explained by a methodological
differences between studies or because different Treg sub-
types were used or because those studies were performed
in the PBMC and thus represent a systemic response that
may be influenced by the environment. Alternatively, the
increased number of Treg cells in asthmatic patients,
particularly patients with atopic asthma, may indicate
a counter-regulatory mechanism that is yet not sufficient
to control allergic inflammation.

Strategies to enhance the regulatory transcription fac-
tor FOXP3 have been used to treat or prevent allergic
disease. The main approach to control allergy and
asthma is corticosteroid therapy, either ingested or in-
haled, both of which are associated with enhanced
Foxp3+ expression and an increased suppressor function
[34]. Recently, a novel therapeutic approach tested in
mouse aimed to up-regulate FOXP3 expression in a
time- and site-specific manner by administering an
intra-tracheal instillation of plasmid that contains the
mouse Foxp3 gene. This approach led to an attenuation
of airway inflammation by reducing the Th2 immune re-
sponse [35, 36]. Thus, identifying genetically susceptible
individuals in association with the development of treat-
ment strategies would be of great relevance for man-
aging allergic asthma.

Structure and function of FOXP3

Forkhead box (FOX) proteins constitute an evolutionar-
ily conserved family of transcription factors with a cen-
tral role not only during development but also in the
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Fig. 1 Mechanism of asthma development. The physiopathological mechanism of asthma involves three complex currently mechanisms: 1. The
polarization of Th2 response with the production of cytokines such as IL-4, IL5 and IL-13, participation of sIgk, mast cell degranulation
and predominance of eosinophils (classic atopic asthma); 2. Predominant participation of Th17 response, production of IL-17A; IL-17 F;
IL-21 and IL-22 cytokines and the presence of neutrophils (probable mechanism of non-atopic asthma or increasing severity of atopic

asthma); 3. Through the innate immunity activation where two main actions could be involved, the release of cytokines from epithelial
cells, TSLP and IL-33, and the interaction between iNKTs and ILCs cells. The TSLP acts on the activation of dendritic cells and induction of Th2 response,
and differentiation of T cells in Th17 profile. The IL-33 acts on the interaction between iNKTs and ILCs, but also acts enriching Th2-type cells. Evidence
that suggests the FOXP3 transcription factor, which is constitutively expressed in CD4 + CD25 + Foxp3 +regulatory T cells (Treg) is critical
for the maintenance of homeostasis and immune systemand alsoare responsible for the suppression of the Th2 and Th17 responses. DC = dendritic

cells; slgE = specificlgE; TLSP =thymic stromal lymphopoietin; iNKTs = invariant natural killer T; ILC2s = type 2innate lymphoid cells

adult organism [37]. This protein is expressed by T cells
and primarily functions to promote the differentiation of
TCD4 + CD25+ cells and stimulate their suppressive ac-
tivity [38, 39]. The term, “winged helix”, which is used to
describe its structure, derives from a helix—turn—helix
core of three a-helices that are flanked by two loops or
“wings”. There is an ~110-amino-acid DNA binding
forkhead domain, which is highly conserved. Thus, there
is a defined 3D structure and mode of DNA recognition
for this forkhead family of transcription factors [38].
This protein contains 431 amino acids with four func-
tional domains, as shown in Fig. 2. Although previous
research has shown that the fragment responsible for
NFAT inhibition is in the N-terminal, another study

demonstrated that removal of the FOXP3 C-terminal
prevents NFAT binding [40].

The expression of this transcription factor in T cells is
related to the proliferation of regulatory T cells, which
exert their suppressive activity on T helper cells to regu-
late the inflammatory response [41].

