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Resveratrol mediates its anti-cancer effects 
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Abstract 

Aim and background: Cancer represents a major health problem with an exceedingly high toll on the patients, 
their families, and the economy. Cancers are also associated with high mortality rates. Existing therapies for cancer are 
generally ineffective with many side effects.

Method: A search was conducted on Pubmed, Google Scholar, Scopus, and web of science databases, and articles 
related to anticancer effects of resveratrol were collected.

Results: Resveratrol is a natural compound that can activate the Nrf2 transcription factor. Nfr2 translocates to the 
nucleus and induces antioxidant gene expression. In different cell lines, resveratrol can increase apoptosis and inhibit 
the proliferation of cancer cells.

Conclusion: We found that resveratrol shows efficacy for the treatment of cancer, but due to high controversy on 
the Nrf2 signaling pathway and mechanisms of resveratrol action, additional studies should be conducted to better 
characterize its mode-of-action in cancer.
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Introduction
Resveratrol belongs to the flavonoids group and can be 
found in various fruits (e.g. berries, grapes, red wine, 
and peanuts). In addition to its anticancer effects, it has 
anti-diabetic, antioxidant, anti-inflammatory effects. 
Resveratrol has beneficial effects against drug resist-
ance in cancer and can increase the sensitivity of cells to 
chemotherapeutic drugs. Resveratrol also has protective 
properties on the liver, heart, and brain [1]. Cancer and 
cardiovascular disease are two major health problems 
with high mortality rates [2]. Cancer is responsible for 
many deaths that occur in a year. In 2020, it is estimated 
that about 10 million cancer death has occurred and 19.3 
million new cases were diagnosed with cancer [3]. Exist-
ing therapies for cancer are generally not effective. Cur-
rent therapies for cancer including chemotherapy and 
radiotherapy have multiple side effects and resistance to 
them may develop over time. Chemotherapeutic drugs 
simultaneously affect both normal and cancer cells. Can-
cer patients treated with chemotherapy lose their hair 
and their bone marrow is damaged which may lead to 
aplastic anemia [4]. Patients who are treated with radio-
therapy display many side effects including lymphopenia, 
thrombocytopenia, and neutropenia [5–7]. Radiotherapy 
damage to stem cells of bone marrow may be teratogenic 
for the fetus [8, 9]. It also affects the skin and causes radi-
odermatitis and increases the risk of secondary cancer 

following therapy [10, 11]. In addition, radiotherapy dam-
ages the DNA and causes apoptosis and cell death [12]. 
Thus, discovering new cancer therapeutic approaches is 
necessary and timely. Resveratrol is a natural product and 
has anticancer effects. It can activate the Nrf2 signaling 
pathway and reduce oxidative stress. In this review, we 
summarized the anticancer effects of resveratrol which 
are mediated via the activation of the Nrf2 signaling 
pathway.

Oxidative stress and cancer pathogenesis
Oxidative stress is a trigger and occurs in many diseases, 
such as diabetes, cancers, and neurological disorders. 
Various metabolic pathways lead to the production of 
reactive oxygen species, referred to as ROS (e.g.  O2–, 
 H2O2, OH–,  O3). For instance, UV radiation, enzymes 
such as NADPH oxidase, and chemical substances, such 
as alcohol can produce oxidative stress in cells. Cells also 
possess antioxidant enzymes (e.g. catalase and superox-
ide dismutase) that can reduce ROS and decrease restore 
their redox status. HO-1 (heme oxygenase-1) is an anti-
oxidant enzyme and its levels increase upon resveratrol 
treatment [13–15]. In normal cells, low levels of ROS 
have been implicated in signal transduction, phagocyto-
sis, inflammation, and activation of enzymes [4, 15]. In 
turn, ROS production in tumor cells is elevated cells as a 
consequence of increased metabolic rate, gene mutation, 
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and relative hypoxia, and excess ROS are quenched by 
increased antioxidant enzymatic and non-enzymatic 
pathways in the same cells. Furthermore, ROS activates 
signaling pathways related to the metastasis of tumors. 
ROS can induce apoptosis by activation of caspase 
enzymes and several antioxidant substances prevent cells 
from undergoing this process [15]. In addition, oxidative 
conditions in cancer cells increase VEGF levels for angio-
genesis. In cancer therapy, there are anti-angiogenesis 
antibodies that can block the VEGF receptor [16] (Fig. 1).

