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ABSTRACT

The double-stranded DNA of the genome contains
both sequence information directly relating to the
protein and RNA coding as well as functional and
structural information relating to protein recogni-
tion. Only recently is the importance of DNA shape
in this recognition process being fully appreciated,
and it also appears that minor groove electronega-
tive potential may contribute significantly in guiding
proteins to their cognate binding sites in the gen-
ome. Based on the photo-chemical probing results,
we have derived an algorithm that predicts the
minor groove electronegative potential in a DNA
helix of any given sequence. We have validated
this model on a series of protein–DNA binding sites
known to involve minor groove electrostatic recog-
nition as well as on stable nucleosome core com-
plexes. The algorithm allows for the first time a full
minor groove electrostatic description at the nu-
cleotide resolution of any genome, and it is illu-
strated how such detailed studies of this sequence
dependent, inherent property of the DNA may reflect
on genome organization, gene expression and
chromosomal condensation.

INTRODUCTION

Proteins such as transcription factors and histones in nu-
cleosomes are pivotal in correct decoding of the genetic
information of the double-stranded DNA helix by binding
to specific sequences in the genomes thereby controlling
proper gene activation. Sequence-specific protein binding
is primarily accomplished through direct reading of the
nucleobase sequence via specific protein nucleobase
contacts predominantly in the DNA major groove (1).
However, the base sequence also controls DNA double
helix conformation and specific properties such as minor
groove width and electronegative potential (2–4). It has
been known for more than a decade that DNA

recognition by many small ligands (5) is relying on
minor groove shape and electrostatic potential, and it is
also recognized that these features of the DNA helix can
be critical for protein recognition (6–8). Nevertheless, only
recently has a more general and detailed understanding of
the importance of variations in minor groove electronega-
tive potential for protein binding been documented (9–11).
In particular, it has been suggested based on the crystal
structure data that a large number of proteins may recog-
nize and be guided to their binding sites on the DNA helix
through specific arginines reading the electronegative po-
tential in the minor groove (9). Thus, knowing the electro-
negative potential along the DNA of the genome is
important for a detailed understanding of the DNA
function in terms of protein recognition. However,
reliable techniques for directly probing and especially
predicting minor groove electronegative potential have
hitherto not been available.
Minor groove width and electronegative potential of the

DNA helix are clearly interconnected properties as a
closer distance of the phosphates across the groove will
increase the negative potential in the groove, but the
electron distribution within the base pairs at the floor of
the groove also plays a decisive role, as does the sugar
conformation and thus the exact position of the phos-
phates relative to the groove (2–4). Therefore, minor
groove width and electronegative potential are distinct
but not independent helix parameters.
We have previously demonstrated that the sequence de-

pendence of photo-chemical cleavage of double-stranded
DNA by the uranyl(VI) ion (UO2+

2 ) reflects these DNA
parameters (12–14). Mechanistically, we have presented
evidence that the uranyl divalent cation bound to the
phosphates of the backbone photo-oxidizes proximal de-
oxyriboses (15). Thus, we proposed that uranyl photo-
probing of duplex DNA in principal could be exploited
to semi-quantitatively assess the minor groove width, but
presumable more precisely the minor groove electronega-
tive potential, along any DNA helix sequence (12,14). We
argued that sensing groove width could be due to bis
dentate coordination to opposite phosphates across the
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groove, while electronegative potential sensing obviously
would be caused by electrostatic attraction of the cationic
(solvated) uranyl. In this study, we present further valid-
ation that uranyl photo-cleavage analysis does indeed to a
very large extent reflect DNA minor groove electronega-
tive potential, and we offer an algorithm that with high
accuracy allows prediction of an electronegative potential
genome map at the nucleotide level. Thus in the present
study, we discuss the uranyl probing data only with refer-
ence to minor groove electronegative potential, but the
close connection to minor groove width as discussed
above should be considered throughout.