The role of FOXP3 in Treg cells has been demonstrated
in studies that suppress the function of this gene and
through adoptive transfer experiments. Several authors
have shown that after the knockout of FOXP3, Treg cells
lose their suppressive activity and start to produce IL-2
and Th1 cytokines. Similar to these findings, the adoptive
transfer of FOXP3 retrieves the regulatory function of T
cells and suppresses lymphoproliferative activity [42—44].
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Fig. 2 Schematic diagram of the FOXP3 gene (a), protein (b) and X Chromosome. The figure shows two isoforms of the gene (with difference in
exon 2) and some SNPs cited in the text. ZF: zinc finger domain, LZ: leucine zipper domain, and FKH fork-head domain.. The chromosome and
gene schematic diagram was modified from NCBI Reference Sequence (RefSeq)

The importance of FOXP3 for immune system func-
tion was demonstrated in scurfy mice with lymphoprolif-
erative disease and an X-linked condition that was
caused by a mutation in FOXP3 that deletes the C-
terminal domain. These animals are deficient in the pro-
duction of regulatory T cells and present with clinical
symptoms, such as exfoliative dermatitis, weight loss,
presence of auto-antibodies, lymphadenopathy and
lymphocytic infiltrates, which lead to animal death in ap-
proximately 3 weeks [45].

Many studies have investigated the specific domains
and, consequently, the function of FOXP3. Mutations in
the forkhead domain at amino acid positions 415 and 416
abolished nuclear migration of FOXP3. Mutations in the
leucine zipper domain cause a loss of dimerization and
thus reduce FOXP3 binding to promoter regions [46, 47].

FOXP3 is critically important for regulating the im-
mune system and can suppress NFAT function, thereby
inhibiting NFAT complex formation with AP-1 and in-
flammatory pathway activation. NFAT is bound in its
promoter region by FOXP3, which primarily serves to
down-regulate IL-2 and IL-4 and to up-regulate CTL-4
and CD25 [48]. FOXP family members can form dimmers
and activate transcription [49]. Members of this subfamily
include FOXP1, FOXP2, FOXP3 AND FOXP4. FOXP1,
FOXP2 and FOXP4 are expressed in gut, brain and lung
and appear to have a role in embryogenesis that is main-
tained in adults [49]. FOXP1 and FOXP2 activity is found
in the immune system [49, 50]. The co-expression and
heterodimer formation of FOXP1/FOXP3 has been re-
ported. FOXP1 is present in both CD4 + CD25+ and
CD4 + CD25- T cells, whereas FOXP3 is expressed
only in CD4 + CD25+ T cells. In mice with IPEX syndrome,
the depletion of E251 impaired the heterodimerization of
FOXP3 with FOXP1, thus suggesting a role for such het-
erodimerization in suppressive immune activity [50].

The role of FOXP3 polymorphism in asthma and allergic
diseases

The human FOXP3 gene is located on the X-chromosome
(Xp11.23), is 1296 bp in size, and contains 11 coding
exons and 3 noncoding exons. The FOXP3 gene belongs
to a family of molecular complexes that are ~600 kd all to-
gether and includes histone deacetylases and acetyltrans-
ferases, as well as other transcription factors such as
RUNX1 and NFAT1 [48, 51, 52]. Fig. 2 shows a schematic
diagram of the FOXP3 gene.

As observed in Fig. 2, two upstream 5’ noncoding exons
(-2a and-2b) are separated by 640 base pairs and are
linked at the second noncoding exon (-1). The -2b and
-1 exons are separated by five hundred base pairs and
have several cis-regulated elements [53, 54]. The FOXP3
gene has more than a hundred single nucleotide polymor-
phisms (SNPs), nearly twenty of which have been studied
for association with different diseases [55-58].