Nrf2 signaling pathway
Cap’n’collar (Cnc) transcription factors family has sev-
eral members including Nrf2, Nrf3, Nrf1. Nrf2 (nuclear 
erythroid-2 related factor 2) is a transcription factor that 
can stimulate the antioxidant enzymes. It can regulate 
the oxidative stress of cells by activating the genes which 
are related to cellular stress [1, 17]. Nrf2 has tumor sup-
pressor effects and also can increase the proliferation in 
cancer cells. It has been shown that in many cancers the 
expression level of Nrf2 is elevated [18]. In addition, in 
cancer cells, the overexpression of Nrf2 leads to resist-
ance to chemotherapy and radiotherapy. Nrf2 has seven 
domains (Neh1 to Neh7) and two binding sites (ETGE 
and DLG). The most important domain for Nrf2 is Neh2 
that has seven lysin amino acids [18]. The activation of 
the Nrf2 transcription factor due to its antioxidant prop-
erties may be effective in cancer therapy. But there is a 

controversy on whether activation of Nrf2 is of clini-
cal benefit in cancer therapy or is a carcinogen? Nrf2 
has been referred to as a double-edged sword. In addi-
tion to its cytoprotective and chemoprevention effects, 
the activation of Nrf2 results in inhibition of apoptosis, 
induction of proliferation, and also enhancement of cell 
survival [19]. During chemotherapy, antioxidant levels of 
β-carotene, vitamin C, and E are decreased. In addition, 
chemotherapeutic and antineoplastic drugs (e.g. dau-
norubicin, and epirubicin) can increase ROS levels and 
induce oxidative stress and attenuate cancer cells death. It 
has also been suggested that reduction in oxidative con-
ditions in cancer cells may enhance the anticancer effects 
of antineoplastic drugs [4]. In a study by DeNicola et al., 
it was shown that Oncogenes including Kras, Myc, and 
Braf genes suppressed ROS production and increased the 
transcription of Nrf2 in cells [20] (Table 1).

The keap1‑Nrf2 pathway
The Keap1-Nrf2 signaling pathway is essential for the 
regulation of oxidative stress [19, 21]. In the basal condi-
tion, Nrf2 and keap1 are connected and whenever cells 
are placed in oxidative condition, Nrf2 is separated from 
Keap1, transfer to the nucleus, and activate the antioxi-
dant genes [19].

Keap1 has three domains that can bind to ETGE and 
DLF motifs from the Nrf2 protein. Keap1 and Nrf2 form 
a complex with Cullin3 and E3 ubiquitin ligase. The 

Fig. 1 The keap1-Nrf2 pathway
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oxidation of cysteine sulfhydryl groups in the oxidative 
stress condition causes the separation of Nrf2 from Keap-
1. Then Next, Nrf2 translocates to the nucleus forming 
a heterodimer complex with Maf (musculoaponeurotic 
fibrosarcoma) and binds to an ARE (antioxidant response 
element) enhancer [18, 22].

Nrf2 binds to the NF-E2 site of the β-globin gene. This 
molecule has cytoprotective and chemoprevention activ-
ity [23]. Several substances induce Nrf2 activation (e.g. 
Hydrogen sulfide, nitrogen oxide, physical activity, lipid 
peroxidation, and curcumin). Keap1 (formerly known as 
an Nrf2 inducer) is a protein that the stress molecule can 
bind to the cysteine amino acid. Indeed, Keap1 protein 
is a negative controller of the Nrf2. Keap1 has oxidative 
sensors and can detect oxidative stress such as ROS in 
the cells [23, 24]. The Keap1-Nrf2 pathway regulates the 
anabolic pathways in the cells that are necessary for the 
reduction of oxidant (for example, NADPH that is pro-
duced in the pentose phosphate pathway) [24, 25].

PI3K/AKT pathway
The class  IA of the PI3K family has been shown to be 
responsible for cancer progression. It (class  IA) has two 
subunits (p85 and p110 subunits). The PIP2 (phosphati-
dylinositol-4,5-bisphosphate) is the substrate of PI3K. 
when growth factors bind to their receptors on the sur-
face of cells, the inhibitory effect of the p85 subunit dis-
sociates from the p110 subunit. In addition, the p110 
subunit can be activated by ROS. The phosphorylation of 
PIP2 by p110 results in PIP3 (phosphatidylinositol-3,4,5-
trisphosphate) production. Next, PIP3 binds to PDK1 
and AKT proteins, leading to phosphorylation of AKT 
protein by PDK1 and activation of numerous enzymes. 
AKT can phosphorylate transcription factors and pro-
teins involved in cell survival [26]. In a leukemia cell line 
activation of the PI3K/AKT pathway has been shown to 
increase Nrf2 expression [27].

Effects of resveratrol on various types of cancers
Estrogen is a steroid hormone that increases the risk of 
breast cancer. Due to the reduction of estrogen in meno-
pausal women, the risk of osteoporosis and cardiovascu-
lar disease is increased in this group. As a treatment for 
this condition, estrogen as a hormone therapy has been 
administrated to menopausal women. Yet, estrogen is 
a carcinogen, and can significantly increase the risk of 
breast cancer [28, 29]. Thus, the regulation of estrogen 
levels is important in the prevention of breast cancer.

