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SUMMARY

Cooperative AI has shown its effectiveness in solving the conundrum of cooperation. Understanding how
cooperation emerges in human-agent hybrid populations is a topic of significant interest, particularly in
the realm of evolutionary game theory. In this article, we scrutinize how cooperative and defective Auton-
omous Agents (AAs) influence human cooperation in social dilemma games with a one-shot setting.
Focusing on well-mixed populations, we find that cooperative AAs have a limited impact in the prisoner’s
dilemma games but facilitate cooperation in the stag hunt games. Surprisingly, defective AAs can pro-
mote complete dominance of cooperation in the snowdrift games. As the proportion of AAs increases,
both cooperative and defective AAs have the potential to cause human cooperation to disappear. We
then extend our investigation to consider the pairwise comparison rule and complex networks, eluci-
dating that imitation strength and population structure are critical for the emergence of human coopera-
tion in human-agent hybrid populations.

INTRODUCTION

Cooperation, which serves as a fundamental social behavior,1,2 plays a crucial role in ensuring human prosperity. It not only facilitates the res-

olution of individual conflicts, such as hunting and driving, but also mitigates burdensome catastrophes such as global climate change and

disease transmission.3,4 However, cooperation often struggles to survive in the face of competition with defection due to lower payoffs.5

Although mutual cooperation is beneficial to collective interests, individuals are frequently tempted to choose defection. The concept of so-

cial dilemma captures the inherent challenge in the evolution of cooperation, referring to a situation where an individual’s interests conflict

with collective interests. Two-player social dilemma games such as prisoner’s dilemma (PD) game, stag hunt (SH) game, and snowdrift (SD)

game, are employed ubiquitously, portraying the rational decision-making of two participants using a strategy set and payoff matrix.6,7 This

type ofmatrix game allows for equilibrium analysis and has been extensively utilized in researchwithin the fields of social science, biology, and

artificial intelligence (AI).8,9

With the integration of AI into various aspects of human life, advancements in science and technology have allowed humans to delegate

decision-making tasks tomachines.10–12 Althoughprevious studies have suggested fascinating solutions to encourage cooperation in human-

human interactions,13,14 they do not address this problem within human-agent hybrid populations. Consequently, research on human-agent

coordination has gained significant attention and encompasses diverse areas. One typical example is autonomous driving,15 where humans

relinquish decision-making power to cars, thereby freeing themselves from the physical demands of driving and making travel easier and

more enjoyable. However, most of these researches focus on situations where humans and agents share a common goal.16,17 When conflicts

of interest arise, it becomes crucial to investigate the evolution of human behavior in a human-agent hybrid environment.18 For instance,

studying human-AI interaction within the general-sum environment and the trust-revenge game provides a comprehensive understanding

of these domains.19,20 As social interactions have become more hybrid,16,21 involving humans and AAs, there lies an opportunity to gain

new insights into how human cooperation is affected.18,22 This work aims to examine the influence of AAs on human cooperative behavior

when social dilemmas exist.

Understanding how human behavior changes in the presence of robots or AAs is a challenging but essential topic.23,24 To accurately cap-

ture human cooperation toward agents, previous studies have predominantly concentrated on the development and design of algorithms for

AAs.18,25,26 These studies mainly focused on repeated games where human players (HPs) can make decisions based on historical information

about AAs. A repeated game involves the repetition, either finite or infinite, of a base game, which is represented in the strategic form.27

However, the impact of one-shot settings, where players lack prior experience and information about their counterparts, has been generally

ignored with few exceptions.28,29 In this article, we focus on how cooperative and defective AAs affect human cooperation in two-player social
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dilemma games, and we ask: Are cooperative AAs always beneficial to human cooperation? Do defective AAs consistently impede the evo-

lution of human cooperation? How do population dynamics change in structured and unstructured populations when the ratio of human-hu-

man interaction to human-agent interaction varies?