SNPs are the most common variations in the genome
and are responsible for individual phenotypic differences.
The coding sequences of genes are often conserved, but
the presence of SNPs or genetic mutations may be re-
lated to the susceptibility to complex diseases. The role
of host genetic factors in the etiology of complex dis-
eases is generally studied using Genome-Wide Associ-
ation Studies (GWAS) or Candidate Gene Studies.
Many GWAS have investigated the influence of genetic
polymorphisms on the development allergic diseases
[59-61], but few studies have included the X chromo-
some because it is difficult to analyze [62]. The X
chromosome contains more than 300,000 SNPs on
2300 genes, almost all of which encode proteins, such
as FOXP3 [63, 64]. GWAS of asthma have successful
identified genetic susceptibility; however, little informa-
tion about the X chromosome has been reported, and
no information about the association of FOXP3 SNPs
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on allergic diseases has emerged [59-61]. A notable ex-
ception is the Moffatt et al. 2010 study, which analyzed
the X chromosome in populations with predominant
European ancestry but reported no statistically signifi-
cant association signals [65]. However, it is important
to note that X chromosomal variants are often under-
represented in genotyping platforms compared with
autosomal chromosomes [66]. The fact is that the ana-
lysis of SNPs within the X chromosome can provide
important information regarding genetic factors associ-
ated with diseases and should not be neglected. GWAS
are the most powerful approach to identify the genetic
risk for asthma, but candidate gene studies are the most
common, and the results of these studies on FOXP3 are
discussed here.

Recently, the FOXP3 gene has been investigated in
association studies for many diseases [55-57]. Muta-
tions in this gene may be associated with the devel-
opment of Immune dysregulationpolyendocrinopathy
and enteropathy X-linked (IPEX) syndrome, a rare
and fatal pediatric condition. Bennett et al. 2001 iden-
tified a mutation in the FOXP3 gene in patients with
IPEX who exhibited aggressive autoimmune features
[45]. This finding suggests that the genetic variations
in FOXP3 gene may be associated with T cell dysfunc-
tion. Thus, host genetic factors that affect FOXP3 can
determine differences in susceptibility to allergic dis-
eases such as asthma.

Over the last few years, polymorphisms in this gene have
been evaluated in association studies for several allergies
[67-69], but few studies in asthma were conducted. There-
fore, we here discuss the major findings concerning the
FOXP3 gene in association studies for asthma and other al-
lergic conditions. Table 1 presents all of the SNPs in the
FOXP3 gene that have been published to date for asthma
and allergic diseases, including the sample size.

rs3761548

The rs3761548 is located in the intronic region of the
FOXP3 gene. It is the most studied SNP for FOXP3 and
has been associated with several diseases, including
many allergic conditions.

Bottema et al. 2009 studied the association of this SNP
with atopy and observed no significant association with
IgE levels; however, an association was found to food
sensitivity to egg allergens (OR: 0.5; 95 % CI 0.3-1.0)
[67]. In addition, another study reported significant
interaction (p <0.01) between SNPs in FOXP3-IL2R
genes and IgE for eggs and asthma [70].

In association studies with allergic rhinitis (AR),
Hassannia 2011 reported that the AC genotype for
this rs3761548allele was protective for AR in females
(OR, 0.16; 95 % CI 0.05-0.5) but that the C allele
was protective (OR: 0.47; 95 % CI 0.22-0.99) for AR
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in males [71]. However, a study conducted in
Hungary found protection p <0.05 for allergic rhinitis
only in females who carried the AA genotype [68]. A
similar finding was reported in another study that
found a positive association (OR: 3.12; 95 % CI 1.21-
8.04) between the heterozygous genotype and AR
[69]. In a haplotype analysis, Zhang 2012 found that
the diplotype rs3761548-rs4824747 with “AG” was as-
sociated (OR: 1.75; 95 % CI 1.05-2.92) with a signifi-
cantly increased risk of AR [72]. In addition to these
findings, Hassannia et al. 2011 reported that women
with genotype AC and CC showed reduced levels of
total serum IgE. In men, the presence of the C allele
was associated with a reduction in the total serum
IgE levels [71].

