

Ki-67 labeling index is a predictive marker for a pathological complete response to neoadjuvant chemotherapy in breast cancer

A meta-analysis

Miaomiao Tao, MD^a, Shu Chen, MD^b, Xianquan Zhang, PhD^c, Qi Zhou, PhD^{a,*}

Abstract

Background: A pathological complete response (pCR) after neoadjuvant chemotherapy (NCT) is a strong indicator of the benefit of therapy and presents an early surrogate for a favorable long-term outcome. It remains unclear whether Ki-67, a marker for tumor proliferation, can function as a predictor of the response to NCT in breast cancer. The objective of this meta-analysis was to compare the pCR rate and clinical outcomes in breast cancer patients with different Ki-67 labeling indexes (Ki-67 LI) who received NCT.

Methods: Clinical studies were retrieved from the electronic databases of PubMed, Embase, Clinical Trials, Wanfang, and the Chinese National Knowledge Infrastructure, from their inception to July 31, 2017. Meta-analysis was performed on pool eligible studies to determine whether Ki-67 LI was associated with the pCR rate and clinical outcomes of breast cancer patients who were treated with NCT. Pooled analyses were performed using fixed effects models. Two reviewers screened all titles and abstracts and independently assessed all articles.

Results: A total of 36 studies involving 6793 patients were included in the meta-analysis. Pooled analysis results revealed that patients with high Ki-67 LI exhibited significantly higher pCR rates (odds ratio [OR] = 3.94, 95% confidence interval [CI]: 3.33–4.67, P < .001) but poorer relapse-free survival (OR = 1.99, 95% CI: 1.39–2.85, P < .001) than those with low Ki-67 LI, but there was no significant difference in objective tumor response rate.

Conclusion: The meta-analysis reported here demonstrates that pretherapeutic Ki-67 LI is associated with pCR in breast cancer patients undergoing NCT. More phase III randomized clinical trials will be required to confirm our findings.

Abbreviations: HER2 = human epidermal growth factor receptor 2, HR = hormone receptor, Ki-67 LI = Ki-67 labeling index, NCT = neoadjuvant chemotherapy, NR = not reported, OR = odds ratio, OS = overall survival, pCR = pathological complete response, RFS = relapse-free survival, TNBC = triple-negative breast cancer.

Keywords: breast cancer, Ki-67, meta-analysis, neoadjuvant chemotherapy, pathological complete response

1. Introduction

The most common cancer in women in 2016 was breast cancer, which is expected in the near future to account for approximately 29% of all newly diagnosed cancers in females.^[1] Neoadjuvant chemotherapy (NCT) has been established as a standard treatment for patients with not only locally advanced breast cancer but also operable breast cancer. The objectives of NCT for operable breast cancers are to downstage tumors, making inoperable tumors operable, to render tumors amenable to

http://dx.doi.org/10.1097/MD.00000000009384

breast conserving surgery, and to improve the survival time.^[2,3] Biomarkers have been used in the past to monitor cancer treatment and increasing evidence indicates that tumor biomarker levels can help clinicians to assess the effectiveness of NCT.^[4–8]

Ki-67 is a nuclear protein expressed during all phases of the cell cycle, except G0, and its expression has been reported to be correlated with the tumor cell proliferation rate. Many studies have investigated immunohistochemical expression of Ki-67 as a prognostic and predictive marker for breast cancer.^[9–11] But previous studies did not report completely consistent results regarding the impact of NCT on the status of tumor biomarkers.^[12–17]

One of the main objectives of NCT is to achieve a pathological complete response (pCR) because pCR has been found to be associated with longer disease-free and overall survival rates.^[18,19] Several studies have associated high levels of Ki-67 with higher pCR rates.^[20,21] However, other studies failed to confirm these findings.^[22,23] A recently published meta-analysis involving 44 articles that investigated the relationship between Ki-67 expression levels and the pCR rate indicated that a high Ki-67 level was associated with a high pCR rate (OR = 3.10, 95% CI: 2.52–3.81, P < .001).^[24] However, many of these articles did not explore the relationship between Ki-67 levels and the clinical response, nor did they discuss the prognostic value of Ki-67 in breast cancer. Therefore, the primary purpose of our study was to evaluate the function of pretherapeutic Ki-67 labeling index (LI)

Editor: Won Sup Lee.

The authors have no conflict of interest to disclose.

Supplemental Digital Content is available for this article.

^a Fuling Center Hospital of Chongqing City, ^b Chongqing Medical University, ^c The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

^{*} Correspondence: Qi Zhou, Department of Oncology, Fuling Center Hospital of Chongqing City, Chongqing, China (e-mail: qizhou112@163.com).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution-No Derivatives License 4.0, which allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Medicine (2017) 96:51(e9384)

Received: 5 April 2017 / Received in final form: 9 November 2017 / Accepted: 30 November 2017

Table 1

PubMed search strategies.

#1 "breast cancer" OR "breast carcinoma" OR "breast neoplasm" OR "breast tumor" OR "mammary cancer"
#2 "neoadjuvant chemotherapy" OR "preoperative chemotherapy"
#3 "Ki-67"

#4 #1 AND #2 AND #3

as a predictive marker for pCR to NCT using meta-analytical methodology. We also investigated the predictive value of Ki-67 for the clinical response and the prognostic value of Ki-67 in breast cancer patients receiving NCT.

2. Materials and methods

2.1. Literature search strategy

To identify studies involving the association between Ki-67 expression and the pCR in breast cancer, a literature search was conducted among 3 English databases (PubMed, Embase, and Clinical Trials), and 2 Chinese databases (Wanfang and Chinese National Knowledge Infrastructure databases) from their inception to July 31, 2017. We checked these electronic databases using the search terms "Ki-67" and "breast cancer" and "NCT". Additionally, we performed a computerized search of abstracts presented at the Annual Meetings of the American Society of Clinical Oncology (ASCO). Finally, we screened the references in all relevant articles to identify additional articles that were not retrieved during the initial literature search. The search strategy used for PubMed is shown in Table 1.

2.2. Selection criteria

Our meta-analysis included all studies meeting the following criteria: patients were pathologically diagnosed with breast cancer; all patients received NCT; results were stratified according to the level of pretherapeutic Ki-67 expression; pCR was the end point in trials and could be calculated directly; the results were part of an original analysis; papers were published in Chinese or English. We only selected the articles published in peer-reviewed journals and excluded reviews, letters, and meeting abstracts. Patients who received preoperative chemotherapy concomitant endocrine therapy or local treatment were excluded.

2.3. Data extraction

Information from each study was abstracted independently by 2 investigators using a standardized data extraction form, predesigned on the basis of the Cochrane Consumers and Communication Review Group data extraction template. Any disagreement over extracted data was resolved through discussion until the 2 investigators reached a consensus opinion. The following information was recorded for each publication: first author's name, publication year, study type, country of origin, the cut-off value of Ki-67 LI, numbers of patients in study sample, clinical stage, NCT regimens and cycles, molecular subtypes, numbers of patients with "high" Ki-67 LI, and numbers of patients with "low" Ki-67 LI. When key pieces of information were not present in articles, the corresponding author was contacted. In the event that we still could not obtain the whole dataset, the missing information was classified as "not reported". The primary endpoint was the pCR rate of NCT. pCR was defined as complete disappearance of invasive carcinoma in both breast and axillary lymph nodes. Residual ductal carcinoma in situ was included in the pCR category. The objective tumor response was assessed according to modified Response Evaluation Criteria in Solid Tumors.^[57] In other words, "complete response" or "partial response" was classified as "response", while "stable" or "progressive disease" as "nonresponse". Relapse-free survival (RFS) was defined as the elapsed time between the date of first diagnosis and the date of the first relapse. Overall survival (OS) was calculated from the date of diagnosis to the date of death or the last follow-up.

2.4. Quality assessment

The initial relevance evaluation was implemented by 2 reviewers through independently screening of titles and abstracts. If either reviewer considered any titles or abstracts met the eligibility criteria, the full text was obtained. The quality and bias risk of the selected papers were critically appraised separately by 2 reviewers. Quality assessment was conducted for each of the eligible studies by using the validated Newcastle–Ottawa Quality Assessment Scale (NOS).^[58] This scale is composed of 8 items that assess patient selection, study comparability, and outcome with scores ranging from 0 to 9. In our meta-analysis, studies with a score no <6 were graded as high quality.^[59] Eventual consensus governance resolved disagreements.

