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Detecting 
immunotherapy‑sensitive subtype 
in gastric cancer using histologic 
image‑based deep learning
Munetoshi Hinata & Tetsuo Ushiku*

Immune checkpoint inhibitor (ICI) therapy is widely used but effective only in a subset of gastric 
cancers. Epstein–Barr virus (EBV)‑positive and microsatellite instability (MSI) / mismatch repair 
deficient (dMMR) tumors have been reported to be highly responsive to ICIs. However, detecting 
these subtypes requires costly techniques, such as immunohistochemistry and molecular testing. 
In the present study, we constructed a histology‑based deep learning model that aimed to screen 
this immunotherapy‑sensitive subgroup efficiently. We processed whole slide images of 408 cases of 
gastric adenocarcinoma, including 108 EBV, 58 MSI/dMMR, and 242 other subtypes. Many images 
generated by data augmentation of the learning set were used for training convolutional neural 
networks to establish an automatic detection platform for EBV and MSI/dMMR subtypes, and the 
test sets of images were used to verify the learning outcome. Our model detected the subgroup 
(EBV + MSI/dMMR tumors) with high accuracy in test cases with an area under the curve of 0.947 
(0.901–0.992). This result was slightly better than when EBV and MSI/dMMR tumors were detected 
separately. In an external validation cohort including 244 gastric cancers from The Cancer Genome 
Atlas database, our model showed a favorable result for detecting the “EBV + MSI/dMMR” subgroup 
with an AUC of 0.870 (0.809–0.931). In addition, a visualization of the trained neural network 
highlighted intraepithelial lymphocytosis as the ground for prediction, suggesting that this feature is 
a discriminative characteristic shared by EBV and MSI/dMMR tumors. Histology‑based deep learning 
models are expected to be used for detecting EBV and MSI/dMMR gastric cancers as economical and 
less time‑consuming alternatives, which may help to effectively stratify patients who respond to ICIs.

According to a recent comprehensive molecular analysis by The Cancer Genome Atlas (TCGA), gastric cancer 
is categorized into four molecular subtypes: Epstein–Barr virus (EBV)-positive, microsatellite instability (MSI), 
genomically stable, and chromosomal instable  tumors1. MSI is caused by underlying defect in the mismatch 
repair system (dMMR), and immunohistochemistry of mismatch repair proteins is used as a method for MSI 
determination in gastric  cancer2. This classification is clinically important because several factors, including 
prognosis and response to treatments, differ among  subtypes3. In particular, EBV and MSI/dMMR have been 
reported to show higher responses to immune checkpoint inhibitors (ICIs)4; therefore, identifying these subtypes 
is important for stratifying patients who respond to ICIs. However, expensive techniques such as immunohisto-
chemistry, in situ hybridization, and polymerase chain reaction are required to determine the subtype, preventing 
the robust application of molecular subtyping of gastric cancer in practice.

EBV and MSI/dMMR gastric cancers are known to have characteristic histological features. EBV tumors 
usually show prominent infiltration of lymphocytes into the neoplastic epithelium as well as the stroma and 
are typically called lymphoepithelioma-like carcinoma or gastric carcinoma with lymphoid  stroma5. The MSI/
dMMR subtype is also known to exhibit abundant lymphocytic infiltration with a predominance of intestinal-
type histology and expanding growth  patterns6,7. These facts indicate that molecular features are reflected in the 
morphology, at least partly, and that the molecular subtype might be predicted directly from histology. Given 
that gastric cancer histology comprises broad spectra, it would be difficult for pathologists to reliably detect these 
subtypes based on histologic images alone.
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Deep learning, a method of machine learning, that has been rapidly developed in recent years is being applied 
to aid in the process of enhancing the broader utilization of histopathology data for subtyping. In particular, 
deep learning methods using convolutional neural networks (CNNs) have shown excellent results in image 
 recognition8. These techniques have also been applied to the analysis of medical images, such as endoscopic, 
radiographic, and histopathological images. Applications for histopathological images include detection of 
lymph node metastasis of breast  cancer9, evaluation of human epidermal growth factor receptor-2 amplifica-
tion using fluorescence in situ hybridization  images10, detection of mitotic figures.11, and prediction of prognosis 
in  patients12.