MATERIAL AND METHODS

The pentamer library, consisting of 7 members (94 nt in
length), and the protein binding sites were cloned into the
BamHI site of plasmid pUC19 by standard methods. Each
clone member of the library contained a subset of all the
1024 possible pentanucleotide sequences (Supplementary
Figure S1A–D and Supplementary Table S1). The
pentamer library sequences were designed to contain a

common internal control sequence (A-tracts) proximal to
the terminal BamHI cloning sites, in order to aid data nor-
malization. The uranyl cleavage peak areas of the flanking
common BamHI sequences were used to normalize the
data for the seven clone members.

The binding sequences of 12 minor groove protein
binding sequences were cloned in pUC 19 as two frag-
ments each containing six binding sites. The two
Drosophila Hox binding sequences were cloned as a
single fragment in pUC 19 (Supplementary Table S1).
All DNA fragments used in this study were 32P-labelled
at the 30-end of the EcoR I or Hind III sites of pUC 19
derivatives by use of standard techniques.

The uranyl photo-cleavage was performed as previously
described (12,13,16). A Molecular Dynamics Storm 860
phosphorimager was used to collect data from phosphor
storage screens. In order to quantify band intensities, we
used the software SAFA package (Semi-Automated
Footprinting Analysis) (17).

The algorithm is using a sliding window of five bases
(Figure 1D). Each score vector of five scores (a–j) is found
by matching the DNA pentamer in the uranyl
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Figure 1. Uranyl cleavage pattern of a pentanucleotide library and model for minor groove potential prediction. (A) Global view of the relative
nucleotide cleavage intensities (in arbitrary units) in a DNA fragment containing all 1024 combinations of pentanucleotide sequences. Both strands
are represented. (B) Expansion of a region (rectangle) of the 1024 bp library from panel A. (See Supplementary Figure S1 for details of all sequences
in the library). (C) Principle of the analysis of uranyl cleavage and minor groove electronegative potential. A pentamer [example GATGC (X-strand)]
contains three nx (T, G and C) bases connected with lines with the ny� 2 positions (C, T and A) on the lower y strand. (D) Algoritm used for
predicting the uranyl cleavage and electronegative potential in a given DNA sequence (see ‘Materials and Methods’ section for details) (E) In order
to obtain a relative value for the minor groove potential defined by the bases nx and ny� 2, the cleavage at the nx and ny� 2 positions were summed
and the potential assigned to base nx� 1 in the sequence.
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cleavage table (shown as histogram in Supplementary
Figure 1A–D), which holds all 1024 possible pentamers.
The two first scores are set to zero according to the
n+(n� 2) algorithm (Figure 1C). The score vector is
placed in a result matrix which has five rows and as
many columns as there are bases in the sequence. The
sliding window is then moved one base and the next
score vector is placed on the second line in the result
matrix below its pentamer. When the window has been
shifted five times, the row number of the result matrix is
reset and the sixth score vector will be inserted at the first
line in the result matrix, etc. The final score vector
(y1� y8) is the sum of each column in the result matrix,
which holds three scores, divided by three. Thus for pre-
diction of values for the electronegative potential the sum
of predicted uranyl cleavage scores for each n+(n� 2)
base pairs are averaged and the value is assigned to the
n� 1 base (Figure 1E).