Catechol estrogen is a carcinogen for breast cancer. 
UGT1A8 is an enzyme that can metabolize the catechol 
estrogen. Resveratrol can increase the expression of 
UGT1A8 through activation of the Nrf2 gene expression 
and degrade the catechol estrogen. Indeed, Nrf2 affects 

the promoter of the UGT1A8 gene and induces UGT1A8 
gene activation [30]. Anwesha et  al. synthesized two 
analogs of resveratrol (HPIMBD and TIMBD) and com-
pared their antioxidant and cytotoxicity effects in the 
presence or absence of resveratrol. They reported that 
these analogs do not have antiproliferative or cytotoxic-
ity effects against the MCF-10A cell line. But, compared 
to resveratrol can more efficaciously induce Nrf2 expres-
sion. HPIMBD and TIMBD also increased SOD3 enzyme 
expression which is responsible for the detoxification of 
ROS, significantly attenuating ROS generation in this cell 
line [31].

As noted above, oxidative stress may trigger carcino-
genesis and increase cell proliferation [32]. By activating 
the Nrf2 signaling pathway resveratrol protects cells from 
oxidative stress-induced damage. Zhang et al. found that 
resveratrol can increase the Nrf2 and HO-1 expression 
and in contrast, it reduces the ROS production and Keap1 
expression. When treated with resveratrol, cell prolifera-
tion was inhibited and apoptosis was induced secondary 
to suppression of the Bcl-2 protein and increased expres-
sion of Bax protein [32].

Cheng et al. showed that resveratrol can induce apop-
tosis and inhibit cell proliferation. Resveratrol activated 
the Nrf2 through ROS production [13]. Lee et  al. used 
the combination of resveratrol and clofarabine on the 
MSTO-211H cell line. When combined, their inhibitory 
effects against cell growth were promoted. Reduction in 
Nrf2 protein expression levels and increased cell viability 
were reported in cells are treated with the combination of 
resveratrol and clofarabine [33].

Soeur et al. used keratinocytes to investigate the anti-
oxidant properties of resveratrol in skin cells, showing 
the latter can increase the antioxidant enzymes, such as 
glutathione peroxidase-2 by activating the Nrf2-Keap1 
pathway [34]. Reduction in Nrf2 expression by resvera-
trol was also reported. HEO et al. showed the antiprolif-
erative effects of resveratrol against malignant melanoma 
cells, reporting that resveratrol induced apoptosis by 
increasing Bcl-2 expression levels, but decreased Nrf2 
expression level in melanoma cells [35]. In a leukemia cell 
line, aberrant activation of the PI3K/AKT/Nrf2 pathway 
inhibited apoptosis and increased cell proliferation [27].

The effects of resveratrol in pancreatic and renal cell 
carcinoma also have been investigated in  vitro. Shanel 
et  al. reported the ameliorative activity of resveratrol 
against toxicity induced by ochratoxin in human embry-
onic kidney cells (HEK293 cell). Some fungi such as Peni-
cillium and Aspergillus can produce it. Ochratoxin can 
induce oxidative stress. It has nephrotoxin activity and 
causes renal dysfunction. Results showed that after 48 h 
resveratrol elevate the expression of Nrf2 cells. in con-
clusion, resveratrol can be regarded as a good choice for 
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Ochratoxin-induced toxicity and has chemo-preventive 
properties [36].

Resveratrol increases the pancreatic cancer cells’ sen-
sitivity to gemcitabine by its effect on NAF-1 (nutrient-
deprivation autophagy factor-1) and Nrf2 signaling. 
Liang et al. showed that Resveratrol can activate the Nrf2 
signaling and reduce the expression of NAF-1 that has 
anti-apoptotic activity. in addition to induction of apop-
tosis, resveratrol showed the antiproliferative activity 
against pancreatic cancer cells. in conclusion, new drugs 
for reducing the transcription or activity of NAF-1 (e.g. 
resveratrol) may be effective in the treatment of pancre-
atic cancer [13].