As for the detection of specific gastric cancer subtypes, Kather et al. showed that deep learning could detect the 
MSI subtype directly from HE-stained tissue images with moderate accuracy (area under the curve (AUC) = 0.81, 
internal validation set; 0.69 for external validation set)13. They also reported that the presence of EBV infection 
in gastric cancer could be detected with moderate accuracy (AUC = 0.80, internal validation set, 0.81; external 
validation set)14. The results demonstrate the utility of deep learning in determining molecular subtypes. These 
reports examined EBV and MSI subtypes independently. However, given that the two subtypes share histologi-
cal characteristics, it is hypothesized that an analysis combining EBV and MSI/dMMR subtypes into one would 
lead to more favorable results for detecting the “EBV + MSI/dMMR” subgroup to effectively screen patients who 
respond to ICIs. In the present study, we trained the deep learning model with a series of whole slide histopathol-
ogy images of gastric cancer by classifying into “EBV + MSI/dMMR” vs. the others and compared the detection 
performance with those when classifying EBV and MSI/dMMR independently.

Materials and methods
Tissue samples and whole slide images. Formalin-fixed paraffin-embedded gastric adenocarcinoma 
tissues were retrieved from the archives of the Department of Pathology at the University of Tokyo Hospital 
(Tokyo, Japan). Tissue samples from surgically resected specimens were used in this study. Tumors with posi-
tive staining for EBER-in situ hybridization were defined as EBV (n = 108). Those with deficiency for any of the 
mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) by immunohistochemistry were defined as MSI/
dMMR (n = 58). Non-EBV and non-MSI/dMMR tumors were defined as the others (n = 242). EBV (n = 42) and 
MSI/dMMR (n = 58) tumors were screened from 831 consecutive patients who underwent resection between 
2005 and 2010. An additional 66 tumors with a diagnosis of EBV were identified from the pathology archive 
between 1992 and 2018 and included in this study. Tissue microarrays were constructed from these samples 
and the slides were stained with hematoxylin and eosin (HE). The layers from which tissue microarray cores 
were obtained varied from case to case. The total numbers of cores from each layer in advanced cases (pT2 or 
more) were as follows: 52 cores from mucosa, 211 cores from submucosa, 132 cores from muscularis propria, 
and 23 cores from subserosa (each case contained two cores, and the original histology slide was not available 
in one case). These tissue microarray slides were digitized using a Nanozoomer 2.0-HT virtual slide scanner 
(Hamamatsu Photonics, Hamamatsu, Japan), and whole slide images (WSIs) were generated. This study adhered 
to the tenets of the Declaration of Helsinki, and complies with the STARD reporting guidelines (Supplementary 
Table  S1)15. The Research Ethics Committee of the Faculty of Medicine of the University of Tokyo (G3521) 
approved this study and waived written informed consent because this is a retrospective study using existing 
pathology slides. Instead, we use an opt out approach to provide participants with an informed choice about 
participation, although no patient in the cohort for screening used the opt out option.

In addition, gastric cancer cases from TCGA database were used as an external validation  cohort1. WSIs of 
HE-stained adenocarcinoma specimens that met the following conditions were included: (1) surgically resected 
specimens, (2) formalin-fixed paraffin-embedded tissues, and (3) resolutions of WSIs were available. Molecular 
classification data were obtained from the original  paper1, and a total of 244 tumors (23 EBV, 44 MSI, and 177 
others) from the TCGA cohort were included.

Image processing. The tumor areas of the WSIs were manually annotated by a pathologist using NDP.
view2 software (Hamamatsu Photonics, Hamamatsu, Japan). Regarding the cases from University of Tokyo 
(UTokyo), each case comprised of approximately 8  mm2 of tissue, and all areas where viable tumor cells existed 
were annotated. As for the cases included from the TCGA database, four representative tumor areas per case 
(total of approximately 16  mm2) were annotated because whole tumor areas were too large for the present image 
processing method. These areas were selected by a pathologist (M.H.), and if morphological heterogeneity 
existed in the tumor, all different morphological patterns were included as far as possible. A large number of 
small images (224 × 224 pixels, 0.91 µm/pixel) were sampled from the annotated regions at random positions 
and angles (Fig. 1a), and these images were used as inputs to the neural networks.