2.5. Statistical methods

Dichotomous results were summarized as pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) around the point estimates. OR was abstracted or calculated to quantitatively evaluate the association between pretherapeutic Ki-67 LI and the response rate. The overall pooled effect was assessed using the z-statistic with a *P*-value \leq .05 representing statistical significance.

Heterogeneity between the studies was assessed by χ^2 statistics and expressed as an " I^2 " value. When $I^2 \ge 50\%$ or the *P*-value for the I^2 statistic was <.05, which indicated significant heterogeneity across the studies, the pooled estimate was calculated using a random effects model and if the data were contrary, a fixed effect model was adopted. In subgroup analysis on the basis of patients' populations, studies were divided into an "Asian population" and a "European population". In the subgroup analysis by cutoff values of Ki-67, studies were classified according to the levels of " $\le 14\%$," "15% to 29%," and " $\ge 30\%$ ". And in the subgroup analysis by molecular subtypes, studies were divided into "TNBC," "HER2+," "HR+," "HR–," and "unclassified" (contains all molecular subtypes). All statistical analyses were carried out using RevMan V.5.3 software.

All analyses were based on previous published studies, thus no ethical approval or patient consent was required.

3. Results

3.1. Search results

The search strategy yielded 849 potentially relevant references in the electronic databases. We initially excluded 321 duplicated publications. Upon review of the remaining abstracts, we further removed 433 more articles for reasons of ineligibility. According to the inclusion criteria established for the present study, an additional 59 articles were excluded. We thus finally selected 36 studies,^[20–23,25–56] which consisted of a cohort of 6793 patients with breast cancer (shown in the flow diagram).

Table 2

Summary of studies included in the meta-analysis.

							Ki-67 hig	gh level	Ki-67 lo	w level
Author (year)	Population	Study type	Cut-off value	NCT regimens	Cycles	Molecular subtypes	No. of patients	No. of pCR	No. of patients	No. of pCR
Teresa et al, 2017 ^[25]	European	Retrospective	50%	A/T-based	NR	TNBC	107	44	92	16
Wang et al, 2016 ^[26]	Asian	Retrospective	40%	TA	2-6	All	42	14	198	16
Alba et al, 2016 ^[27]	European	Prospective	50%	TA	NR	All	91	36	171	33
Yukie et al, 2016 ^[28]	Asian	Prospective	20%	TA-based	NR	All	78	27	28	4
Gamal et al, 2016 ^[29]	Asian	Retrospective	14%	NR	6-8	All	76	21	25	4
Sasagu et al, 2015 ^[30]	Asian	Prospective	30%	T, FEC	4+4	HER2+	93	67	36	17
Yuan et al, 2015 ^[31]	Asian	Retrospective	13.5%	TAC	6	All	231	34	84	4
Kim et al, 2015 ^[34]	Asian	Retrospective	10%	TA, AC-T	3–6	TNBC	159	31	34	2
Tan et al, 2014 ^[33]	Asian	Retrospective	30%	FEC, AC-T, TEC	2-6	HR-	78	22	105	13
Ingolf et al, 2014 ^[34]	European	Retrospective	15%	NR	NR	All	55	16	22	4
Huang et al, 2013 ^[35]	Asian	Retrospective	14%	FEC, NE	NR	HER2+	70	12	43	2
Ohno et al, 2013 ^[36]	Asian	Prospective	10%	FEC, T-based	4+4	All	299	95	119	11
Cheng et al, 2013 ^[37]	Asian	Prospective	14%	TA, TC	4-6	All	138	42	21	2
Yao et al, 2013 ^[38]	Asian	Retrospective	50%	TA	4	TNBC	25	16	27	2
Ye et al, 2013[39]	Asian	Retrospective	30%	TEC, FEC	2-4	TNBC	45	15	29	4
Jin et al, 2013 ^[40]	Asian	Retrospective	20%	A/T-based	NR	All	197	20	54	4
Saracchini et al, 2013 ^[41]	European	Prospective	20%	AC-T	4+4	HER2+	30	18	8	1
Esserman et al, 2012 ^[42]	European	Prospective	25%	A-based	4	All	61	21	105	12
Zhang et al, 2012 ^[43]	Asian	Retrospective	40%	T-based	2-6	HER2+	49	28	53	17
Grim et al, 2012 ^[44]	European	Prospective	20%	TAC	6	All	39	13	22	1
Peter et al, 2011 ^[45]	European	Retrospective	14%	A/T-based	NR	All	390	113	162	7
Keam et al. 2011 ^[20]	Asian	Prospective	10%	TA	NR	TNBC	77	14	28	0
Li et al, 2011a ^[21]	Asian	Prospective	50%	TA	4-6	TNBC	27	14	14	2
Li et al, 2011b ^[46]	Asian	Retrospective	20%	TA	2-6	All	134	15	86	5
Petit et al, 2010 ^[47]	European	Retrospective	20%	FEC	6	HR+	97	22	80	1
Sánchez et al, 2010 ^[48]	European	Prospective	20%	EC/T-based	3–6	All	33	22	36	2
Colleoni et al, 2010 ^[49]	European	Retrospective	20%	NR	NR	All	649	94	134	5
Masuda et al, 2010 ^[50]	Asian	Prospective	50%	A/T-based	4	TNBC	20	10	13	2
Darb et al, 2009 ^[51]	European	Prospective	20%	A/T-based	4	All	21	7	85	5
Guarneri et al, 2009 ^[52]	European	Prospective	15%	TA-based, FEC	1–8	All	155	14	40	1
Zhou et al, 2008 ^[22]	Asian	Retrospective	20%	TA	4	All	56	10	48	7
Wei et al, 2007 ^[23]	Asian	Prospective	25%	FEC	2–8	All	49	10	94	16
Colleoni et al, 2007 ^[53]	European	Prospective	20%	A/T/V-based	6	All	326	36	142	2
Vincent et al, 2004 ^[54]	European	Retrospective	42%	FEC	4	All	27	11	28	4
Mathieua et al, 2004 ^[55]	European	Retrospective	20%	TA-based, FEC	3–4	All	71	9	50	0
Colleoni et al, 2004 ^[56]	European	Prospective	25%	A/T/V-based	3–6	All	210	47	172	14

A=anthracycline, C=cyclophosphamide, E=epirubicin, F=5-fluorouracil, HER-2=human epidermal growth factor receptor 2, HR=hormone receptor, NR=not reported, T=taxane, TNBC=triple-negative breast cancer, V=vinorelbine.

All of the 36 selected studies assessed the association analysis between pretherapeutic Ki-67 LI and pCR, 4 of them contained the association analysis between Ki-67 LI and clinical response,^[28,31,33,35] 7 of them reported the relationships between pretherapeutic Ki-67 LI and RFS,^[20,33,35,43,45,50,51] and 3 of them explored the relationships between Ki-67 LI and OS.^[20,35,45] Based on the type of study, there were 17 prospective observational studies, and the 19 remaining studies were retrospective. A summary of the available information included in the present meta-analysis is provided in Table 2. Quality assessment with the NOS, shown in Table 3, demonstrated that the combined scores of selection, comparability, and outcome aspects was >6 in each of the selected studies.

3.2. Clinical and methodological heterogeneity

The included studies utilized either retrospective or prospective observational designs. In addition, they also varied in ways that could affect pCR, including the populations of the study samples, NCT strategies and cycles, proportions of patients with different molecular subtypes, and cut-off values of Ki-67. Therefore, there was considerable clinical and methodological heterogeneity among the included studies.

3.3. Statistical pooling

3.3.1. The pCR rate of patients with high Ki-67 LI was significantly higher than that of patients with low Ki-67 LI. The pooled results from the analysis of the association between pretherapeutic Ki-67 LI and pCR are shown in Figure 1. Since there was low heterogeneity between studies (χ^2 = 48.34, *P* = .07, I^2 = 28%), the fixed effects model was applied to perform the meta-analysis. As shown in Figure 1, the pCR rate of patients with high Ki-67 LI (n = 4305) was significantly higher than that of patients with low Ki-67 LI (n = 2488) (OR: 3.94, 95% CI: 3.33–4.67, *P* < .001), and the OR values of prospective and retrospective studies were 4.02 (95% CI: 3.16–5.12, *P* < .001) and 3.88 (95% CI: 3.06–4.91, *P* < .001) respectively. These results indicated that the pretherapeutic Ki-67 level is indeed a determinant of the pCR rate to NCT in breast cancer.