Thus, this polymorphism appears to contribute to the
risk of allergic disease, but further studies are needed to
determine its effects on asthma.

rs2232365

This SNP is located in the intronic region of the FOXP3
gene. Although it has been included in several studies of
different diseases, few studies on AR have included it.
No association of this SNP was found with either AR
[69, 71, 72] or the levels of IgE and peripheral blood eo-
sinophil [71]. The same results were observed for associ-
ation using haplotype analysis [72]. These data suggest
that rs2232365 likely does not play an important role in
AR, but its roles in other allergic diseases, such as
asthma and atopy remain unclear.

rs6609857

The rs6609857SNP is located near the 3' UTR region of
the FOXP3 gene, and although it is characterized as part of
the FOXP3 gene, its genomic physical position is located in
the CCDC22gene (coiled-coil domain containing 22). This
marker has been investigated in the context of asthma, al-
lergy and IgE, but none of these studies have implicated
rs6609857 as a risk factor for these outcomes [67].

Other SNPs

The SNPs rs2294019 and rs5906761 were associated
(OR: 3.9; 95 % CI 1.2-12.5 and OR: 4.1; 95 % CI 1.1-
15.4, respectively) with a risk to egg sensitivity only in
females [67]. The heterozygote genotype for rs3761547
was a risk factor for allergic rhinitis, and this association
was reproduced in gene-gene interaction analysis with
rs3761548 [69, 72].

Taken together, these results all show that polymorph-
ism in FOXP3 gene is associated with some allergic dis-
ease, but its contribution to asthma has been poorly
studied. Moreover, there is heterogeneity in the sample
size and population, which makes it difficult to compare
the different studies. Thus, more studies are needed to
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Table 1 FOXP3 SNPs investigated for association with asthma and allergy

SNP Genomic Position Alleles Function Diseases N (cases/controls) Country Reference
rs3761548 49,261,784 A/C Intron Atopy 3062* The Netherlands Bottema, 2009
Allergic rhinitis 395 Hungary Fodor, 2010
(178/217)
Asthma 3062* The Netherlands Bottema, 2010
Allergic rhinitis 384 China Zhang, 2009
(193/191)
Allergic rhinitis 318 Iran Hassannia, 2011
(153/165)
Allergic rhinitis 708 China Zhang, 2012
(378/330)
rs2232365 49,259,429 A/G Intron] Allergic rhinitis 384 China Zhang, 2009
(193/191)
Allergic rhinitis 708 China Zhang, 2012
(378/330)
Allergic rhinitis 318 Iran Hassannia, 2011
(153/165)
rs6609857 49,245,158 [@2) 3" UTR Asthma 3062* The Netherlands Bottema, 2010
Atopy 3062* The Netherlands Bottema, 2009
rs2232368 49,255,822 A/G Intron Allergic rhinitis 384 China Zhang, 2009
(193/191)
rs2232366 49,258,209 G/T Intron Allergic rhinitis 384 China Zhang, 2009
(193/191)
rs2232364 49,259,888 A/C/G/T Intron Allergic rhinitis 384 China Zhang, 2009
(193/191)
rs3761549 49,260,888 [@2) Intron Atopy 3062* The Netherlands Bottema, 2009
1s3761547 49,262,004 A/G Intron Allergic rhinitis 384 China Zhang, 2009
(193/191)
12869211 49,264,409 AT Intron Allergic rhinitis 384 China Zhang, 2009

(193/191)

Cases and controls were not shown for all studies (*) because some studies use different phenotypes and analyze sex and age separately

evaluate the role of FOXP3 polymorphisms in allergic
diseases.

Epigenetic regulation of FOXP3 in asthma

The constitutive expression of FOXP3 is required for the
immunosuppressive function of Treg cells. In addition
to the activity of trans-acting factors, epigenetic modifica-
tions play a central role in maintaining the stability of
Treg cells. Epigenetics refers to changes in gene expres-
sion that are not caused by changes in the DNA sequence.
Epigenetic mechanisms include DNA methylation and
histone modification. DNA methylation occurs predomin-
antly at CpG nucleotides and is catalyzed by DNA methyl-
transferases (DNMts). DNA methylation can inhibit gene
expression directly by precluding the binding of specific
transcription factors in promoter region of genes, or