To address the research questions mentioned above, we utilize an evolutionary game theoretic framework to study the conundrum of

cooperation in social dilemmagameswith a one-shot setting. As shown in Figure 1, the typical games involve PD, SD, and SH games. Previous

evidence has proved (or hypothesized) that human players update strategies according to payoff differences, with social learning being the

most well-known modality.30–32 Therefore, we examine the evolutionary dynamics of human cooperation by employing replicator dynamics

(RD) and pairwise comparison.32–34 The main difference between these two dynamics lies in the consideration of AAs. In the pairwise com-

parison rule, human players can adopt the strategies of AAs, whereas replicator dynamics do not incorporate such imitation.

In the human-agent hybrid population, the fraction of cooperation among human players is denoted as rC (0% rC % 1). Assuming human

players are one unit, add y units of AAs to the hybrid population. Specifically, AAs are programmed to choose cooperation with a fixed prob-

ability4 that remains constant over time. The summary of the notations is given in Table 1.Our findings indicate that in well-mixedpopulations

with replicator dynamics, AAs have little impact on cooperation in games with a dominant strategy. Cooperative agents facilitate cooperation

in the SH game but undermine cooperation in the SD game. Counterintuitively, seemingly harmful defective agents can support the domi-

nance of cooperation in the SD game. Additionally, we conduct stability analysis and establish the conditions for the prevalence of cooper-

ation. Our results demonstrate that even a minority of defective (or cooperative) AAs can significantly enhance human cooperation in SD (or

SH) games. However, when cooperative (or defective) AAs constitute a majority, they may trigger the collapse of cooperation in SD (or SH)

games. These findings are further corroborated by pairwise comparison rule when strong imitation strength is considered. In scenarios with

weak imitation strength, cooperative AAs are more likely to stimulate human cooperation. In contrast to well-mixed populations, where

players can interact with others with an equal probability, structured populations restrict interactions to locally connected neighbors. Such

a difference in interactive environments is deemed a determinate factor influencing the emergence of cooperation.35 To investigate this,

we conduct experimental simulations on complex networks and observe that structured populations yield comparable results to well-mixed

scenarios, except in the case of heterogeneous networks. This divergence can be attributed to the influential role of nodes with higher de-

grees. Our results, taken together, provide valuable insights into the impact of AAs on human cooperation.

RESULTS

In this section, we mainly present the theoretical results of well-mixed populations in the PD, SD, and SH games by analyzing the replicator

equations and pairwise comparison rule. The replicator equation is a differential equation, depicting the growth of a specific strategy based

on the payoff difference pC � pD , where pC and pD mean the expected payoff of cooperation and defection, respectively. Pairwise compar-

ison, guided by the Fermi rule, elucidates the process of strategy updating. Lastly, we introduce an extension to incorporate complex net-

works into the analysis.

Replicator dynamics

Prisoner’s dilemma game and harmony game

In the PD game, despite the presence of AAs, defection remains the dominant strategy, and the expected payoff for defection is either equal

to or greater than that of cooperation, leading to _rC % 0. Therefore, evolutionary dynamics reach a full defection equilibrium state, and human

A B

Figure 1. Schematic representation of the human-agent hybrid population

(A) The well-mixed population consists of human players and AAs interacting with each other. The frequencies of human-human and human-agent interactions

depend on the composition of the population, specifically the ratio of AAs to human players. The red and blue solid circles respectively represent cooperators

and defectors in the human players.

(B) The two-player two-strategy games in human-human and human-agent interactions. Mutual cooperation yields a reward R to both players, while mutual

defection results in a punishment P. Unilateral cooperation leads to a sucker’s payoff S, while the corresponding defector receives a temptation to defect T .

By setting R = 1 and P = 0, there are four kinds of games, including prisoner’s dilemma game, snowdrift game, stag hunt game, and harmony game.
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cooperation diminishes irrespective of its initial frequency. This finding remains robust against any cooperation probability of AAs, as shown in

Figure 2A. Although the equilibrium remains constant, the gradient is influenced by the values of y and 4. In contrast, the expected payoff of

cooperation is equal to or larger than defection (see Figure 2B) in the harmony game, leading to _rC R 0. Thereby, the population evolves to a

full cooperation equilibrium state. The results show that both cooperative and defective AAs have no effect on the convergent state in the

games with a dominant strategy.