Data augmentation. For the images used to train the neural networks, data augmentation was performed 
by changing the color tone and adding blur randomly (Fig. 1b) according to the method described by Tellez 
et al.16 (partly modified, see Supplementary Fig. S1 online). In brief, the red, green, and blue (RGB) value was 
converted to the optical density, and the background was subtracted. Then, the value was deconvoluted into 
three channels: hematoxylin, eosin, and the remaining. Based on one of the representative cases (one of UTokyo 
cases with standard staining quality) used in this study, each channel was normalized by multiplying with a coef-
ficient so that the average value would be equal at the patient level. As for TCGA cohort, the coefficients were 
calculated per each selected area. Consecutively, a random coefficient multiplication was used for each channel, 
and re-convolution was performed using a random factor. Then, a random background was added, and the opti-
cal density was converted into the RGB value. Finally, the brightness, contrast, and saturation were randomly 
changed. In addition, a Gaussian blur of random intensity was applied to some of these images.
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Deep learning models. CNNs that are pre-trained using ImageNet  datasets17 were used as the base net-
works (Fig. 1c). Multiple existing CNNs (VGG16,  VGG1918,  ResNet5019, and  EfficientNetB020) were prepared 
to find an appropriate network for this purpose. Fully connected layers were removed from these networks, and 
new fully connected layers constructed for cancer classification were added to the top. The softmax function 
(ternary classification) or sigmoid function (binary classification) was used as activation functions of the final 
output. Each output value corresponds to the probability that a certain image belongs to the class. During train-
ing, fine-tuning was performed using the newly prepared datasets. Because a decrease in validation accuracy or 
an increase in the value of the loss function was observed at some point of training, early stopping was adopted 
(training was stopped when the average value of the loss function attained the lowest value). Details of the 
deep learning models and hyperparameters are provided in Supplementary Fig. S2 and Supplementary Table S2 
online.

Construction of training datasets. Patients from UTokyo were randomly divided into five groups at the 
patient level. The division process was arranged such that the distribution of molecular classification and tumor 
depth (pT1 or pT2-4) would be uniform. One of these groups was defined as a test dataset and was not used for 
training purposes. The other four groups were used for training and validation of the neural networks. Three of 
the four groups were used to train the networks, and the remaining group was used to validate the accuracy. This 
procedure was repeated four times, rotating the groups (fourfold cross-validation). Finally, all four groups were 
used to train the networks, and the trained networks were used for subsequent analysis.

In the present study, we have introduced four classification tasks: (1) EBV + MSI vs. others (binary classifica-
tion of “EBV/MSI” and others), (2) EBV vs. MSI vs. others (ternary classification), 3) EBV vs. MSI + others (binary 
classification of EBV and “MSI/others”) and 4) MSI vs. EBV + others (binary classification of MSI and “EBV/
others”). Image pools (224 × 224 pixels each) were constructed for each task so that the frequency of appearance 
of each class was uniform (33% each for ternary classification and 50% each for binary classification). For training 
the neural networks as described above, images were fed from these datasets. The training sets included images 
with and without data augmentation depending on the purpose of the analysis. However, validation sets and test 
sets included images only without data augmentation.

Evaluation of patient‑level prediction. Two hundred and fifty-six images were randomly selected from 
the image pools corresponding to each case. The prediction was performed for each image using the trained 
neural networks, and the result was obtained as an output of the softmax function (ternary classification) or 

Figure 1.  Image processing and the architecture of neural networks. (a) Representative image of tissue 
microarray prepared from cases of gastric cancer. Many small images (224 × 224 pixels) were sampled from 
annotated tumor areas at random positions and angles. Scale bar: 500 µm. (b) Sampled images after data 
augmentation (random change of color tone and blurring). Scale bar: 100 µm. (c) The architecture of neural 
networks: Fine-tuning of existing CNNs (VGG16, VGG19, ResNet50 and EfficientNetB0) was adopted. 
Classifiers corresponding to four classification tasks were added on the top. CNN—convolutional neural 
networks.
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sigmoid function (binary classification). We used a simple method to aggregate these 256 results: calculate the 
average output value and adopt the class corresponding to the highest value. In the case of binary classification, 
the receiver operating characteristic (ROC) curve was constructed using the output of the sigmoid function as a 
variable, and the AUC was evaluated. The number of patients used for training/test, and the flow of patient-level 
prediction is shown in Fig. 2.