indirectly by promoting the recruitment of methyl-CpG-
binding domain (MBD) proteins and their associated
histone-modifying and chromatin-remodeling complexes
[73]. Histones are protein constituents of nucleosomes
that are subjected to different post-translational modifica-
tions in their N-terminal tails, including acetylation,
methylation, phosphorylation, ubiquitination, SUMOyla-
tion and ADPribosylation [74]. Histone acetylation is cata-
lyzed by histone acetyltransferase, and acetyl groups are
removed by histone deacetylases (HDACs). Whereas his-
tone acetylation results in open chromatin that permits re-
cruitment of transcriptional machinery, deacetylation
catalyzed by HDACs leads to the formation of closely
compact chromatin that inhibits transcription.

Four FOXP3 regions are susceptible to epigenetic
modification in conserved noncoding sequences of DNA
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(CNS). These regions are the promoter region, en-
hancers [1, 2] and the pioneer element region (Fig. 2). In
the promoter region, CpG motifs are partially methyl-
ated in CD4+ naive cells and demethylated in regulatory
T-cells. The first enhancer region, which is formed by
CNS-1, is susceptible to histone acetylation, but has no
CpG motifs. This region is rich in linking sites for NFAT
and Smad3 [75]. The second enhancer region is formed
by CNS-2 and is known as the Treg-cell-specific de-
methylation region (TSDR) [76, 77]. The CpG motifs in
this region are methylated in conventional T cells and
demethylated in natural Tregs. Additionally, histones
near this region are acetylated in thymus-derived Treg
cells [78]. The pioneer element region in FOXP3 is re-
sponsible for regulating the size, composition and stabil-
ity of T regulatory cell family members [79]. Specifically,
the CNS-3 enhances the frequency of Treg cell gener-
ation in both, thymus and in the periphery [79]. Chro-
matin modification marks at this site are permissive in
Treg. In addition, the mono- and di-methylation pat-
terns observed in Treg-precursors are absent in CNS-1
and CNS-2, which allows transcription factors to bind
preferentially to this area instead of binding to CNS-1 or
CNS-2 [78].

Several lines of evidence show that epigenetic changes
in the FOXP3 locus of Treg cells influence the asthma
phenotypes. A summary of these studies, including their
sample sizes, is shown in Table 2.

Nadeau et al. reported that among individuals who
were exposed to both high and low levels of environ-
mental pollutants, FOXP3 mRNA expression and Treg
cell function were reduced in children with asthma com-
pared to children without asthma. Accordingly, the
methylation of CpG islands located in the promoter and
in intronic regions of FOXP3 in Treg cells was higher in
asthmatics relative to children without asthma, with a
greater effect being observed in children who were ex-
posed to high levels of pollution. The percentage of
methylated CpG motifs in asthmatic and non-asthmatic
individuals was ~60 % and ~45 %, p < 0.01, respectively
[80]. The hypermethylation of FOXP3 in buccal cells
was associated with a risk of persistent asthma and
wheezing in childhood (OR: 3.05; 95 % CI 1.54-6.05). In
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addition, a positive correlation was observed between
FOXP3 methylation and exposure to chronic diesel ex-
haust particles (DEP) (4.01 %, 95 % CI 1.83-6.18 %; in-
crease in FOXP3 methylation per interquartile range
increase in estimated DEP exposure) [81]. A study of
monozygotic twins (MZT) pairs that were discordant for
asthma found a decrease in FOXP3 protein expression
and impaired Treg function in the asthmatic twin, both
of which were associated with increased levels of CpG
methylation within the FOXP3 locus. CpG sites within
FOXP3 were almost six times more methylated in the
asthmatic MZT vs the non-asthmatic MZT, p <0.001.
Furthermore, these effects were increased by current ex-
posure to second-hand smoke (SHS) [82]. In addition,
SHS and air pollution exposure, which have been associ-
ated with an increased prevalence and severity of
asthma, were positively associated with hypermethylation
and the decreased expression of FOXP3 in Tregs. The
mean % CpG methylation of FOXP3 among SHS-exposed
vs non-SHS-exposed was 74.60 % vs 54.44 %, respectively,
p<0.05, and the mean transcription levels of FOXP3
among SHS-exposed and non-SHS-exposed were 0.75
and 3.29, respectively, p < 0.05 [83]. These results suggest
that exposure to certain environmental factors, such
as pollutants, may induce epigenetic modifications in
the FOXP3 locus with a consequently increased risk
of asthma.