 Table 3

 Quality of literature included in the meta-analysis.

Author	Year	Selection (4 points)	Comparability (2 points)	Outcome (3 points)	Total (9 points)
Teresa et al	2017	3/4	2/2	2/3	7/9
Wang et al	2016	4/4	2/2	3/3	9/9
Alba et al	2016	4/4	2/2	2/3	8/9
Yukie et al	2016	4/4	2/2	2/3	8/9
Gamal et al	2016	4/4	2/2	2/3	8/9
Sasagu et al	2015	3/4	2/2	3/3	8/9
Yuan et al	2015	4/4	2/2	2/3	8/9
Kim et al	2015	4/4	2/2	3/3	9/9
Tan et al	2014	4/4	2/2	2/3	8/9
Ingolf et al	2014	4/4	2/2	2/3	8/9
Huang et al	2013	4/4	2/2	3/3	9/9
Ohno et al	2013	4/4	2/2	3/3	9/9
Cheng et al	2013	4/4	2/2	2/3	8/9
Yao et al	2013	3/4	2/2	3/3	8/9
Ye et al	2013	3/4	2/2	2/3	7/9
Jin et al	2013	4/4	2/2	3/3	9/9
Saracchini et al	2013	3/4	2/2	2/3	7/9
Esserman et al	2012	4/4	2/2	3/3	9/9
Zhang et al	2012	3/4	2/2	2/3	7/9
Grim et al	2012	4/4	2/2	2/3	8/9
Peter et al	2011	4/4	2/2	3/3	9/9
Keam et al	2011	4/4	2/2	3/3	9/9
Li et al	2011a	4/4	2/2	2/3	8/9
Li et al	2011b	4/4	2/2	2/3	8/9
Petit et al	2010	4/4	2/2	2/3	8/9
Sánchez-Muñoz et al	2010	4/4	2/2	2/3	8/9
Colleoni et al	2010	4/4	2/2	3/3	9/9
Masuda et al	2010	3/4	2/2	2/3	7/9
Darb-Esfahani et al	2009	4/4	2/2	3/3	9/9
Guarneri et al	2009	4/4	2/2	3/3	9/9
Zhou et al	2008	4/4	2/2	3/3	9/9
Wei et al	2007	4/4	2/2	2/3	8/9
Colleoni et al	2007	3/4	2/2	3/3	8/9
Vincent-Salomon et al	2004	4/4	2/2	3/3	9/9
Mathieua et al	2004	4/4	2/2	3/3	9/9
Colleoni et al	2004	3/4	2/2	3/3	8/9

Taking into account the heterogeneity between studies, we conducted a sensitivity analysis. The pooled results did not differ substantially between the fixed and random effects models. By recalculating ORs with 1 study removed and all others included from the pooled estimate, we assessed the influence of each study on the overall estimate. Influence analysis showed no substantial difference in pooled ORs when any single study was excluded, which indicated that the conclusion was robust.

Then we utilized the fixed effects model to calculate results in a sub-group analysis on the basis of patients' population type and found that the pCR rate was significantly higher in patients with high Ki-67 LI than those with low Ki-67 LI, in both European (22.1% vs 8.0%, OR=4.90, 95% CI: 3.83–6.28, P<.001) and Asian (26.6% vs 11.7%, OR=3.18, 95% CI: 2.52–4.02, P<.001) subgroups (Fig. 2).

Taking into account the effects of different cut-off values of Ki-67 LI on the results, we performed a subgroup analysis based on specified cut-off values. The results showed that patients with high Ki-67 LI were more likely to achieve pCR no matter what the cut-off value; Ki-67 LI was $\leq 14\%$ (25.1% vs 6.2%, OR = 5.03, 95% CI: 3.45–7.34, *P*<.001), 15% to 29% (17.7% vs 7.0%, OR = 3.76, 95% CI: 2.88–4.91, *P*<.001), or $\geq 30\%$ (45.9% vs 16.4%, OR = 3.51, 95% CI: 2.69–4.57, *P*<.001) (Fig. 3). Considering the influence of the molecular subtypes, a subgroup analysis was performed. We found that the pCR rate of patients with high Ki-67 LI was significantly higher than those with low Ki-67 LI even when the included patients were triplenegative breast cancer (31.3% vs 11.8%, OR=4.65, 95% CI: 2.93–7.38, P<.001), HER+ (51.7% vs 26.4%, OR=3.32, 95% CI: 1.99–5.54, P<.001), or unclassified (21.2% vs 8.5%, OR= 3.85, 95% CI: 3.15–4.72, P<.001) (Fig. 4).

3.3.2. Patients with Ki-67 Ll tended to have a better objective tumor response. We next assessed objective tumor response in 4 studies, which included 717 patients. We performed metaanalysis using the random effects model because of the heterogeneity among studies ($\chi^2 = 8.75$, P = .03, $I^2 = 66\%$). We found that patients with a Ki-67 LI tended to have a better objective tumor response (83.8% vs 75.8%, OR = 1.57, 95% CI: 0.72–3.42, P = .26; Fig. 5). However, the result did not reach statistical significance.

Because of the significant heterogeneity, we performed a sensitivity analysis and found a substantial difference in pooled OR when the study of Yukie et al^[28] was excluded. The adjusted results showed that patients with a high Ki-67 LI had a better objective tumor response than those with a low Ki-67 LI (84.0%)

Churche or Curbon curr	High Ki- Events		Low Ki-		Maint	Odds Ratio	Ver			Odds Ratio -H, Fixed, 95% Cl	
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	rear		M	-H, Fixed, 95% CI	
.1.1 prospective											
Colleoni M, 2004	47	210	14	172	7.4%	3.25 [1.72, 6.14]					
Vei Y, 2007	10	49	16	94	5.4%	1.25 [0.52, 3.01]					
Colleoni M, 2007	36	326	2	142	1.5%	8.69 [2.06, 36.61]					
Darb S, 2009	7	21	5	85	0.8%	8.00 [2.22, 28.79]					-
Guarneri V, 2009	14	155	1	40	0.9%	3.87 [0.49, 30.37]					
Masuda H, 2010	10	20	2	13	0.8%	5.50 [0.96, 31.43]					
Sa'nchez A, 2010	22	33	2	36		34.00 [6.87, 168.27]					1
<eam 2011<="" b,="" td=""><td>14</td><td>77</td><td>0</td><td>28</td><td></td><td>13.02 [0.75, 225.83]</td><td></td><td></td><td></td><td></td><td></td></eam>	14	77	0	28		13.02 [0.75, 225.83]					
Li XR, 2011(1)	14	27	2	14	0.8%	6.46 [1.21, 34.55]	2011				_
Esserman LJ, 2012	21	61	12	105	3.6%	4.07 [1.83, 9.06]	2012				
3rim J, 2012	13	39	1	22	0.5%	10.50 [1.27, 86.93]	2012				-
Cheng YJ, 2013	42	138	2	21	1.5%	4.16 [0.93, 18.65]	2013				
Saracchini S, 2013	18	30	1	8	0.4%	10.50 [1.14, 96.58]	2013				
Ohno S, 2013	95	299	11	119	6.7%	4.57 [2.35, 8.90]	2013				
Basagu K, 2015	67	93	17	36	4.3%	2.88 [1.30, 6.38]	2015				
Yukie E, 2016	27	78	4	28	2.4%	3.18 [1.00, 10.10]					
Alba E, 2016	36	91	33	171	8.6%	2.74 [1.55, 4.82]					
Subtotal (95% CI)		1747		1134	46.5%	4.02 [3.16, 5.12]				•	
Total events	493		125								
Heterogeneity: Chi ² =	21.62. df=	16 (P=	0.16); [*:	= 26%							
Fest for overall effect:											
3.1.2 retrospective										20.00	
/incent A, 2004	11	27	4	28	1.4%	4.13 [1.12, 15.25]					
Mathieua MC, 2004	9	71	0	50		15.35 [0.87, 270.19]					
Zhou B, 2008	10	56	7	48	3.9%	1.27 [0.44, 3.65]					
Petit T, 2010	22	97	1	80		23.17 [3.05, 176.23]	2010				
Colleoni M, 2010	94	649	5	134	4.4%	4.37 [1.74, 10.96]	2010				
Peter AF, 2011	113	390	7	162	4.4%	9.03 [4.11, 19.87]	2011				
Li XR, 2011(2)	15	134	5	86	3.4%	2.04 [0.71, 5.84]	2011				
Zhang GC, 2012	28	49	17	53	4.4%	2.82 [1.26, 6.33]	2012				
Huang L, 2013	12	70	2	43	1.3%	4.24 [0.90, 19.97]	2013				
Jin SY, 2013	20	197	4	54	3.5%	1.41 [0.46, 4.32]	2013				
(ao YF, 2013	16	25	2	27	0.4%	22.22 [4.24, 116.37]	2013				_
/e GL, 2013	15	45	4	29	2.0%	3.13 [0.92, 10.63]	2013				
ngolf JB, 2014	16	55	4	22	2.5%	1.85 [0.54, 6.31]	2014				
Fan QX, 2014	22	78	13	105	5.0%	2.78 [1.30, 5.96]					
<im 2015<="" t,="" td=""><td>31</td><td>159</td><td>2</td><td>34</td><td>1.7%</td><td>3.88 [0.88, 17.05]</td><td></td><td></td><td></td><td></td><td></td></im>	31	159	2	34	1.7%	3.88 [0.88, 17.05]					
(uan JQ, 2015	34	231	4	84	3.1%	3.45 [1.19, 10.04]					
Vang JY, 2016	14	42	16	198	2.3%	5.69 [2.50, 12.92]					
Gamal ME, 2016	21	76	4	25	2.7%	2.00 [0.61, 6.53]					
Feresa G,2017	44	107	16	92	6.3%	3.32 [1.71, 6.43]					
Subtotal (95% CI)		2558		1354	53.5%	3.88 [3.06, 4.91]				•	
otal events	547		117								
leterogeneity: Chi ² = est for overall effect:	26.64, df=		: 0.09); I ² :	= 32%							
otal (95% CI)		4305		2488	100.0%	3.94 [3.33, 4.67]				•	
Total events	1040		242								
Heterogeneity: Chi² = Test for overall effect: Test for subaroup diff	Z=15.92	(P < 0.0	0001)					0.01	0.1 Eavour	1 10 s (low) Favours (high)	1