Snowdrift game

In the SD game, when AAs are absent, replicator dynamics have demonstrated that the interior equilibrium brC = P�S
R+P�T �S is the unique

asymptotically stable state, while the equilibria rC = 0 and rC = 1 are always unstable. However, the results will be different if we take AAs

into consideration. We find that the population converges to a full cooperation equilibrium state regardless of the initial frequency of human

cooperation, provided the condition 1+y4
1+y % P�S

R+P�T �S is satisfied. Interestingly, to achieve a full cooperation equilibrium state with as few AAs

as possible, the optimal approach is to introduce AAs with a cooperation probability of 4 = 0. Correspondingly, the minimum value for y is
T �R
S�P. On the other hand, when 4

1+yR
P�S

R+P�T �S , the population converges to a full defection equilibrium state regardless of the initial frequency

of human cooperation. Therefore, we reveal that defective AAs can actually stimulate human cooperation in the SD games.

We then present analytical results regarding how AAs affect the equilibrium by setting T = 1.2 and S = 0.5 in Figure 3. Panel A depicts the

4 � y phase diagram, which consists of three parts: fullC state, fullD state, and coexistence state ofC andD. We find that aminority of defec-

tive AAs (see the area with y < 1) can shift the equilibrium state from a coexistence state to a full cooperation equilibrium state, whereas a

sufficiently large fraction of cooperative AAs drives the system to a full defection equilibrium state (blue color). To better understand how

such an unexpected full defection state happens, we examine the frequency of human cooperation as a function of AAs’ cooperation prob-

ability 4 at y = 4 in Figure 3B. We observe that with a fixed ratio of AAs to human players y, the lower the cooperation probability of AAs, the

higher the level of human cooperation. In detail, the unique asymptotically stable state moves from full cooperation to the coexistence of C

and D, and ultimately to complete defection with the increase of 4.

Stag hunt game

In the absence of AAs, replicator dynamics have revealed that the coexistence of C and D is an unstable equilibrium state, whereas the full

cooperation and defection equilibrium states are both asymptotically stable. The equilibrium state that the population evolves in depends on

the initial frequency of human cooperation. However, the full cooperation equilibrium state provides each player with a higher payoff

Table 1. Summary of notations

Notation Meaning

y The ratio of autonomous agents to human players

B The cooperation probability of autonomous agents

rC The frequency of human cooperation among human players

_rC rC ’s derivative with respect to time

K The imitation strength of human player

A B

Figure 2. Phase portrait of PD and harmony games

(A) In the PD game, additional AAs have no influence on the equilibrium. Regardless of whether cooperative or defective AAs are involved, the population

inevitably evolves toward a state of complete defection due to the constant condition _rC % 0.

(B) In the harmony game, the introduction of additional AAs also has no effect on the equilibrium. Since _rC R 0 consistently holds, the population evolves to a full

cooperation state despite cooperative or defective AAs. The black linemeans the situation in the absence of AAs. The parameters are fixed as y = 0:95, S = �
0:2, T = 1:3 for the PD game and S = 0:1, T = 0:5 for the harmony game.
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compared to the full defection equilibrium state. Consequently, the question arises of how to steer the population toward a full cooperation

equilibrium state that is independent of the initial frequency of human cooperation. This can be addressed by incorporating AAs, particularly

cooperative AAs. In detail, when y4
1+y R

P� S
R+P�T �S, the full cooperation equilibrium state becomes a unique asymptotically stable solution,

implying that the population converges to full cooperation irrespective of initial frequency of human cooperation. In particular, to achieve

full cooperation with as few AAs as possible, the best option is to introduce AAs with cooperation probability 4 = 1. On the other hand,

the population converges to full defection regardless of the initial frequency of human cooperation when 1+y4
1+y % P�S

R+P�T �S.