Resveratrol effect on tumor microenvironment
Resveratrol can regulate the tumor microenvironment 
via modulating oxidative stress, angiogenesis, fibrosis, 
and the immune system [37]. In the tumor cell micro-
environment, ROS levels increase and lead to apoptosis 
by activating p53. It was found that resveratrol has two 
contradictory impacts on oxidative stress. In its thera-
peutic effect, it elevates oxidative stress to prevent can-
cer cell progression [38]. In its chemopreventive effect, it 
can act as a ROS scavenger to sustain cells from muta-
tions. Resveratrol can affect different innate immune cells 
which are involved in the regulation of tumor microen-
vironment. It was found that resveratrol inhibited the 
activation of M2 macrophage and also induced repolari-
zation of tumor-associated macrophages (TAM) from 
M2 to M1, resulted in tumor suppression and metasta-
sis. M1 is the active form of macrophage in normal cells 
that produces several cytokines. In the tumor microen-
vironment condition, reprogramming M2 toward the 
M1 phenotype is associated with the overproduction of 
inflammatory cytokines leading to cell destruction [39]. 
Resveratrol can also decrease immune tolerance in tumor 
cells by inhibiting the enzyme indoleamine 2,3-dioxy-
genase (IDO) expression and activity in dendritic cells 
resulted in regulation of cytotoxic T cell polarization to 
increase its antitumor effect. Treatments with anti-angi-
ogenesis agents have been focused on as a suitable strat-
egy among patients with solid tumors to prevent tumor 
progression. Resveratrol was effective on angiogenesis 
through an inhibitory direct effect on vascular endothe-
lial growth factor (VEGF) generation and also inhibit-
ing the hypoxia-inducible factor (HIF)-1generation and 
leads to preventing VEGF secretion [40]. Fibroblasts are 
involved in the tumor’s progression by producing plate-
let-derived growth factor (PDGF), stromal cell-derived 
factor 1 (SDF1), VEGF, and basic fibroblast growth fac-
tor (bFGF). Resveratrol can inhibit the tumor cell viabil-
ity by decreasing several fibrogenic mediators including 
a-SMA, type I collagen, and fibronectin [40].

Clinical trial studies related to anti‑tumor effects 
of resveratrol
There are few clinical studies related to the anti-cancer 
activity of Res. A clinical trial conducted on the protec-
tive impact of plant-based Res on colon cancer patients 
showed that this agent could not inhibit the expres-
sion of Wnt, myc, and cyclin D1genes in a sample of 
patients [41]. Patel et al. reported that resveratrol and its 
metabolites (resveratrol-3-O-glucuronide, resveratrol-4′-
O-glucuronide, resveratrol-3-O-sulfate, resveratrol-4′-O-
sulfate, resveratrol sulfate glucuronide and resveratrol 
disulfate) were present in the operated colorectal tissue 
[42]. Howells et  al. reported higher levels of resveratrol 
in plasma and hepatic tissues after SRT501administra-
tion in patients with colorectal cancer and hepatic metas-
tasis who were scheduled to undergo hepatectomy [43]. 
No significant alteration was observed in AKT1, GSK-3, 
survivin, and PARP biomarkers [43]. Zhu et al. evaluated 
the resveratrol impact on the methylation of certain pro-
teins in women with breast cancer. Sample biopsy dem-
onstrated invasive breast cancer with atypical hyperplasia 
[44]. It was found that 5 or 50 mg/2 per day of trans-res-
veratrol for 12 weeks reduced methylation of RASSF-1a, 
leading to a decrease in prostaglandin E2 (PGE2) expres-
sion in breast cancer [45]. Brown et al. [46] reported that 
administration of 4000 mg/patient of Res was safe among 
patients with recurring prostate cancer [47]. Another trial 
indicated use of two doses of resveratrol for 4  months 
decreased blood androstenedione, dehydroepiandroster-
one, and dehydroepiandrosterone-sulfate concentrations 
without change in the size of the prostate among patients 
with benign prostate hyperplasia [48]. However, there 
are some reports related to the side effects of Res in can-
cer patients. It was indicated that administration of Res 
(5 mg/day for 6 days) increased protein carbonyl levels in 
patients with colorectal cancer [49]. SRT501 supplements 
daily caused kidney toxicity in patients with multiple 
myeloma at the second phase of the clinical trial, led to a 
patient’s death [50]).

Conclusion and future perspectives
The evidence from experimental studies suggests that 
resveratrol has a protective effect against several can-
cers by inhibiting the expression and levels of Nrf2 in 
cancerous samples. In addition, it can induce apoptosis 
and inhibit cell proliferation. Resveratrol may be effective 
in combination with other chemotherapeutics agents. 
Although, most of the studies indicated the safety of Res-
veratrol; however, there are some reports related to its 
toxicity due to dosing regimen. Current data related to 
trials on the effectiveness of resveratrol in patients with 
a different type of cancer treatment are still very few. In 
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addition, the studies have a low sample size. The molecu-
lar mechanisms involved in the protective effects of Res 
against cancer were not evaluated in human samples. 
Therefore, more clinical trials are needed to find the exact 
doses and duration for cancer treatment and prevention 
and also determine molecular targets triggered by Res. In 
addition, a novel formulation of Res with nano delivery 
systems should be designed and evaluated their pharma-
cokinetic and pharmacodynamics in cancer patients.
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