RESULTS AND DISCUSSION

Extensive studies on bent A-tract DNA have shown that
sequence-dependent DNA conformation and thus also
minor groove width and electrostatic potential require
tetra/pentamer regions in order to be defined in terms of
sequence dependence (18). Therefore, to derive at an ex-
perimentally founded model for sequence based prediction
of DNA minor groove electronegative potential, we
decided to analyse the uranyl photo-cleavage of all
possible pentanucleotide helixes as found in a previously
published DNA fragment library of all 1024 possible
pentanucleotides (19). As can be seen from the results
(Figure 1A) more than 10-fold variation in cleavage inten-
sity is observed along the fragment. In particular A/T rich
regions are, as expected, generally most efficiently
cleaved (Figure 1B and Supplementary Figure S1A–D
(13). However, no direct correlation between the size
and simple sequence of the AT region and the cleavage
is apparent. For instance sequences containing two or
three contiguous A/T base pairs such as GAACT
(Supplementary Figure S1A), GAAAC (Supplementary
Figure S1B), GAACC (Supplementary Figure S1B) and
GATAC (Supplementary Figure S1C and Figure 1B)
and even sequences without any A/T dinucleotide steps
AGACT (Supplementary Figure S1B) and GGACA
(Supplementary Figure S1D) exhibit increased cleav-
age while other seemingly analogous sequences such as
CAATC (Supplementary Figure S1A), GAAGA
(Supplementary Figure S1A), CAAAC (Supplementary
Figure S1B) and CATAG (Supplementary Figure S1B)
do not exhibit hyper-reactivity towards uranyl cleavage.
Also in accordance with all previous results, the pos-
itions of cleavage maxima and minima on the two DNA
strands in general are consistent with binding/cleavage
across the minor groove, exhibiting a 2 nt stagger
towards the 30-end between the two strands (the shortest
distance across the minor groove) (12–15) (Figure 1B and
Supplementary Figure S1A–D). Thus, within each
pentamer three such minor groove nx� (ny� 2) ‘base
pairs’ are defined (Figure 1C). Consequently, we designed

an algorithm that divides a sequence in overlapping penta-
mers (Figure 1D). For each pentamer, the cleavage
values for the first three 30-bases on each strand is obtained
from the experimental pentamer library cleavage data
(Supplementary Figure S1). Thus, eventually each base
position is assigned the sum of three cleavage values
(Figure 1D, example in Supplementary Figure S2). Often
a quantitative asymmetry of the uranyl cleavage between
the two strands is observed (13). Therefore the prediction
of the relative minor groove electronegative potential is
obtained as the sum of the (predicted) cleavage at
position nx and position ny� 2, and is assigned to base
position n� 1 at the centre of an imaginary line between
the nx’th and the ny� 2 nd phosphate (Figure 1E).
In order to validate the model both in terms of uranyl

cleavage and minor groove electronegative potential pre-
diction, we chose 14 well-described protein binding sites
and a thoroughly analysed nucleosome sequence (9,10).
All of the analysed protein binding sites involve arginine
interactions in regions with a narrow minor groove and
enhanced electronegative potential according to calcula-
tions on the basis of 3D crystal structures found in the
Protein Data Bank (PDB) (9,10). Comparison of the ex-
perimentally obtained uranyl photo-cleavage pattern of
these DNA regions with that predicted from our sliding
window model algorithm, clearly validates the model in
terms of cleavage prediction, although minor differences
are seen in regions of less intense cleavage (Figure 2A and
Supplementary Figure S3). Likewise the relative minor
groove electronegative potential map calculated from the
data as described above shows very good correspondence
between the experimentally based and the algorithm pre-
dicted values (Figure 2B). Furthermore, the relative minor
groove electronegative potential map obtained from
uranyl cleavage data corresponds excellently with that pre-
viously calculated from crystal structure data (9,10), and
thus with the experimentally determined positions of
arginines in the protein–DNA complexes (Figure 2B).
Consequently, we conclude that the algorithm provides a
very valuable and reliable tool for relative, semi-
quantitative prediction of DNA helix minor groove elec-
tronegative potential solely based on DNA sequence.
Furthermore, because the uranyl probing reflects the
properties of free DNA in solution, we conclude that the
minor groove features responsible for protein recognition
through electrostatic binding via arginines (at least for
the protein–DNA complexes analysed here) is a feature
of the native DNA helix conformation and is not induced
by protein binding. This conclusion is not possible based
on crystal data on protein–DNA complexes. Thus these
proteins may indeed find their cognate DNA target by
electrostatic search of the helix minor groove.
The strength of the approach is clearly illustrated by the