Figure 1. Pooled analysis of Ki-67 LI and pCR. Ki-67 LI = Ki-67 labeling index, pCR = pathological complete response.

vs 73.3%, OR = 2.19, 95% CI: 1.45–3.33, *P*<.001; supplemental Fig. 2, http://links.lww.com/MD/C36).

3.3.3. Patients with a high Ki-67 LI have a poorer RFS. The results of the pooled analysis of the association between pretherapeutic Ki-67 LI and RFS are shown in Figure 6. Patients with a high Ki-67 LI have a poorer RFS than those with a low Ki-67 LI (OR = 1.99, 95% CI: 1.39–2.85, P < .001).

3.3.4. *Publication bias.* In the meta-analysis, funnel plots were generally symmetrical (Fig. 7). These results indicated that publication bias was insignificant across the included studies.

4. Discussion

A recently published meta-analysis reported that a high Ki-67 level was associated with a high pCR rate.^[24] Although the selection criteria and pooling methods were not exactly the same, our study came to a similar conclusion. However, in addition we not only explored the predictive value of Ki-67 for NCT in breast cancer, but also investigated its prognostic value. Our results demonstrate that patients with a Ki-67 LI are more sensitive to NCT, have higher pCR rates, and benefit more from NCT

compared to those with a low Ki-67 LI (P <.001). Conversely, patients with a high Ki-67 LI have a worse RFS.

In a subgroup analysis of patients' population, we found that the pCR rate of patients with a high Ki-67 LI was significantly higher than in patients with a low Ki-67 LI in both European and Asian subgroups. However, it remains unclear whether other factors such as therapy regimens and cycles of NCT, the clinical stage, and tumor location have an impact on Ki-67-based health outcomes. Our study's design did not allow for the evaluation of these relationships, so further research will need to be carried out.

Numerous studies have shown a positive correlation between the expression of Ki-67 and the response to chemotherapy.^[60–62] However, threshold values for dividing high and low Ki-67 LI are not clearly defined and vary between laboratories, ranging from 10% to 50%. The St Gallen Consensus Meeting declared that Ki-67 LI is chiefly important for distinguishing between luminal A and luminal B subtypes of breast cancer with a cut-off value of 14%.^[63] In a previous study, researchers found that the expression of Ki-67 was the only independent predictor of pCR and also discovered that a Ki-67 value >25% was a significant predictive factor for pCR.^[60] The latter results were supported by another study in which a cut-off value of Ki-67 of

	high Ki-		low Ki-			Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	1	M-H, Fixed, 95% Cl
2.1.1 European									100405000 1004045000 10050
Mathieua MC, 2004	9	71	0	50	0.3%	15.35 [0.87, 270.19]	2004		,
Colleoni M, 2004	47	210	14	172	7.4%	3.25 [1.72, 6.14]	2004		
Vincent A, 2004	11	27	4	28	1.4%	4.13 [1.12, 15.25]	2004		The second se
Colleoni M, 2007	36	326	2	142	1.5%	8.69 [2.06, 36.61]	2007		
Guarneri V, 2009	14	155	1	40	0.9%	3.87 [0.49, 30.37]	2009		
Darb S, 2009	7	21	5	85	0.8%	8.00 [2.22, 28.79]	2009		
Colleoni M, 2010	94	649	5	134	4.4%	4.37 [1.74, 10.96]	2010		1
Sa'nchez A, 2010	22	33	2	36	0.4%	34.00 [6.87, 168.27]	2010		
Petit T, 2010	22	97	1	80	0.5%	23.17 [3.05, 176.23]	2010		
Peter AF, 2011	113	390	7	162	4.4%	9.03 [4.11, 19.87]	2011		
Esserman LJ, 2012	21	61	12	105	3.6%	4.07 [1.83, 9.06]	2012		
Grim J, 2012	13	39	1	22	0.5%	10.50 [1.27, 86.93]	2012		
Saracchini S, 2013	18	30	1	8	0.4%	10.50 [1.14, 96.58]	2013		
Ingolf JB, 2014	16	55	4	22	2.5%	1.85 [0.54, 6.31]	2014		
Alba E, 2016	36	91	33	171	8.6%	2.74 [1.55, 4.82]	2016		
Teresa G,2017	44	107	16	92	6.3%	3.32 [1.71, 6.43]	2017		
Subtotal (95% CI)		2362		1349	44.2%	4.90 [3.83, 6.28]			•
Total events	523		108						
Heterogeneity: Chi2 =	22.74, df=	: 15 (P =	= 0.09); I ²	= 34%					
Test for overall effect:	Z=12.63	(P < 0.0	0001)						
2.1.2 Asian									
Wei Y, 2007	10	49	16	94	5.4%	1.25 [0.52, 3.01]	2007		
Zhou B, 2008	10	56	7	48	3.9%	1.27 [0.44, 3.65]	2008		
Masuda H, 2010	10	20	2	13	0.8%	5.50 [0.96, 31.43]	2010		
Li XR, 2011(1)	14	27	2	14	0.8%	6.46 [1.21, 34.55]	2011		
Keam B, 2011	14	77	0	28	0.4%	13.02 [0.75, 225.83]	2011		· · · · · · · · · · · · · · · · · · ·
Li XR, 2011(2)	15	134	5	86	3.4%	2.04 [0.71, 5.84]	2011		
Zhang GC, 2012	28	49	17	53	4.4%	2.82 [1.26, 6.33]	2012		
Jin SY, 2013	20	197	4	54	3.5%	1.41 [0.46, 4.32]	2013		
Huang L, 2013	12	70	2	43	1.3%	4.24 [0.90, 19.97]	2013		
Ohno S, 2013	95	299	11	119	6.7%	4.57 [2.35, 8.90]	2013		
Yao YF, 2013	16	25	2	27	0.4%	22.22 [4.24, 116.37]	2013		
Cheng YJ, 2013	42	138	2	21	1.5%	4.16 [0.93, 18.65]	2013		
Ye GL, 2013	15	45	4	29	2.0%	3.13 [0.92, 10.63]	2013		<u> </u>
Tan QX, 2014	22	78	13	105	5.0%	2.78 [1.30, 5.96]	2014		
Yuan JQ, 2015	34	231	4	84	3.1%	3.45 [1.19, 10.04]	2015		
Kim T, 2015	31	159	2	34	1.7%	3.88 [0.88, 17.05]	2015		
Sasagu K, 2015	67	93	17	36	4.3%	2.88 [1.30, 6.38]	2015		
Yukie E, 2016	27	78	4	28	2.4%	3.18 [1.00, 10.10]	2016		
Gamal ME, 2016	21	76	4	25	2.7%	2.00 [0.61, 6.53]	2016		
Wang JY, 2016	14	42	16	198	2.3%	5.69 [2.50, 12.92]	2016		
Subtotal (95% CI)		1943		1139	55.8%	3.18 [2.52, 4.02]			•
Total events	517		134						
Heterogeneity: Chi ² = Test for overall effect:				= 12%					
	2 - 0.10 (1								
Total (95% CI)		4305		2488	100.0%	3.94 [3.33, 4.67]			•
Total events	1040		242					61	
Heterogeneity: Chi ² =				= 28%				0.01	0,1 1 10 100
Test for overall effect:								0.01	Favours (low) Favours (high)
Test for subaroup diff	oroncos' ($hi^2 = 6$	23 df = 1	(P - 0)	11) 12-0	1 0.0%			i area poul i area pugul