Lluis et al. showed that farm milk consumption was
inversely associated with doctor-diagnosed asthma at age
4 years (OR: 0.26; 95 % CI 0.08-0.88) and that FOXP3
demethylation at the TSDR region was consistently
higher, although no significant, in whole blood of chil-
dren who had consumed farm milk (median differences
for all CpGs, p=0.08). In addition, protection against
asthma by farm milk exposure was partially mediated by
Treg cells [84]. However, no difference in the FOXP3
methylation status was observed in children with farm
exposure in general compared to those without exposure
[85]. This latter result suggests that the effect of farm
environment on the epigenetic modification of FOXP3 is
specific to the type of exposures and may not be de-
tected, depending on the exposure assessment. Interest-
ingly, a recent study showed that patients with atopic

Table 2 FOXP3 epigenetic studies investigated for association with asthma and allergy

Author(s) Year  n (cases/controls)  Epigenetic marker analyzed  Cell population analysed

Nadeau et al. 2010 32 (16/16) CpG methylation Treg cells (CD4*CD25"CD127°) and effector T (Teff) cells (CD4*CD25'"<9)
Brunst et al. 2013 71 (15/56) CpG methylation Buccal cells in saliva

Runyon etal. 2012 42 (21/21) CpG methylation Treg cells (CD4* CD25MCD127'°"%9) and Teff CD4*CD25"¢

Kohli et al. 2012 102 (37/65) CpG methylation Treg cells (CD4* CD25"'CD127'°) and Teff CD4*CD25"9

Lluis et al. 2014 43 CpG methylation Whole blood

Michel et al. 2013 95 (45/50) CpG methylation Cord blood and whole blood
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asthma had a trend-wise higher average level of histone
H3 acetylation in the FOXP3 promoter region compared
with healthy controls, although this difference was not
statistically significant (p = 0.07, n = 26, for the mean dif-
ference in H3 acetylation between atopic asthma cases
and controls) [86]. Because histone acetylation is associ-
ated with increased gene activity, an increased number of
Treg cells would be expected in patients with atopic
asthma, which was reported recently in a study conducted
in this same population [18]. These results suggest that
the status of Treg cells may differ according to the asthma
phenotype considered (allergic or non-allergic).

Finally, the administration of 5-azacytidine (Aza), a
DNA methyltransferase inhibitor, to chicken ovalbumin
(OVA)-sensitized mice decreased airway hyperreactivity,
pulmonary eosinophilia, the levels of OVA-specific IgG1
and IgE in serum, and secretion of Th2 cytokines from
OVA-stimulated splenocytes in a dose-dependent man-
ner. Furthermore, the number of Treg cells was remark-
ably increased in Aza-treated mice compared with
sensitized control mice [87]. These data indicate that
epigenetic regulation of Treg might contribute to the
modulation of asthma-induced airway inflammation,
which opens the possibility for treating allergic asthma
and other allergic diseases by using epigenetic thera-
peutic agents.

Conclusions

Polymorphisms in the FOXP3 gene have been associated
with some allergic diseases but the contribution of these
polymorphisms to asthma development has been poorly
studied. Several lines of evidence point to the involve-
ment of epigenetic changes in the FOXP3 locus of Treg
cells in asthma phenotypes. Further investigation will be
important to clarify the role of FOXP3 polymorphisms
and epigenetics mechanisms on the risk of asthma and
other allergic diseases. Furthermore, genome-wide ana-
lyses of epigenetic markers in Treg cells are needed to
enrich our ability to develop epigenetic therapeutic ap-
proaches to asthma and allergies.
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