In Figure 4A, we present the phase diagram of analytical solutions. There exist three phases, including a full C state, a full D state, and a

bistable state ofC orD. The results demonstrate that the higher the cooperation probability of AAs, the lower the threshold for the proportion

of AA required to achieve a full cooperation equilibrium state. Notably, when y < 1, we showcase that even a minority of cooperative AAs can

stimulate a full cooperation equilibrium state. On the other hand, AAs with a lower cooperation probability can result in the collapse of coop-

eration in a population containing a large fraction of AAs (see blue area). We then show how the equilibrium of the population varies as a

function of 4 by fixing y = 4. In the monostable state, the equilibrium is insensitive to the initial frequency of human cooperation. However,

in the bistable state, increasing 4 decreases the unstable interior equilibrium and expands the area capable of reaching a full cooperation

equilibrium state.

Overall, we find that aminority of defective (or cooperative) AAs can trigger a pronounced phase transition toward a full cooperation equi-

librium state in the SD (or SH) games. In contrast, if AAs take a larger proportion, although a full cooperation equilibrium state is easy to reach,

there is a risk of transitioning to a full defection equilibrium state. Given the recognition of social learning as a means of describing human

strategy updating,34 we further investigate the results by considering pairwise comparison rule, focusing on the situationwhere humanplayers

can not only imitate the strategy of human player but also AAs.

Pairwise comparison rule

In the pairwise comparison rule, we investigate the influence of AAs as well as the imitation strength K. Note that, K/+N and K/ 0 mean

strong and weak imitation strength, respectively. The probability given by Fermi function is totally affected by the sign of payoff difference

pC � pD if K/+N, or tends to 0.5 if K/0. To illustrate how human cooperation evolves under pairwise comparison rule, we present theo-

retical and agent-based simulation results in this section. A fascinating finding is that results are qualitatively consistent with replicator dy-

namics if we consider strong imitation strength in pairwise comparison. However, the results vary as the imitation strength weakens.

We utilize the same values of T and S as in the replicator dynamics section and present the results in Figure 5. Note that we here represent

cooperative and defective AAs as 4 = 0:1 and 4 = 0:9, respectively. The details of the agent-based simulation process are given in the STAR

Methods. In the PD game, human cooperation, either in 4 = 0:1 or 4 = 0:9 condition, is difficult to emerge under strong imitation strength

(see Figure 5A). In detail, when K = 100, human cooperation is insensitive to the strategy and fraction of AAs, which is consistent with rep-

licator dynamics. However, when we reduce the imitation strength, the results change. Both AAs’ proportion and cooperation probability

positively influence the evolution of human cooperation. In particular, cooperative AAs promote human cooperation more effectively than

defective AAs. This effect becomes more significant with lower imitation strength (see K = 1). In the SD game (see Figure 5B), human coop-

eration increases (or decreases) with AA’s proportion when 4 = 0:1 (or 4 = 0:9) under strong imitation strength. Defective AAs boost the

evolution of human cooperation, consistent with the results obtained through RD. In particular, this effect is insensitive to the initial fraction

A B

Figure 3. Equilibrium and phase diagram in the SD game

(A) A phase diagram of stable equilibrium state as a function of ð4; yÞ pair. The blue, purple, and red areas mean the fullC state, the coexistence state of C andD,

and the full D state, respectively. The insets are phase portraits of human cooperation rC . In the full C state, the gradient of rC is always not less than 0. In the

region where cooperation and defection coexist, the gradient of rC is non-negative when rC < r�C , and non-positive otherwise. The dashed line y = 1 indicates an

equal contribution of human players and AAs, each accounting for 0.5.