circa 30% was suitable for predicting pCR.^[33] Therefore, we performed a subgroup analysis based on this factor with 14% and 30% as the cut-off points and found that the pCR rate of patients with a high Ki-67 LI was significantly higher than in patients with a low Ki-67 LI regardless of whether the cut-off value was \leq 14%, 15% to 29%, or \leq 30%. Interestingly, when we performed a subgroup analysis according to a cut-off value of Ki-67, the heterogeneity among subgroups varied greatly, the *I*² values being 0%, 50%, and 0%, respectively, indicating that the cut-off value of Ki-67 may be one of the sources of heterogeneity.

Patients with different types of breast cancer have different responses to NCT regimens. Previous studies have shown that patients with hormone receptor-positive breast cancer, which were categorized into luminal subtypes, are less likely to achieve pCR.^[64,65] In a retrospective study, 240 patients with breast cancer received 4 to 6 weeks of NCT before surgery and it was found that patients with luminal A (1.6%) and luminal B (13.4%) cancer types had the lowest pCR rates followed by the human epidermal growth factor receptor 2 (HER2) overexpression (22.6%) and triple negative (23.8%) forms.^[58] This result is consistent with that from another study in which the authors found that the odds of achieving pCR in HER2+ cancers were 3.6

times higher than that in luminal cancers.^[66] All of these findings suggest that patients with luminal type tumors gained less benefit from NCT. We next performed a subgroup analysis based on molecular types, and found that the pCR rate of patients with a high Ki-67 LI was significantly higher than those with a Ki-67 LI regardless of the molecular type of cancer. Unfortunately, the vast majority of selected articles (23/36) were not classified into molecular subtypes, so the results do not fully reflect the real clinical situation.

In exploring the relationship between Ki-67 LI and objective remission rates, we found that the Yukie et al's study had a significant impact on outcomes.^[28] The study included 183 patients, 120 of whom came from Hyogo College of Medicine, and the others from Yao Municipal Hospital. However, for some reason, further analyses were performed only for patients treated at the Hyogo College of Medicine, which can lead to significant experimental errors. When we excluded this study from the pooled analysis, the results showed that patients with a high Ki-67 LI had a better objective tumor response (P<.001). More studies will be needed to confirm this finding.

Several studies have demonstrated that patients who achieve pCR to NCT tend to have improved RFS and OS compared with

high Ki-		low Ki-0			Odds Ratio	Odds Ratio
Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
42	138	2	21	1.5%	4.16 [0.93, 18.65]	
21	76	4	25	2.7%	2.00 [0.61, 6.53]	
12	70	2	43	1.3%	4.24 [0.90, 19.97]	
14	77	0	28	0.4%	13.02 [0.75, 225.83]	
34		-				•
262	1440	22	510	21.1 70	5.05 [5.45, 7.54]	
	7 /0 - 0	100 million (100 m	00			
			170			
2= 8.40 (F	< 0.00	001)				
1.00			1.75		0.05 // 20.01	and the second se
7	21		85	0.8%	8.00 [2.22, 28.79]	
21	61	12	105	3.6%	4.07 [1.83, 9.06]	
13	39	1	22	0.5%	10.50 [1.27, 86.93]	
14	155	1	40	0.9%	3.87 [0.49, 30.37]	
16	55	4	22	2.5%	1.85 [0.54, 6.31]	
20	197	4	54	3.5%	1.41 [0.46, 4.32]	
	100					
10		1				
	2261		1206	42.0%	3.76 [2.88, 4.91]	
		the second second second				
			= 50%			
Z= 9.70 (F	P < 0.00	001)				
36	91	33	171	8.6%	2.74 [1.55, 4.82]	
36 14	91 27	33	171 14	8.6% 0.8%	2.74 [1.55, 4.82] 6.46 [1.21, 34.55]	
14	27	2	14	0.8%	6.46 [1.21, 34.55]	
14 10	27 20	2	14 13	0.8% 0.8%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38]	
14 10 67	27 20 93	2 2 17	14 13 36 105	0.8% 0.8% 4.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96]	
14 10 67 22 44	27 20 93 78 107	2 2 17 13 16	14 13 36 105 92	0.8% 0.8% 4.3% 5.0% 6.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43]	
14 10 67 22 44 11	27 20 93 78 107 27	2 2 17 13 16 4	14 13 36 105 92 28	0.8% 0.8% 4.3% 5.0% 6.3% 1.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25]	
14 10 67 22 44 11 14	27 20 93 78 107 27 42	2 2 17 13 16 4 16	14 13 36 105 92 28 198	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92]	
14 10 67 22 44 11 14 16	27 20 93 78 107 27 42 25	2 2 17 13 16 4 16 2	14 13 36 105 92 28 198 27	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.26] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37]	
14 10 67 22 44 11 14 16 15	27 20 93 78 107 27 42 25 45	2 17 13 16 4 16 2 4	14 13 36 105 92 28 198 27 29	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63]	
14 10 67 22 44 11 14 16	27 20 93 78 107 27 42 25 45 49	2 2 17 13 16 4 16 2	14 13 36 105 92 28 198 27 29 53	0.8% 0.8% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.68 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33]	
14 10 67 22 44 11 14 16 15 28	27 20 93 78 107 27 42 25 45	2 17 13 16 4 16 2 4 17	14 13 36 105 92 28 198 27 29	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63]	
14 10 67 22 44 11 14 16 15 28 277	27 20 93 78 107 27 42 25 45 45 49 604	2 2 17 13 16 4 16 2 4 17 126	14 13 36 105 92 28 198 27 29 53 766	0.8% 0.8% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.68 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33]	
14 10 67 22 44 11 14 16 15 28	27 20 93 78 107 27 42 25 45 49 604	2 2 17 13 16 4 16 2 4 17 126 0.57); F=	14 13 36 105 92 28 198 27 29 53 766	0.8% 0.8% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.68 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33]	
14 10 67 22 44 11 14 16 15 28 277 8.60, df =	27 20 93 78 107 27 42 25 45 49 604	2 2 17 13 16 4 16 2 4 17 126 0.57); F=	14 13 36 105 92 28 198 27 29 53 766 0%	0.8% 0.8% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.68 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33]	
14 10 67 22 44 11 14 16 15 28 277 8.60, df =	27 20 93 78 107 27 42 25 45 49 604 10 (P = P < 0.00	2 2 17 13 16 4 16 2 4 17 126 0.57); P = 001)	14 13 36 105 92 28 198 27 29 53 766 0%	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4% 36.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33] 3.51 [2.69, 4.57]	
14 10 67 22 44 11 14 16 15 28 277 2.8.60, df = Z = 9.28 (f 1040	27 20 93 78 107 27 42 25 45 49 604 10 (P = P < 0.00 4305	2 2 17 13 16 4 16 2 4 17 126 0.57); P= 001) 242	14 13 36 105 92 28 198 27 29 53 766 0% 2488	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4% 36.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33] 3.51 [2.69, 4.57]	
14 10 67 22 44 11 14 16 15 28 277 8.60, df = : Z = 9.28 (f	27 20 93 78 107 27 42 25 45 49 604 10 (P = P < 0.00 4305 = 35 (P =	2 2 17 13 16 4 16 2 4 17 126 0.57); P = 001) 242 = 0.07); P	14 13 36 105 92 28 198 27 29 53 766 0% 2488	0.8% 0.8% 4.3% 5.0% 6.3% 1.4% 2.3% 0.4% 2.0% 4.4% 36.3%	6.46 [1.21, 34.55] 5.50 [0.96, 31.43] 2.88 [1.30, 6.38] 2.78 [1.30, 5.96] 3.32 [1.71, 6.43] 4.13 [1.12, 15.25] 5.69 [2.50, 12.92] 22.22 [4.24, 116.37] 3.13 [0.92, 10.63] 2.82 [1.26, 6.33] 3.51 [2.69, 4.57]	0.05 0.2 1 5 20 Favours [low] Favours [high]
	42 21 12 14 31 34 362 5.66, df= Z= 8.40 (l 47 36 94 7 7 21 13 14 16 20 22 18 22 18 22 18 22 18 22 10 27 10 27 10 27 10	$\begin{array}{cccccc} 42 & 138 \\ 21 & 76 \\ 12 & 70 \\ 14 & 77 \\ 31 & 159 \\ 95 & 299 \\ 913 & 390 \\ 34 & 231 \\ & 1440 \\ 362 \\ 5.66, df = 7 (P = 0 \\ Z = 8.40 (P < 0.00 \\ Z = 8.40 (P < 0.00 \\ Z = 8.40 (P < 0.00 \\ 141 \\ 13 \\ 39 \\ 14 \\ 155 \\ 16 \\ 55 \\ 16 \\ 55 \\ 16 \\ 55 \\ 16 \\ 52 \\ 0 \\ 197 \\ 15 \\ 134 \\ 9 \\ 7 \\ 21 \\ 16 \\ 16 \\ 56 \\ 20 \\ 197 \\ 15 \\ 134 \\ 9 \\ 7 \\ 11 \\ 22 \\ 97 \\ 18 \\ 30 \\ 22 \\ 31 \\ 0 \\ 49 \\ 27 \\ 78 \\ 10 \\ 56 \\ 2261 \\ 141 \\ 31.69, df = 16 (P = 16 (P = 16 \\ P = 16 \\ P = 16 \\ 10 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\ 11 \\ 10 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