The correlation between tumor mutational burden (TMB) and the classification by our deep learning model 
was also evaluated for TCGA cohort. TMB was obtained from published data by Thorsson et al21.

Visualization of the trained network. The gradient-weighted class activation mapping (Grad-
CAM + +)22 method was applied to the trained network to visually determine the ground for prediction. The 
technique of activation  maximization23 was also applied to investigate the morphological characteristics of the 
EBV + MSI/dMMR subgroup detected by the neural network.

Software and hardware. TensorFlow (version 2.3) was used as a deep learning  framework24. AUCs were 
calculated using the pROC  package25 in R, version 4.1.126. Grad-CAM++ and activation maximization were per-
formed using the tf-keras-vis version 0.5.327. Dataset creation, preprocessing steps, training of neural networks, 
and prediction using neural networks were performed on a machine with Intel Core i7-6900 K processor at 
3.20 GHz with 128 GB RAM and four NVIDIA GeForce GTX 1080Ti GPU with 11 GB memory each.

Figure 2.  (a) The number of patients included in this study. Black solid lines represent the training with only 
UTokyo cohort, and blue solid lines represent the training with UTokyo cohort and a part of TCGA cohort. 
(b) The flow of patient-level prediction. Scale bar: 0.5 mm (UTokyo cohort), 2.5 mm (TCGA cohort). UTokyo- 
University of Tokyo, TCGA- The cancer genome atlas.
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Results
Participants. Pathological information of all cohorts included in this study is summarized in Table 1.

Comparison of classification accuracy among different CNNs. To find an appropriate CNN archi-
tecture, we prepared deep learning models based on different CNNs (VGG16, VGG19, ResNet50, and Efficient-
NetB0) and compared their validation accuracies. Table  2 shows the validation accuracy of these models in 
the “EBV + MSI vs. others” tasks with data augmentation. Each value shows the average accuracy (the average 
ratio of correct prediction for each 224 × 224 pixels image, ranging from 0.0 to 1.0), obtained by fourfold cross-
validation. The most accurate model was VGG16-based (0.828), although the average accuracy exceeded 0.8, in 
either model. The VGG16-base model was used for the subsequent analyses.

Accuracy in each classification task. In this study, we trained the VGG16-based CNN using the data-
set according to the four classification tasks: (1) EBV + MSI vs. others, (2) EBV vs. MSI vs. others, (3) EBV vs. 
MSI + others, and (4) MSI vs. EBV + others. Patient-level accuracy was evaluated using test data from the UTo-
kyo cohort (Table 3). The results show the patient-level accuracy of the “EBV + MSI vs. others” task and “EBV 
vs. MSI vs. others” task for detecting the EBV + MSI/dMMR subgroup. Regarding “EBV vs. MSI + others” and 
“MSI vs. EBV + others” tasks, the values for detecting EBV subtype and MSI/dMMR subtype are shown, respec-
tively. In the task of “EBV vs. MSI vs. others,” AUC was calculated by subtracting the value of detecting “others” 
from 1.0. Datasets with data augmentation were used for this examination. Our model accomplished sensitivity 
0.879, specificity 0.878, and AUC 0.947 (0.901–0.992) for the “EBV + MSI vs. others” task. In the “EBV vs. MSI 
vs. others” task, the sensitivity was slightly higher (0.909), however, the specificity and AUC were lower (0.837 
and 0.931 [0.876–0.986], respectively) than the “EBV + MSI vs. others” task. In the “EBV vs. MSI + others” task, 
our model showed particularly high accuracy (AUC = 0.980 [0.956–1.000]), although the accuracy of the “MSI 
vs. EBV + others” task was moderate (AUC = 0.880 [0.759–1.000]). The sensitivity and specificity did not exceed 
the result of the “EBV + MSI vs. others” task by the result based on a task combining “EBV vs. MSI + others” 

Table 1.  Pathological information of cohorts included in this study. UTokyo, University of Tokyo; TCGA, 
The cancer genome atlas; EBV, Epstein-Barr virus; MSI, Microsatellite instability; dMMR, mismatch repair 
deficiency; CIN, chromosomal instable; GS, genomically stable; NA, not available.