(B) The stable (solid circles) and unstable (open circles) equilibrium states as a function of 4 with y = 4. The background means the gradient of rC , which reveals

the evolutionary direction of this population. The change of stable equilibrium shows that compared with cooperative AAs, defective AAs are more beneficial to

the evolution of cooperation. Other parameters are fixed as S = 0:5 and T = 1:2.
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of human cooperation, as shown in Figure S1 (electronic supplementary material). However, the results become totally contrary when imita-

tion strength weakens (see K = 1): cooperative AAs are more beneficial to human cooperation. In the SH game (see Figure 5C), there

exists two kinds of state: a unique asymptotically stable state r�C1 (or r
�
C2) and a bistable state r�C1 and r�C2, where r�C1 means the coexistence

ofC andDwith a higher frequency of cooperation and r�C2 means the coexistence ofC andDwith a lower frequency of cooperation. As shown

in Figure S2 (electronic supplementary material), in a bistable state, which equilibrium the system evolves to is affected by the initial frequency

of human cooperation. Furthermore, similar to the findings in the RD section, AAs with lower (or higher) cooperation probability 4 = 0:1 (or

A B

Figure 4. Equilibrium and phase diagram in the SH game

(A) Phase diagram showing the stable equilibrium state as a function of the ð4; yÞ pair. Introducing cooperative AAs in the population increases the likelihood of

achieving a full cooperation equilibrium state, while introducing a large fraction of defective AAs may lead to cooperation collapse. The blue and red areas show

the unique asymptotically stable states of full cooperation and full defection, respectively. The brown area indicates a bistable state that includes both full

cooperation and full defection. The insets display phase portraits of rC . The dashed line y = 1 means that human players and AAs each account for 0.5.

(B) Stable (solid circles) and unstable (open circles) equilibrium states as a function of 4 with a fixed y = 4. The background illustrates the gradient of rC .

Cooperative AAs have a more positive impact on the evolution of cooperation compared to defective AAs. The parameters are fixed as S = � 0:2 and T = 0:6.

A B C

Figure 5. Equilibrium in three types of social dilemma games under the pairwise comparison rule

Consistently to the findings in replicator dynamics, under strong imitation strength, (A) cooperative AAs have no significant influence on cooperation in the PD

game.

(B) Cooperative AAs inhibit cooperation in the SD game.

(C) However, cooperative AAs stimulate cooperation in the SH game. In contrast, when imitation strength is weak, cooperative AAs promote cooperation in all

three games. From left to right, each column shows the results for the PD (S = � 0:2, T = 1:3), SD (S = 0:5, T = 1:2), and SH (S = � 0:2, T = 0:6) games. The

lines show theoretical results and the squares show the agent-based simulation results. The solid and dashed lines show stable and unstable equilibria,

respectively. The top and bottom panels are obtained with 4 = 0:1 and 4 = 0:9, respectively.
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4 = 0:9) are more feasible to cause the state r�C2 (or r
�
C1) as y increases under strong imitation strength. This finding is still robust when imita-

tion strength becomes weak.

Our findings demonstrate consistent results in both the replicator dynamics and pairwise comparison rule under strong imitation strength.

However, if weak imitation strength is taken into account, cooperative AAs are more beneficial to the evolution of human cooperation in all

three types of games. While our previous discussions primarily focused on well-mixed populations, exploring the outcomes within networks

that incorporate local interactions is also pertinent.

Extension to complex networks

Wepresent the average human cooperation frequency rC as a function of 4 for square lattice, Barabasi Albert (BA) scale-free, and Erdos Renyi

(ER) random network in Figure 6. In the PD game, cooperation is consistently promoted with increasing 4, regardless of the network type. The

results are qualitatively consistent with previous theoretical analyses. This finding is further verified in Figures S3 and S4 (electronic supple-

mentary material). Turning our attention to SD games, we find that AAs inhibit cooperation compared to scenarios without AAs, regardless of

the network type. In the square lattice, cooperation weakens further as 4 increases. However, a contrasting phenomenon emerges when

considering heterogeneous networks, such as ER random and BA scale-free networks. We infer that this discrepancy may be attributed to