those with residual invasive disease.^[67,63] However, few studies have explored the relationship between Ki-67 LI and RFS or OS. Our study suggested that high Ki-67 LI was significantly associated with poor RFS (P < .001). We explored the relationship between Ki-67 LI and OS using the random effects model and found that patients with a high Ki-67 LI had a worse OS than patients with a low Ki-67 LI (OR=3.44, 95% CI: 0.57-15.8, P = .11, data shown in supplemental fig. 1, http://links.lww.com/ MD/C36). But these results may not be reliable due to the small number of included studies (3/36). High Ki-67 LI was significantly associated with a high pCR rate but poor RFS. In other words, patients who did not achieve a pCR to NCT maintained a good prognosis even in the presence of residual disease. The good outcome of these patients was largely dependent on the efficacy of surgery and postoperative therapy. In other words, whether the patients achieved pCR or not, all of

them underwent surgery and adjuvant therapy, thus weakening the impact of pCR on survival.

There are several limitations to the present meta-analysis. First, our analysis was based mainly on findings from observational studies, which might contain a higher number of confounding factors than randomized controlled clinical trials. Second, our analysis only contained published studies. Since reports with positive results are more likely to be published than those with negative observations, potential publication bias represents a concern. Furthermore, among the selected studies, the patients' populations and treatment measures differed widely, and the cut-off values for Ki-67 to designate high and low levels varied widely, which may influence the pooled analysis. Therefore, more detailed data such as NCT regimens and cycles are needed for future analyses.

In conclusion, our findings support the hypothesis that Ki-67 LI is associated with the pCR of patients with breast cancer. Ki-67

Ct	High Ki-6		Low Ki-		100-0-0-0	Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
6.1.1 TNBC		-		-	0.00	10.00 10 75 005 00	
Keam B, 2011	14	77	0	28	0.4%	13.02 [0.75, 225.83]	
Kim T, 2015	31	159	2	34	1.7%	3.88 [0.88, 17.05]	
Li XR, 2011(1)	14	27	2	14	0.8%	6.46 [1.21, 34.55]	
Masuda H, 2010	10	20	2	13	0.8%	5.50 [0.96, 31.43]	
Teresa G,2017	44	107	16	92	6.3%	3.32 [1.71, 6.43]	
Yao YF, 2013	16	25	2	27	0.4%	22.22 [4.24, 116.37]	
Ye GL, 2013	15	45	4	29	2.0%	3.13 [0.92, 10.63]	
Subtotal (95% CI)		460		237	12.3%	4.65 [2.93, 7.38]	•
Total events	144		28				
Heterogeneity: Chi ² =	5.57, df = 6	(P = 0.	$(47); I^2 = 0$	%			
Test for overall effect:	Z= 6.51 (P	< 0.00	001)				
6.1.2 HER2+							
Huang L, 2013	12	70	2	43	1.3%	4.24 [0.90, 19.97]	
Saracchini S, 2013	18	30	1	*3	0.4%	10.50 [1.14, 96.58]	
Basagu K, 2015	67	93	17	36	4.3%	2.88 [1.30, 6.38]	
Zhang GC, 2012 Subtotal (95% CI)	28	49 242	17	53 140	4.4%	2.82 [1.26, 6.33]	•
	105	242	07	140	10.3%	3.32 [1.99, 5.54]	
Total events	125	10-0	37	N			
Heterogeneity: Chi ² = Fest for overall effect:				70			
rest for overall ellect.	2 = 4.59 (P	× 0.00	001)				
6.1.3 HR+							<u>.</u>
Petit T, 2010	22	97	1	80		23.17 [3.05, 176.23]	
Subtotal (95% CI)		97		80		23.17 [3.05, 176.23]	
Total events	22		1				
Heterogeneity: Not ap	plicable						
Test for overall effect:		= 0.00	2)				
6.1.4 HR-	22	78	10	105	5 0W	2 70 /4 20 6 001	
Tan QX, 2014	22		13	105	5.0%	2.78 [1.30, 5.96]	
Subtotal (95% CI)		78		105	5.0%	2.78 [1.30, 5.96]	
Total events	22		13				
Heterogeneity: Not ap Test for overall effect:		- 0.00	9)				
restion overall effect.	2 - 2.05 (1	- 0.00	5)				
5.1.5 unclassified							1.000
Alba E, 2016	36	91	33	171	8.6%	2.74 [1.55, 4.82]	
Cheng YJ, 2013	42	138	2	21	1.5%	4.16 [0.93, 18.65]	
Colleoni M, 2004	47	210	14	172	7.4%	3.25 [1.72, 6.14]	
Colleoni M, 2007	36	326	2	142	1.5%	8.69 [2.06, 36.61]	
Colleoni M, 2010	94	649	5	134	4.4%	4.37 [1.74, 10.96]	
Darb S, 2009	7	21	5	85	0.8%	8.00 [2.22, 28.79]	
Esserman LJ, 2012	21	61	12	105	3.6%	4.07 [1.83, 9.06]	
Gamal ME, 2016	21	76	4	25	2.7%	2.00 [0.61, 6.53]	
Grim J, 2012	13	39	1	22	0.5%	10.50 [1.27, 86.93]	
Guarneri V, 2009	14	155	1	40	0.9%	3.87 [0.49, 30.37]	
ngolf JB, 2014	16	55	4	22	2.5%	1.85 [0.54, 6.31]	
Jin SY, 2013	20	197	4	54	3.5%	1.41 [0.46, 4.32]	
LIXR, 2011(2)	15	134	5	86	3.4%	2.04 [0.71, 5.84]	
Mathieua MC, 2004	9	71	0	50	0.3%	15.35 [0.87, 270.19]	
Ohno S, 2013	95	299	11	119	6.7%	4.57 [2.35, 8.90]	
Peter AF, 2011	113	390	7	162	4.4%		
And the second			2			9.03 [4.11, 19.87]	
Ba'nchez A, 2010	22	33		36	0.4%	34.00 [6.87, 168.27]	and the second se
/incent A, 2004	11	27	4	28	1.4%	4.13 [1.12, 15.25]	
Wang JY, 2016	14	42	16	198	2.3%	5.69 [2.50, 12.92]	
Wei Y, 2007	10	49	16	94	5.4%	1.25 [0.52, 3.01]	
ruan JQ, 2015	34	231	4	84	3.1%	3.45 [1.19, 10.04]	
Yukie E, 2016	27	78	4	28	2.4%	3.18 [1.00, 10.10]	
Zhou B, 2008	10	56	7	48	3.9%	1.27 [0.44, 3.65]	
Subtotal (95% CI)		3428		1926	71.9%	3.85 [3.15, 4.72]	
Total events	727		163				
Heterogeneity: Chi ² =				= 40%			
Test for overall effect:	Z= 13.05 (P < 0.0	0001)				
Total (95% CI)		4305		2488	100.0%	3.94 [3.33, 4.67]	•
Total events	1040		242	1.000			(A)
Heterogeneity: Chi ² =		35 (P =		= 28%			to t t
							0.01 0.1 1 10 10
Test for overall effect:	- 10.02	- 0.0	00017				Favours [low] Favours [high]
Test for overall effect: Test for subaroup diff			- 34 70	10 - 0 -	21 12 4	201	i aroars front i aroars fright