Parameters UTokyo (training) UTokyo (test) TCGA 

Total number of samples 326 82 244

Molecular classification

EBV 87 (26.7%) 21 (25.6%) 23 (9.4%)

MSI/dMMR 46 (14.1%) 12 (14.6%) 44 (18.0%)

Others 193 (59.2%) 49 (59.8%) 177 (72.5%)

CIN 127 (52.0%)

GS 50 (20.5%)

Lauren classification for non-EBV and non-MSI/dMMR tumors

Intestinal 100 (51.8%) 26 (53.1%) 114 (64.4%)

Diffuse 93 (48.2%) 23 (46.9%) 51 (28.8%)

Mixed 11 (6.2%)

NA 1 (0.6%)

pT stage

pT1 158 (48.5%) 40 (48.8%) 9 (3.7%)

pT2 39 (12.0%) 9 (11.0%) 36 (14.8%)

pT3 66 (20.2%) 17 (20.7%) 142 (58.2%)

pT4 63 (19.3%) 16 (19.5%) 57 (23.4%)

Table 2.  Comparison of classification accuracy between CNNs in the EBV + MSI/others task. Each value 
shows the average accuracy (the average ratio of correct prediction for each 224 × 224 pixels image, ranging 
from 0.0 to 1.0), obtained by fourfold cross-validation. The highest accuracy is indicated in bold. CNN, 
Convolutional neural networks; EBV, Epstein-Barr virus; MSI, Microsatellite instability.

CNN architecture Validation accuracy

VGG16-based 0.828

VGG19-based 0.818

ResNet50-based 0.811

EfficientNetB0-based 0.827
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and “MSI vs. EBV + others” (i.e., cases predicted as EBV or MSI in either of these two tasks were regarded as 
EBV + MSI).

Validation of accuracy in TCGA cohort. First, we applied the neural network trained by the UTokyo 
cohort to an independent cohort from the TCGA database, and the performance of detecting EBV + MSI/
dMMR tumors was validated. The results for the “EBV + MSI vs. others” task are shown in Table 4 and Fig. 3. 
In the TCGA cohort, the detection performance was generally lower than that in the UTokyo cohort. Next, 
we examined the effect of data augmentation by comparing the results with and without data augmentation. 
Although a significant difference was not observed in the UTokyo cohort, the accuracy was greatly improved in 
cases from the TCGA cohort by applying data augmentation (from 0.756 [0.686–0.825] to 0.864 [0.811–0.918] in 
AUC). In addition, when randomly selected cases from TCGA (20% of all cases) were added to the training data 
and the remaining 80% of cases were used as test data, a slight improvement in AUC was observed (from 0.864 
[0.811–0.918] to 0.870 [0.809–0.931]), and this was the most accurate model for the external validation cohort. 
Detailed information of the split TCGA cohorts is available in Supplementary Table S3.

We also evaluated the correlation between TMB and classification by our deep learning model for TCGA test 
cohort (EBV vs. MSI vs. Others task, with data augmentation by random color change and blurring, using a part 
of TCGA cohort for training). The subgroup classified as MSI/dMMR by our deep learning model showed sig-
nificantly higher TMB compared to EBV and others subgroups (p < 0.001, Welch’s t-test, Supplementary Fig. S3).

Explaining the decision of neural network and creation of a “typical EBV + MSI/dMMR” 
image. The area of decision-making by the trained CNN was visualized using Grad-CAM++ and activa-
tion maximization. In this analysis, we used a trained network that exhibited the highest AUC in the test for the 
TCGA cohort. Figure 4a shows an example of applying Grad-CAM++ to a typical EBV case. Grad-CAM++ high-
lighted the most discriminative area in the image to explain the decision made by the trained network. The 
histologic features of the focus included neoplastic epithelium with intraepithelial lymphocytosis and stromal 
lymphoplasmacytic infiltration.

