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Mouse Model of Small for Gestational Age Offspring 
with Catch-up Growth Failure and Dysregulated 
Glucose Metabolism in Adulthood
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Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul; 4Department of Pediatrics, Seoul 
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Background: We aimed to build mouse models of small for gestational age (SGA), recapitulating failure of 
catch-up growth and dysregulated metabolic outcomes in adulthood.
Methods: Pregnant C57BL/6 mice were given a protein-restricted diet (PRD; 6% kcal from protein) during preg-
nancy without (model 1) or with cross-fostering (model 2). Model 3 extended the PRD to the end of the lactation 
period. Model 4 changed to a 9% PRD without cross-fostering.
Results: Model 1 yielded a reduced size of offspring with a poor survival rate. Model 2 improved survival but 
offspring showed early catch-up growth. Model 3 maintained a reduced size of offspring after weaning with a 
higher body mass index and blood glucose levels in adult stages. Model 4 increased the survival of the offspring 
while maintaining a reduced size and dysregulated glucose metabolism.
Conclusion: Models 3 and 4 are suitable for studying SGA accompanying adulthood short stature and meta-
bolic disorders. 
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Short Communication 

INTRODUCTION

Birth weight is a surrogate marker for an adequate intrauterine 
environment during pregnancy and both extremes could cause var-

ious metabolic consequences.1,2 Small for gestational age (SGA) is 
defined as having a weight at birth below the bottom 10th percen-
tile of the weight standard, a common complication of pregnancy. 
Maternal undernutrition is a major problem in underdeveloped 
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countries and pregnancy at an advanced maternal age has become 
more common over the last decades, which all increase the burden 
of SGA.1 Subjects with SGA are vulnerable to several metabolic 
diseases in adulthood, including type 2 diabetes and obesity.3 More 
than 10% of all individuals born SGA do not complete postnatal 
catch-up growth and retain a short stature. Therefore, they are 
commonly recommended to receive growth hormone (GH) treat-
ment to improve their adult height.4 As GH acts as a counterregula-
tory hormone on insulin, a long-term GH treatment in SGA sub-
jects might worsen the risk of diabetes.3 

A proper animal model is required for the study of SGA-related 
adult complications including catch-up growth failure and dysregu-
lated metabolic outcome. In the present study, we attempted to es-
tablish a good SGA mouse model by restricting the amount of pro-
tein in the maternal diet during pregnancy and the lactation period. 

METHODS

Animal care
The C57BL/6 mice (8–9 weeks of age) used in this study were 

purchased from Jackson Laboratories (Bar Harbor, ME, USA). Mice 
were housed in a temperature- and humidity-controlled environ-
ment. Food and water were available ad libitum unless otherwise 
noted. All experimental procedures were approved by and performed 
in accordance with the standards of the Animal Care and Use Com-
mittee of Seoul National University (No. SNU-190225-1).

Protein restriction studies
Female mice were allowed to mate during the dark cycle with 

males. Upon detection of a vaginal plug on the next day, females 
were placed on either a normal chow diet (NCD; control group, 
24.5% kcal from protein with 63.1% kcal from carbohydrate and 
12.4% kcal from fat; #38057, Purina Korea, Seoul, Korea) or a pro-
tein-restricted diet (PRD; SGA group; 6.0% or 9.0% kcal from pro-
tein with 83.8% or 80.8% kcal from carbohydrate, respectively, and 
with 10.2% kcal from fat; based on #D02041001, Research Diets, 
New Brunswick, NJ, USA) during pregnancy and/or lactation pe-
riods, as described for each model. Afterwards, NCD was provided 
to both groups and all offspring. If needed, cross-fostering was con-
ducted between 0 and 6 hours after both biological and adoptive 

dams had given birth. The procedure consisted of removing the bi-
ological mother, placing the litter in a clean cage containing bedding 
of the adoptive mother, and finally placing the adoptive mother in 
the cage. Pups were weaned at four weeks of age.

Glucose tolerance test
In overnight-fasted mice, following an intraperitoneal injection 

of 2 g of glucose/kg body mass in 20% glucose solution, the blood 
glucose level was measured at each time point (0, 15, 30, 60, 120 
minutes) through a glucometer (Accu-CHEK Performa; Roche 
Diagnostics, Mannheim, Germany).

Insulin tolerance test
In 4-hour-fasted mice, following an intraperitoneal injection of 

0.75 IU of Humulin R (Eli Lilly, Indianapolis, IN, USA) per kg body 
mass, the blood glucose level was measured at each time point (0, 
15, 30, 60, 120 minutes). 

Statistical analysis
Data are expressed as the mean ± standard error of the mean. 

The Student t-test was used to compare the groups. Two-way re-
peated-measures analysis of variance was used for glucose tolerance 
test (GTT) and insulin tolerance test (ITT) followed by Bonferroni 
correction. The log-rank test was used for a survival analysis. 
P < 0.05 was considered significant. IBM SPSS version 25.0 (IBM 
Corp., Armonk, NY, USA) was used to assist in the analysis. 