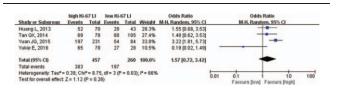


Figure 5. Pooled analysis of Ki-67 Ll and objective tumor response. Ki-67 Ll = Ki-67 labeling index.

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio			d Ratio d, 95% Cl	
Darb S, 2009	0.36	0.52	12.4%	1.43 [0.52, 3.97]				
Huang L, 2013	-0.11	0.52	12.4%	0.90 [0.32, 2.48]			-	
Keam B, 2011	2.06	0.65	7.9%	7.85 [2.19, 28.05]				-
Masuda H, 2010	1.78	0.87	4.4%	5.93 [1.08, 32.63]				-
Peter AF, 2011	1	0.31	34.8%	2.72 [1.48, 4.99]				
Tan QX, 2014	0.3	0.41	19.9%	1.35 [0.60, 3.01]		-	-	
Zhang GC, 2012	0.1	0.64	8.2%	1.11 [0.32, 3.87]			-	
Total (95% CI)			100.0%	1.99 [1.39, 2.85]			•	
Heterogeneity: Chi ² =	11.54, df = 6 (P = 0.1)7); I ² :	= 48%		-	1	1	
Test for overall effect					0.01	0.1 Favours [high]	1 10 Favours (low)	100

Figure 6. Pooled analysis of Ki-67 Ll and RFS. Ki-67 Ll = Ki-67 labeling index, RFS = relapse-free survival.

LI is a crucial predictive biomarker for pCR in patients with breast cancer who received NCT, indicating that this marker could help select patients who will benefit from NCT. However, it is more difficult to translate pathological response results into a clinical benefit. Large-scale prospective and randomized trials will be required before Ki-67 testing can be widely used as a prognostic tool in the clinic.

References

- Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin 2016;66:7–30.
- [2] Mamounas EP, Fisher B. Preoperative (neoadjuvant) chemotherapy in patients with breast cancer. Semin Oncol 2001;4:389–99.
- [3] Fisher B, Gunduz N, Saffer EA. Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. Cancer Res 1983;43:1488–92.
- [4] Ragaz J, Baird R, Rebbeck P, et al. Neoadjuvant (preoperative) chemotherapy for breast cancer. Cancer 1985;56:719–24.
- [5] Fisher B, Bryant J, Wolmark N, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol 1998;16:2672–85.
- [6] Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: updates of National Surgical Adjuvant Breast and Bowel Project Protocols B-18 and B-27. J Clin Oncol 2008;26:778–85.
- [7] van der Hage JA, van de Velde CJ, Julien JP, et al. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer trial 10902. J Clin Oncol 2001;19:4224–37.
- [8] Mauri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. J Natl Cancer Inst 2005;97:188–94.
- [9] de Azambuja E, Cardoso F, de Castro G, et al. Ki67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 2007;96:1504–13.
- [10] Yerushalmi R, Woods R, Ravdin PM, et al. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 2010;11:174–83.
- [11] von Minckwitz G, Untch M, Nuesch E, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat 2011;125: 145e56.
- [12] Shet T, Agrawal A, Chinoy R, et al. Changes in the tumor grade and biological markers in locally advanced breast cancer after chemotherapy —implications for a pathologist. Breast J 2007;13:457–64.
- [13] Neubauer H, Gall C, Vogel U, et al. Changes in tumour biological markers during primary systemic chemotherapy (PST). Anticancer Res 2008;28:1797–804.
- [14] Hirata T, Shimizu C, Yonemori K, et al. Change in the hormone receptor status following administration of neoadjuvant chemotherapy and its impact on the long-term outcome in patients with primary breast cancer. Br J Cancer 2009;101:1529–36.

- [15] Faneyte IF, Schrama JG, Peterse JL, et al. Breast cancer response to neoadjuvant chemotherapy: predictive markers and relation with outcome. Br J Cancer 2003;88:406–12.
- [16] Varga Z, Caduff R, Pestalozzi B. Stability of the HER2 gene after primary chemotherapy in advanced breast cancer. Virchows Arch 2005;446: 136–41.
- [17] Adams AL, Eltoum I, Krontiras H, et al. The effect of neoadjuvant chemotherapy on histologic grade, hormone receptor status, and HER2/ neu status in breast carcinoma. Breast J 2008;14:141–6.
- [18] Scholl SM, Pierga JY, Asselain B, et al. Breast tumor response to primary chemotherapy predicts local and distant control as well as survival. Eur J Cancer 1995;31A:1969–75.
- [19] Kuerer HM, Newman LA, Smith TL, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 1999;17:460–9.
- [20] Keam B, Im SA, Lee KH, et al. Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res 2011;13:R22.
- [21] Li XR, Liu M, Zhang YJ, et al. CK5/6, EGFR, Ki-67, cyclin D1, and nm23-H1 protein expressions as predictors of pathological complete response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Med Oncol 2011;28:S129–34.
- [22] Zhou B, Yang DQ, Xie F. Biological markers as predictive factors of response to neoadjuvant taxanes and anthracycline chemotherapy in breast carcinoma. Chin Med J (Engl) 2008;121:387–91.
- [23] Wei Y, Li JF, Wang TF, et al. Association between hormone receptors and response to neoadjuvant anthracycline-based chemotherapy in breast cancer patients (Chinese). Beijing Da Xue Xue Bao 2007;5:481–3.
- [24] Chen X, He C, Han D, et al. The predictive value of Ki-67 before neoadjuvant chemotherapy for breast cancer: a systematic review and meta-analysis. Future Oncol 2017;9:843–57.
- [25] Teresa G, Laura P, Isabella S, et al. Neoadjuvant chemotherapy in triplenegative breast cancer: a multicentric retrospective observational study in real-life setting. J Cell Physiol 2017;233:2313–23. doi:10.1002/ jcp.26103.
- [26] Wang JY, Sang D, Xu BH, et al. Value of breast cancer molecular subtypes and ki67 expression for the prediction of efficacy and prognosis of neoadjuvant chemotherapy in a Chinese population. Medicine (Baltimore) 2016;18:e3518.
- [27] Alba E, Lluch A, Ribelles N, et al. High proliferation predicts pathological complete response to neoadjuvant chemotherapy in early breast cancer. Oncologist 2016;21:150–5.
- [28] Yukie E, Takashi M, Arisa N, et al. Impact of biomarker changes during neoadjuvant chemotherapy for clinical response in patients with residual breast cancers. Int J Clin Oncol 2016;21:254–61.
- [29] Gamal ME, Ahmed HE, Ahmed HO, et al. Response of triple negative breast cancer to neoadjuvant chemotherapy: correlation between Ki-67 expression and pathological response. Asian Pac J Cancer Prev 2016;17:807–13.
- [30] Sasagu K, Kenichi I, Hiroyuki T, et al. ER, PgR, Ki67, p27(Kip1), and histological grade as predictors of pathological complete response in patients with HER2-positive breast cancer receiving neoadjuvant chemotherapy using taxanes followed by fluorouracil, epirubicin, and cyclophosphamide concomitant with trastuzumab. BMC Cancer 2015;15:622.
- [31] Yuan JQ, Wang SM, Tang LL, et al. Relative dose intensity and therapy efficacy in different breast cancer molecular subtypes: a retrospective study of early stage breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 2015;151:405–13.
- [32] Kim T, Han W, Kim MK, et al. Predictive significance of p53, Ki-67, and Bcl-2 expression for pathologic complete response after neoadjuvant chemotherapy for triple-negative breast cancer. J Breast Cancer 2015;18:16–21.
- [33] Tan QX, Qin QH, Yang WP, et al. Prognostic value of Ki67 expression in HR-negative breast cancer before and after neoadjuvant chemotherapy. Int J Clin Exp Pathol 2014;7:6862–70.
- [34] Ingolf JB, Russalina M, Simona M, et al. Can Ki-67 play a role in prediction of breast cancer patients' response to neoadjuvant chemotherapy? Biomed Res Int 2014;2014:628217.
- [35] Huang L, Chen TW, Chen CM, et al. Prognostic and predictive value of Phospho-p44/42 and pAKT in HER2-positive locally advanced breast cancer patients treated with anthracycline-based neoadjuvant chemotherapy. World J of Surg Oncol 2013;11:307.
- [36] Ohno S, Chow LWC, Sato N, et al. Randomized trial of preoperative docetaxel with or without capecitabine after 4 cycles of 5-fluorouracilepirubicin-cyclophosphamide (FEC) in early-stage breast cancer: explor-