Table 3.  Comparison of patient-level accuracy between classification tasks. The performance in detecting 
EBV + MSI/dMMR subgroup is shown for “EBV + MSI vs. others” and “EBV vs. MSI vs. others” tasks, whereas 
the values of “EBV vs. MSI + others” and “MSI vs. EBV + others” tasks are performances for detecting EBV 
and MSI/dMMR, respectively. “Combination of 3) and 4)” shows the performance for detecting EBV + MSI/
dMMR based on the results of 3) and 4) tasks. EBV, Epstein-Barr virus; MSI, Microsatellite instability; dMMR, 
Mismatch repair deficiency; AUC, Area under the curve; CI, Confidence interval.

Classification task Sensitivity Specificity AUC (95%CI)

(1) EBV + MSI vs. others 0.879
(29/33)

0.878
(43/49)

0.947
(0.901–0.992)

(2) EBV vs. MSI vs. others 0.909
(30/33)

0.837
(41/49)

0.931
(0.876–0.986)

(3) EBV vs. MSI + others 0.857
(18/21)

0.951
(58/61)

0.980
(0.956–1.000)

(4) MSI vs. EBV + others 0.833
(10/12)

0.814
(57/70)

0.880
(0.759–1.000)

Combination of (3) and (4) 0.879
(29/33)

0.735
(36/49)  − 

Table 4.  Validation of patient-level accuracy in TCGA cases. Patient-level accuracy is shown for EBV + MSI 
vs. others task with and without data augmentation. The result when a part of TCGA cases (20% of all cases, 
randomly selected) was added to the training data and the remaining 80% of cases were used as test data is 
also shown. The highest AUC is indicated in bold. AUC, Area under the curve; CI, Confidence interval; EBV, 
Epstein-Barr virus; MSI, Microsatellite instability; TCGA, The cancer genome atlas; UT University of Tokyo.

Data augmentation
Use a part of TCGA 
cases for training

UT test case TCGA test case

Sensitivity Specificity
AUC 
(95%CI) Sensitivity Specificity

AUC 
(95%CI)

− − 0.848
(28/33)

1.000
(49/49)

0.934
(0.864–1.000)

0.851
(57/67)

0.480
(85/177)

0.756
(0.686–0.825)

−  + 0.818
(27/33)

0.959
(47/49)

0.943
(0.885–1.000)

0.574
(31/54)

0.852
(121/142)

0.800
(0.729–0.871)

 + − 0.879
(29/33)

0.878
(43/49)

0.947
(0.901–0.992)

0.731
(49/67)

0.876
(155/177)

0.864
(0.811–0.918)

 +  + 0.848
(28/33)

0.816
(40/49)

0.939
(0.886–0.991)

0.741
(40/54)

0.873
(124/142)

0.870
(0.809–0.931)
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Figure 3.  Performance of our model for detecting EBV + MSI/dMMR. ROC curves and AUCs (95%CI) are 
shown for UTokyo test cases (a) and TCGA test cases (b). This shows the performance of the model trained 
with data augmentation and the addition of a part of TCGA cases as training data. AUC- Area under the curve, 
CI- confidence interval, EBV- Epstein-Barr virus, MSI- microsatellite instability, dMMR- mismatch repair 
deficiency, ROC-Receiver operating characteristic curve, TCGA- The cancer genome atlas, UTokyo- University 
of Tokyo.

Figure 4.  Visualization of the trained network. (a) An example of applying Grad- CAM++ to an H&E 
image (left) of an EBV gastric cancer. Grad- CAM++ (right) highlights the most discriminative area in this 
image to explain the decision made by the trained neural network (arrow). In a higher magnification (inset), 
intraepithelial lymphocytosis seems to be the most responsible focus for discriminating EBV + MSI/dMMR 
from others. Scale bar: 100 µm. (b) Created images with the highest probability to be predicted as “EBV + MSI/
dMMR” (upper) and “others” (lower) with the method of activation maximization. In the former, the created 
image seems to represent intraepithelial lymphocytosis. EBV- Epstein-Barr virus, Grad-CAM-gradient-weighted 
class activation mapping, MSI- microsatellite instability, dMMR- mismatch repair deficiency.
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Figure 4b shows images created by the activation maximization method that represents an image with the 
highest probability to be predicted as “EBV + MSI/dMMR” and “others” respectively, by the trained neural net-
work. Notably, the former seemed to represent intraepithelial lymphocytosis and was similar to the focus high-
lighted by Grad- CAM++ (Fig. 4a).