analysis of the two Drosophila Hox binding sequences, the
fsh250 and the variant fsh250con* sites, differing only by a
single TA/AT base pair change. The two binding se-
quences, containing the ATTAAT (fsh250) and ATTTA
T (fsh250con*) hexamer sequences, respectively, have been
shown to mediate functional specificity through small dif-
ferences in minor groove width and electrostatic potential
as calculated from X-ray structures (10). Our prediction
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Figure 2. Experimental and predicted values of uranyl cleavage and minor groove electronegative potential of protein binding sites. (A) Experimental
(filled triangle) and predicted (filled square) relative uranyl photo-cleavage (in arbitrary units) at Hox (fkh250 and fkh250con*) (10), MogR (20),
UBX-EXD (21), MATa1/Mata2 (22) and Oct1 (23) binding DNA sequences [the difference in intensities between the predicted and experimentally
determined values are not meaningful as they depend on the intensities of the bands (exposure) on the gel in the particular analyses]. (B) Predicted
and experimental relative electrostatic potential (in arbitrary units) of the six protein binding sites in A and eight additional protein binding sites
[Msx-1 (24), Oct-1 POU (25), Pit-1 POU (26), the PhoB response regulator (27), the MATa2/MCM1 complex (28) and the Hap1-18 activator (29),
the Tc3 transposase (30) and the phage 434 repressor (31)] based on experimental (filled triangle) and predicted (filled square) uranyl photo-cleavage
data. The relative values for electronegative potential determined from the X-ray crystal structure of the Hox-fsh250 complexes (10) are shown as
stippled lines (filled diamond). The position of arginine contacts are indicated by arrows.
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clearly reflects this subtle difference in minor groove po-
tential that allows two arginines and one histidine to bind
in the broader region of a higher electronegative potential
in the ATTAAT sequence, whereas only a single arginine
binds in the ATTTAT sequence due to an elevated elec-
tronegative potential only in the left part of the hexamer
sequence (Figure 2B). Analogously, excellent correspond-
ence between the uranyl data and crystallography results
of minor groove potential and arginine positions were
found for the motility gene repressor (MogR) (20),
which binds to a long A/T region in which a TA step
with at local widening of the minor groove produces a
bifurcated electronegative potential where two arginines
can bind. Indeed our analysis is fully consistent with the
data for all 14 protein binding sites including the
Drosophila Hox protein, UBX and the cofactor EXD,
which binds by inserting an arginine into a very electro-
negative pocket of the minor groove (21), for the DNA
site recognized by the MATa1–MCM1 complex (22) (in
which Arg 7 binds within a long electronegative region
whereas Arg 4 binds in a region of a less electronegative
potential), and for the mammalian OCT1–PORE complex
in which two POU domains (23) binds to two A-tract
regions possessing electronegative pockets for four argin-
ines. These examples together with the results of the
binding sites for Msx-1 (24), OCT1-Pou (25), Pit1 (26),
PhoB (27), MATa2-MCM1 (28), HAP1-18 (29), Tc3
transpotase (30) and the 434 repressor (31) (Figure 2B
and Supplementary Figure S3) all clearly demonstrate
that the predicted minor groove electronegative potential
of free DNA provides a powerful prediction for potential
positions of arginines in protein–DNA complexes.

Analysis of the symmetrical DNA used for X-ray struc-
ture determination of a nucleosome core complex (32)
gives a slightly different picture. Although as found for
the protein recognition sites, the correlation between ex-
perimental and predicted uranyl cleavage (Figure 3A) (and
thus the derived minor groove electronegative potential
measure) (Figure 3B) is qualitatively very good, only a
subset of the regions identified as having highly elec-
tronegative (and also narrow) minor groove in free
DNA appear so in the nucleosome core particle (32)
(Figure 3B). Specifically, we note that there is very good
correlation at nucleosome positions 68, 55, 45 and 38 at
the outer part of the core DNA (one half of the symmet-
rical DNA is shown) while very little correlation between
the free DNA structure and the nucleosome structure is
found in the central region. In particular, the highly elec-
tronegative minor grooves at positions 32, 10 and 0 are
virtually out of phase with the DNA wrapping around the
nucleosome core. Not unexpectedly, this would imply that
the conformation of this DNA is not fully predetermined
for nucleosome wrapping, but that certain, presumably
key regions (in this case positions 68, 55, 45 and 38), are
nucleating the process and thus direct the final folding
which by induced fit ‘forces’ the remaining DNA into
the 10 bp regular phasing around the histone core.
Clearly it would be biologically advantageous for evolu-
tion to select nucleosomes of intermediate thermodynamic
stability or nucleosomes with alternative positioning pref-
erences as this would allow energetically less costly