atory analyses identify Ki67 as a predictive biomarker for response to neoadjuvant chemotherapy. Breast Cancer Res Treat 2013;142: 69–80.

- [37] Cheng YJ, Ye JM, Xu L, et al. Factors related with pathological complete response of neoadjuvant chemotherapy in primary breast cancer (Chinese). Zhonghua Wai Ke Za Zhi 2013;4:339–43.
- [38] Yao YF, Gong JP, Tang JH, et al. Value of Ki-67 predicting the effectiveness of neoadjuvant chemotherapy in patients with triplenegative breast cancer (Chinese). J Basic Clin Oncol 2013;5:403–5.
- [39] Ye GL, Yang J, Gu WQ, et al. The Influence of Ki-67 expression on triplenegative breast cancer with neo-adjuvant chemotherapy (Chinese). Hebei Medicine 2013;6:832–4.
- [40] Jin SY, Kim SB, Ahn JH, et al. 18F-Fluorodeoxyglucose uptake predicts pathological complete response after neoadjuvant chemotherapy for breast cancer: a retrospective cohort study. J Surg Oncol 2013;107: 180–7.
- [41] Saracchini S, Foltran L, Tuccia F, et al. Phase II study of liposomeencapsulated doxorubicin plus cyclophosphamide, followed by sequential trastuzumab plus docetaxel as primary systemic therapy for breast cancer patients with HER2 overexpression or amplification. Breast 2013;22:1101–7.
- [42] Esserman LJ, Berry DA, DeMichele A, et al. Pathologic complete response predicts recurrence-free survival more effectively by cancer subset: results from the I-SPY 1 TRIAL-CALGB 150007/150012, ACRIN 6657. J Clin Oncol 2012;26:3242–9.
- [43] Zhang GC, Qian XK, Guo ZB, et al. Pre-treatment hormonal receptor status and Ki67 index predict pathologic complete response to neoadjuvant trastuzumab/taxanes but not disease-free survival in HER2-positive breast cancer patients. Med Oncol 2012;29:3222–31.
- [44] Grim J, Jandík P, SlÁnskÁ. I, et al. Low expression of NQO1 predicts pathological complete response to neoadjuvant chemotherapy in breast cancer patients treated with TAC regimen. Folia Biologica (Praha) 2012;58:185–92.
- [45] Peter AF, Katharina H, Lothar H, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011;11:486.
- [46] Li XR, Liu M, Zhang YJ, et al. Evaluation of ER, PgR, HER-2, Ki-67, cyclin D1, and nm23-H1 as predictors of pathological complete response to neoadjuvant chemotherapy for locally advanced breast cancer. Med Oncol 2011;28:S31–8.
- [47] Petit T, Wilt M, Velten M, et al. Semi-quantitative evaluation of estrogen receptor expression is a strong predictive factor of pathological complete response after anthracycline-based neo-adjuvant chemotherapy in hormonal-sensitive breast cancer. Breast Cancer Res Treat 2010;124: 387–91.
- [48] Sánchez-Muñoz A, Dueñas-García R, Jaén-Morago A, et al. Is it possible to increase pCR in the neoadjuvant treatment with a dose-dense/ sequential combination?: results from a phase II Trial combining epirubicin and cyclophosphamide followed by paclitaxel and gemcitabine±trastuzumab in stage II and III breast cancer patients. Am J Clin Oncol 2010;5:432–7.
- [49] Colleoni M, Bagnardi V, Rotmensz N, et al. A nomogram based on the expression of Ki-67, steroid hormone receptors status and number of chemotherapy courses to predict pathological complete remission after preoperative chemotherapy for breast cancer. Eur J Cancer 2010;46: 2216–24.
- [50] Masuda H, Masuda N, Kodama Y, et al. Predictive factors for the effectiveness of neoadjuvant chemotherapy and prognosis in triplenegative breast cancer patients. Cancer Chemother Pharmacol 2011;67:911–7.

- [51] Darb-Esfahani S, Sibylle Loibl S, Müller BM, et al. Identification of biology-based breast cancer types with distinct predictive and prognostic features: role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast Cancer Res 2009;11:R69.
- [52] Guarneri V, Piacentini F, Ficarra G, et al. A prognostic model based on nodal status and Ki 67 predicts the risk of recurrence and death in breast cancer patients with residual disease after preoperative chemotherapy. Ann Oncol 2009;20:1193–8.
- [53] Colleoni M, Viale G, Zahrieh D, et al. Expression of ER, PgR, HER1, HER2, and response: a study of preoperative chemotherapy. Ann Oncol 2008;19:465–72.
- [54] Vincent-Salomon A, Rousseau A, Jouve M, et al. Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracycline-based preoperative chemotherapy. Eur J Cancer 2004;40:1502–8.
- [55] Mathieu MC, Rouzier R, Llombart-Cussac A, et al. The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant chemotherapy can be explained by their biological profile. Eur J Cancer 2004;40:342–51.
- [56] Colleoni M, Viale G, Zahrieh D, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res 2004;10:6622–8.
- [57] Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205–16.
- [58] Wells G, Shea B, O'Connell D, et al. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2003. Available at: http://www.ohri.ca/programs/clinical_epidemiology/ oxford.asp. Accessed January 15, 2017.
- [59] Fu XY, Zhou Q, Zhang XQ. Efficacy comparison between total laryngectomy and nonsurgical organ-preservation modalities in treatment of advanced stage laryngeal cancer: a meta-analysis. Medicine (Baltimore) 2016;14:e3142.
- [60] Kim KI, Lee KH, Kim TR, et al. Ki67 as a predictor of response to neoadjuvant chemotherapy in breast cancer patients. J Breast Cancer 2014;17:40–6.
- [61] Fasching PA, Heusinger K, Haeberle L, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer 2011;11:486.
- [62] Urruticoechea A, Smith IE, Dowsett M. Proliferation marker Ki67 in early breast cancer. J Clin Oncol 2005;23:7212–20.
- [63] Goldhirsch A, Wood W, Coates A, et al. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol 2011;22:1736–47.
- [64] Ring AE, Smith IE, Ashley S, et al. Oestrogen receptor status, pathological complete response and prognosis in patients receiving NAC for early breast cancer. Br J Cancer 2004;91:2012–7.
- [65] Yoo C, Ahn JH, Jung KH, et al. Impact of immunohistochemistry based molecular subtypes on chemosensitivity and survival patients with breast cancer following NAC. J Breast Cancer 2012;15:203–10.
- [66] Li XX(Bill), Krishnamurti U, Bhattarai S, et al. Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol 2016;145:871–8.
- [67] von Minckwitz G, Fontanella C. Selecting the neoadjuvant treatment by molecular subtype: how to maximize the benefit? Breast 2013;22(suppl 2):S149–51.