Discussion
This study aimed to develop a detector of immunotherapy-sensitive gastric cancer subgroup (EBV + MSI/dMMR) 
using a histologic image-based deep learning approach. Our model successfully detected the “EBV + MSI/dMMR” 
subgroup with high accuracy (AUC = 0.947 [0.901–0.992]) for the UTokyo cohort and with moderate accuracy 
(AUC = 0.870 [0.809–0.931]) for the TCGA cohort. In terms of detection of the “EBV + MSI/dMMR” subgroup, 
the “EBV + MSI vs. others” task achieved superior performance in comparison to the other tasks that detect EBV 
and MSI/dMMR tumors independently. In the recent report, Muti et al. showed that robustness of deep learn-
ing classifier to detect EBV and MSI in gastric cancer increased when trained on multicenter pooled  cohorts28. 
Although to expand cohorts is an important factor to acquire higher accuracy, the effect of combining two similar 
subtypes into one category has not been investigated. Our observations suggest that combining the two subtypes 
during the training process could lead to higher detection accuracy, presumably because these subtypes share 
characteristic histology, such as abundant stromal lymphocytic infiltration and intraepithelial lymphocytosis.

First, we examined the structure of a CNN that is suitable for this purpose. Because it was thought that the 
amount of training data was too small to train the model from scratch, we adopted fine-tuning of the pre-trained 
CNNs. In the present study, we constructed CNNs based on four existing models: VGG16, VGG19, ResNet50, 
and EfficientNetB0, pre-trained using ImageNet datasets. These models have been adopted for histological image 
analysis in some reports and have achieved some positive  results13,14,29. The validation accuracy per 224 × 224 
pixel images eventually exceeded 0.8 for all models (Table 2), although the model based on VGG16 was slightly 
more accurate than the others, so we have adopted this model for further analysis.

Next, the accuracies of the different classification tasks were compared. The performance to detect 
EBV + MSI/dMMR was higher in the “EBV + MSI vs. others” task (sensitivity 0.879, specificity 0.878, AUC 
0.947 [0.901–0.992], Table 3) compared to those in the tasks using “EBV vs. MSI vs. others,” and combination 
of “EBV vs. MSI + others” and “MSI vs. EBV + others.” This result supports the hypothesis that EBV and MSI/
dMMR are difficult to distinguish from each other, and the datasets containing these classes separately resulted 
in “low-quality” data. As for the performance to detect EBV and MSI/dMMR separately, the “EBV vs. MSI + oth-
ers” task showed high accuracy with an AUC of 0.980 [0.956–1.000], although the “MSI vs. EBV + others” task 
showed much lower accuracy with an AUC of 0.880 [0.759–1.000]. The number of cases of MSI/dMMR was 
approximately half that of EBV in this study, and it was considered that the lack of variation in training data led 
to a decrease in accuracy. Further improvement in accuracy is expected due to the expansion of training data.

We also evaluated the accuracy of the external validation cohort using the TCGA database in order to exam-
ine the robustness of our model. The final results were better than those of previous  reports13,14, although the 
test data were obtained from different cohorts. In all the patterns examined in this study, the accuracy in cases 
from TCGA was lower than that in cases from UTokyo. This tendency has been improved by data augmentation 
by changing color tones and blurring. The difference in staining protocols or digital slide scanners might have 
affected the results, although other unknown factors might exist. In addition, the accuracy was slightly improved 
by adding a part of the TCGA cohort for training, suggesting that additional training with the cases of the target 
institute may be useful for improving robustness.