remodelling for gene activation, and sliding and unravell-
ing during replication and transcription. Thus upon
genomic wide analyses of minor groove electronegative
potential employing dedicated algorithms it may become
possible to predict preferred nucleosomal positioning as
well as possible remodelled states in the genome.
Furthermore, other patterns may signify functional
regions such as promoters, enhancers, etc.
This latter point is very clearly illustrated by the analysis

of the divergent yeast GAL1 and GAL10 promoters,
which share a common upstream activating region con-
taining four binding sites for the GAL 4 protein. This
region has been thoroughly characterized for nucleosome
positioning in vivo (33,34). The minor groove electronega-
tive potential map (Figure 3C) shows a very distinct dif-
ference between the GAL4 binding region and the
surrounding DNA, which contain specifically positioned
nucleosomes. While, the nucleosome regions show major
variations in electronegative potential, many within a 10
bp period compatible with nucleosome predisposition, the
GAL4 region shows only minimal variation which would
indicate much lower propensity for forming nucleosomes.
Furthermore analysis of a series of human promoters
indicate a similar general pattern in which the regions
around transcription start site exhibit significantly lower
electronegative potential variation than the regions sur-
rounding the promoters (Supplementary Figure S4).
In view of recent uncertainty of the importance of

sequence directing effects on nucleosome positioning
(35,36), these results clearly would indicate a very
pronounced influence of DNA helix properties (which
are sequence instructed) on in vivo nucleosome positioning
[at least for the GAL1-10 locus and also for (certain)
human promoters]. Obviously, nucleosome positioning is
more complicated than merely a question of electronega-
tive potential. Nucleosome positioning and octamer
binding to G/C-rich motifs (37,38) will not be predicted
by the electronegative potential analysis, possibly because
this binding is predominantly driven by DNA flexibility
properties. Eventually a combination of two or more al-
gorithms taking into account both groove potential as well
as DNA flexibility may be required to fully predict ener-
getically preferred nucelosome positioning. Nonetheless,
the present algorithm for the first time allow this type of
analyses of the influence and importance of DNA struc-
ture in terms of minor groove electronegative potential on
genome function and organization, and the results so far
on promoters and nucleosome DNA clearly indicate that
this parameter is important. Further comprehensive
genome analyses will reveal the implications of this
approach.
Obviously, regions of high minor groove electronegative

potential will in general also be AT-rich because the
highest negative potential is found in connection with
AT-tracts (12); but AT-rich regions [e.g. short AT
(N� 3) runs interrupted by single G/C base pairs] do
not necessarily show high minor groove electronegative
potential. Therefore, the electronegative potential predic-
tion by the DNA structure—due to the molecular origin of
this DNA property—is inherently sequence biased, but a
simple sequence analysis without the algorithm will of
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Figure 3. Uranyl cleavage and minor groove electronegative potential of nucleosome forming sequences. Experimental (filled triangle) and
predicted (filled square) uranyl photo-cleavage (A) and relative electrostatic potential map (B) of DNA of a nucleosome core particle (32).
One half of the symmetrical DNA in the nucleosome core particle is shown with numbers relative to the center of symmetry. The regions of the
highest electronegative potential determined from the X-ray crystal structure (9) are shown as underlined in (B). The positions of arginine
contacts are indicated by arrows. (C) Predicted minor groove electronegative potential map in the GAL1-10 locus (positions above the
graphs) in chromosome II from Saccaromyces cerevisie. The reported (33,34) in vivo positions of four nuclesomes are shown by ellipses and
the region of four GAL four binding sites is indicated by a grey rectangle. The two transcription start sites (GAL 1 and GAL10) in the region
are indicated.
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course not reveal the electronegative potential information
at all. It is also important to emphasize that it is not the
electronegative potential per se but the pattern along the
DNA helix which is the target of such analyses.