RESULTS

Compared to the NCD control, 6% PRD during pregnancy (mod-
el 1) yielded a smaller size of offspring, but most of them were lost 
due to cannibalism or neglect by the dam (Fig. 1). This problem 
was partially solved by cross-fostering (model 2), but due to catch-
up growth, the offspring recovered their body weights and lengths 
to the levels of the controls during the pre-weaning period (data 
not shown). Therefore, model 1 and model 2 may not be suitable 
for the study of SGA.

In model 3, we extended the period of 6% PRD to the lactation 
period with cross-fostering. The offspring had smaller body sizes at 
birth and at 3 weeks and 12 weeks old (Fig. 2A-C), successfully re-
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capitulating the phenotype of failure of catch-up growth. Moreover, 
the offspring displayed a higher body mass index at 12 weeks and 
increased fasting blood glucose levels at 16 weeks (Fig. 2C and D). 
Thus, model 3 successfully induced dysregulated glucose metabo-

lism in the adulthood of the offspring here. However, the extended 
PRD period significantly reduced the long-term survival rate com-
pared to that in model 2 (Fig. 1C). Thus, model 3 may have a dis-
advantage with regard to obtaining a sufficient number of offspring. 

C

Figure 1. Protocols for mouse modeling of small for gestational age (SGA). (A) Scheme of each model. Please note that the same cross-fostering procedure at the day of 
birth was applied for control (Ctrl) groups of model 2 and 3. (B) Comparison of the body size at birth between a Ctrl and the SGA model. (C) Survival curve of offspring of 
each model. All the data of Ctrl groups were combined into one group. *P< 0.05 for model 2 vs. model 1 or 3; †P< 0.001 for model 4 vs. any of the other models. NCD, nor-
mal chow diet; PRD, protein-restricted diet. 
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Figure 2. Anthropometric and metabolic parameters of mouse models of small for gestational age (SGA). Data of model 3 (A-D) and model 4 (E-I) are listed in chronologi-
cal order. (A) Body weight and length at day of birth. (B) Body length of at week 3. (C) Body length and body mass index (BMI) at week 12. (D) Random blood glucose levels 
at week 16. (E) Body weight at day of birth. (F) Glucose tolerance test (GTT) of females at week 16. (G) Insulin tolerance test (ITT) of females at week 20. (H) Area under the 
curve (AUC) of GTT and ITT. (I) Body length at week 24. The value under the bar graphs indicates n for each group. Body length was determined by measuring the nasal-to-
anal distance. Values are presented as the mean± standard error of the mean. *P< 0.05, †P< 0.01, ‡P< 0.001 vs. control (Ctrl) within the same sex.
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To improve the yield, we increased the protein content of PRD to 
9% in model 4 and instead omitted cross-fostering. This model sig-
nificantly increased the long-term survival rate of the offspring, 
even without cross-fostering (Fig. 1C). Although the degree of re-
duction in adult body lengths in model 4 was less than in model 3, 
the offspring were significantly smaller than the NCD controls 
(Fig. 2E and I). Thus, this model also recapitulated the phenotype 
of failure of catch-up growth. Moreover, GTT and ITT studies, per-
formed at 16 and 20 weeks, demonstrated glucose intolerance and 
insulin resistance in model 4 (Fig. 2F-H). 

 

DISCUSSION

In this study, we developed two mouse models in order to reca-
pitulate the human SGA phenotypes accompanying failure of catch-
up growth and dysregulated metabolic outcomes in adulthood; the 
strength of model 3 lies in its more significant phenotypes, and that 
of model 4 is in the better yield without cross-fostering. 

Adequate delivery of amino acids from mother to fetus through-
out placenta is necessary for proper growth and development. Sug-
gested mechanisms of PRD-induced SGA include impaired uterine 
secretions, impaired cell signaling in mother and fetus, reduced pla-
cental angiogenesis with reduced supply of nutrients from mother 
to fetus, which all contribute to a vicious cycle.5 Previous reports 
demonstrated other SGA models using PRD, but the body length 
results were omitted6,7 or strains other than C57BL/6 were evaluat-
ed.8 The final two models are relatively non-invasive and easy to 
perform without special equipment compared to modeling by sur-
gical procedures during pregnancy9 or a cesarean section.6

Known underlying reasons for SGA include intrinsic fetal factors, 
placental insufficiency, other maternal disorders and even infection.1 
Our models cannot recapitulate all of the etiologies of SGA, limit-
ing their utility. If needed, researchers can use more relevant mod-
els for specific purposes, such as hypoxia models10 or modeling with 
other species.11 As the C57BL/6 mouse is the most widely used 
genetic strain in the field of metabolic research,12 these models can 
be adopted properly according to the purpose of translational study 
of each researcher. 
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