One of the problems of recent deep learning models is that the decision-making procedure by neural networks 
is non-transparent, and the predictions are not traceable by humans. Various methods have been proposed to 
solve the black boxes of deep-learning models. In this study, we adopted Grad- CAM++and activation maximi-
zation. Grad- CAM++highlights the areas on which the neural network focuses for decision-making. Interest-
ingly, we found that the network tends to focus on particular areas of an image and that the discriminative focus 
includes intraepithelial lymphocytosis, a feature characteristic of lymphoepithelioma-like carcinoma. Such histol-
ogy is considered to be a common characteristic of EBV and MSI/dMMR subtypes, and it is easy for pathologists 
to understand the prediction results. The images generated by the method of activation maximization represent 
the most like “EBV + MSI/dMMR” tumor or the most like “others” tumor images for the CNN. Interestingly, the 
small round structure noted in the “EBV + MSI/dMMR” image can be regarded as intraepithelial and stromal 
lymphoplasmacytic infiltration, which highlights the features characteristic of EBV and MSI/dMMR. In the 
“others” image, the wavy structure similar to the desmoplastic pattern of cancer stroma is observed, which was 
relatively uncommon in EBV and MSI/dMMR tumors. These results emphasize on intraepithelial lymphocytosis 
as a characteristic of EBV and MSI/dMMR tumors, whereas prominent desmoplastic reaction is unlikely to be 
a feature of these tumors.

In the clinical context, EBV and MSI/dMMR are different from other subtypes with regard to prognosis 
and response to treatment. For example, EBV and MSI/dMMR have been reported to have a better prognosis 
than the other  subtypes30,31. The frequency of lymphovascular invasion and lymph node metastasis is also low 
in EBV, which could lead to the expansion of the indications for endoscopic  resection5. EBV and MSI/dMMR 
are also known to be sensitive to immune checkpoint  inhibitors4. These facts suggest the clinical importance of 
the molecular classification of gastric cancer, especially for identifying EBV and MSI/dMMR subtypes. Deep 
learning-based subtype detection methods require only HE-stained tissue images that are available from not 
only digital slide scanners but also digital cameras, most tablet computers or smartphones. The images can be 
transferred to the detection system through the Internet. Therefore, if an online-based system is constructed, 
each institute does not have to arrange for the expensive digital slide scanners and deep learning machines. 
This could contribute to determining clinical strategies owing to their time-efficiency and economical nature, 
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considering that it is difficult for many pathology laboratories to perform molecular tests to detect these subtypes 
in daily practice as a routine.

There are some limitations in this study. First, we used tissue microarray for UTokyo cohort, and adopted 
manual annotation of representative tumor areas for TCGA cohort. Given the heterogeneity of tumor tissue, this 
can be a source of bias compared to using whole tissue slides to prepare datasets. Second, we used manual anno-
tation by a pathologist to specify the tumor area, which can be an obstacle in broad application of this method. 
Recently, some weakly supervised methods (for example, attention-based deep multiple instance  learning32) 
had been developed in the area of deep learning, and these methods might contribute to omitting the process 
of manual annotation. Finally, our deep learning model developed in this study aims to detect either EBV or 
MSI gastric cancers, a surrogate marker for response to ICIs. However, it would be more important to develop 
an algorithm to directly detect responders to ICIs by using a cohort including responders and non-responders 
in the real-world setting.

In this study, the detection accuracy in the external validation cohort improved by data augmentation and 
by using a part of the target cohort for training. However, the accuracy was still lower than that of the internal 
validation cohort. For the wider application of this method, the difference of accuracy between cohorts is one 
of the problems to be solved in the future.

In conclusion, our deep learning model succeeded in detecting immunotherapy-sensitive gastric cancer 
subtypes from histological images with high accuracy. It is expected that this method would widen the screening 
of EBV and MSI/dMMR subtypes to provide more appropriate therapeutic strategies for gastric cancer patients 
worldwide at a lower cost and in a shorter time than the conventional methods.

Data availability
All source codes to process WSIs, and to train and assess our deep learning classifiers are publicly available 
on GitHub (https:// github. com/ firco thep2 62/ ebv- msi- detec tion- by- dl) and Zenodo (https:// doi. org/ 10. 5281/ 
zenodo. 55521 37). The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.
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