An algorithm based on the hydroxyl radical cleavage
method has recently been developed for measuring local
variations in DNA structure at single nucleotide reso-
lution (19). Modulation in hydroxyl radical cleavage
reflects the average helix structure in terms of solvent ac-
cessibility of the deoxyribose in the minor groove. Thus
the charge neutral hydroxyl radical may sense differences
in groove width (and helix conformation) but hardly elec-
tronegative potential per se. In contrast, the DNA inter-
action of the cationic uranyl ion will be directly influenced
by the local electrostatic potential of the DNA helix.
Therefore as agued previously (13,39), information
obtained by the two methods is not equivalent but
rather complementary, and may be combined in order to
obtain a full description of the DNA helix conformation
and properties. Furthermore, variations in uranyl cleavage
is much more pronounced than hydroxyl radical cleavage
and therefore more sensitively reflects subtle differences in
helix structure and property, in casu minor groove electro-
negative potential. Thus a comparison of the two methods
at the genomic level would be interesting in order to
deduce the correlation between minor groove width and
electronegative potential in genomes, and also to help
unravelling the structural and molecular details of the con-
nection between these two parameters of the DNA double
helix. Finally, because the algorithm is based on pentamer
data we recognize that (special) features of the DNA helix
that are dependent on longer stretches of the helix may not
be predicted by the algorithm, and that it therefore can be
refined by incorporation of more experimental data or by
expanding it to a heaxamer or heptamer format.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online. The
supplementary algorithm is available at: http://gastro
.sund.ku.dk/nar/
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Reinbold,R., Schöler,H.R. and Wilmanns,M. (2001) Differential
dimer activities of the transcription factor Oct-1 by DNA-induced
interface swapping. Mol. Cell, 8, 569–580.

Nucleic Acids Research, 2011, Vol. 39, No. 14 6275

http://nar.oxfordjournals.org/cgi/content/full/gkr204/DC1
http://gastro.sund.ku.dk/nar/
http://gastro.sund.ku.dk/nar/


24. Hovde,S., Abate-Shen,C. and Geiger,J.H. (2001) Crystal structure
of the Msx-1 homeodomain/DNA complex. Biochemistry, 40,
12013–12021.

25. Klemm,J.D., Rould,M.A., Aurora,R., Herr,W. and Pabo,C.O.
(1994) Crystal structure of the Oct-1 POU domain bound to an
octamer site: DNA recognition with tethered DNA binding
modules. Cell, 77, 21–32.

26. Jacobson,E.M., Li,P., Leon-del-Rio,A., Rosenfeld,M.G. and
Aggarwal,A.K. (1997) Structure of Pit-1 POU domain bound
to DNA as a dimer: unexpected arrangement and flexibility.
Genes Dev., 11, 198–212.

27. Blanco,A.G., Sola,M., Gomis-Ruth,F.X. and Coll,M. (2002)
Tandem DNA recognition by PhoB, a two-component signal
transduction transcriptional activator. Structure, 10, 701–713.

28. Tan,S. and Richmond,T.J. (1998) Crystal structure of the yeast
MATalpha2/MCM1/DNA ternary complex. Nature, 391, 660–666.

29. King,D.A., Zhang,L., Guarente,L. and Marmorstein,R. (1999)
Structure of HAP1-18-DNA implicates direct allosteric effect
of protein-DNA interactions on transcriptional activation.
Nat. Struct. Biol., 6, 22–27.

30. Watkins,S., van Pouderoyen,G. and Sixma,T.K. (2004) Structural
analysis of the bipartite DNA-binding domain of Tc3 transposase
bound to transposon DNA. Nucleic Acids Res., 32, 4306–4312.

31. Aggarwal,A.K., Rodgers,D.W., Drottar,M., Ptashne,M. and
Harrison,S.C. (1988) Recognition of a DNA operator by the
repressor of phage 434: a view at high resolution. Science, 242,
899–907.

32. Davey,C.A., Sargent,D.F., Luger,K., Maeder,A.W. and
Richmond,T.J. (2002) Solvent mediated interactions in the

structure of the nucleosome core particle at 1.9 a resolution.
J. Mol. Biol., 319, 1097–1113.

33. Segal,E., Fondufe-Mittendorf,Y., Chen,L., Thåström,A., Field,Y.,
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