AAs occupying the hub nodes of the networks. To verify this inference, we conduct simulation experiments on a BA scale-free network under

two scenarios (see Figure S5 in electronic supplementary material): (i) By assigning 4871 nodes (to maintain a similar number of AAs as in Fig-

ure 6) with the highest degrees as AAs, Figure S5 presents results similar to those in Figure 6B. (ii) By assigning 4871 nodes with the lowest

degrees as AAs, we arrive at the conclusion that defective AAs effectively promote cooperation once again. This finding highlights the sig-

nificant influence of AAs’ location on human cooperation. Next, in the SH game (see Figure 6C), AAs with higher cooperation probability are

more beneficial for human cooperation compared to defective AAs. In particular, the increase in 4 triggers tipping points in three types of

networks. Given the significance of hub nodes, we conduct additional analysis by focusing on ten nodes in three different types of games, as

shown in Figure 7. When AAs are assigned to nodes with the highest degrees, the strategy of AAs has a profound impact on human coop-

eration. Even a slight change in the behavior of AAs, especially in the PD games (see Figure 7A), can lead to a significant increase in overall

human cooperation. Conversely, when these ten AAs are randomly allocated across the network, they have little influence on human behavior

and exhibit limited utility in altering cooperation levels.

DISCUSSION

In this study, we investigate human cooperation in hybrid populations, involving interactions between human players and AAs. AAs, who are

programmed to choose cooperation with a specific probability, are employed to answer our motivation questions. The human player is

assumed to update strategy according to the payoff difference given by replicator dynamics and pairwise comparison rule. Theoretic analysis

and experimental simulations mainly proceed following well-mixed population and network structures, respectively. Using replicator dy-

namics, we investigate the impact of AAs on the equilibrium of various social dilemma games, such as the PD, SH, and SD games. We show-

case that cooperative AAs effectively promote human cooperation in the SH game, but their influence is limited in games with dominant stra-

tegies. Surprisingly, in the SD game, cooperative AAs can even disrupt cooperation. To achieve a full cooperation state with as few AAs as

possible in the SH game, introducing AAs with fully cooperating probability is proved to be the most effective approach. Furthermore, our

A B C

Figure 6. The frequency of human cooperation as a function of 4 in complex networks with y = 0:95

(A) Human cooperation is promoted by AAs in the PD game across all three networks. In particular, the higher the value of 4, the higher the frequency of

cooperation.

(B) Compared to the results without AAs, human cooperation is prohibited by AAs in the SD games regardless of network type. With the increase of 4, human

cooperation decreases (or increases) in the square lattice (or heterogeneous networks).

(C) Cooperative AAs are more conducive to the evolution of human cooperation. The circles show simulation results averaged over 60 iterations, and the shaded

regions show the standarddeviation. Thedashed lines indicate the frequencyof human cooperation in the absenceofAA. Theparameters are fixed asS = � 0:2,

T = 1:3 in the PD game, S = 0:5, T = 1:4 in the SD game, and S = � 0:5, T = 0:6 in the SH game.

ll
OPEN ACCESS

6 iScience 26, 108179, November 17, 2023

iScience
Article



results also show that defective AAs are not useless, as they can stimulate cooperation in the SD games. Correspondingly, to achieve a coop-

eration-dominant state with as few AAs as possible, the best choice is to introduce AAs with always defection. These findings are further veri-

fied using pairwise comparison rule with strong imitation strength. On the other hand, if taking weak imitation strength (which includes irra-

tional options of human players) into account, we demonstrate that cooperative AAs are beneficial for promoting human cooperation

regardless of social dilemmas.

In an extended study, we implement experimental simulations involving three types of complex networks. By incorporating spatial

structures into the interaction environment, we obtain qualitatively consistent results in the homogeneous network. The differences in het-

erogeneous networks are mainly due to the location of AAs. By controlling AAs’ location, we find that assigning AAs to hub nodes, even in

a small proportion, can significantly affect evolutionary outcomes. Thus far, we have contributed a model for studying human cooperation

in hybrid populations, showing that it is essential to consider environments related to social dilemmas, networks, and imitation strength

when designing AAs. The insights gained from our results have practical implications for developing AI algorithms to foster human

cooperation.

Our research distinguishes itself from previous studies mainly in several key aspects. Firstly, in addition to considering the committed mi-

norities,36,37 we incorporate a substantial number of autonomous agents into our model. These AAs cooperate with their counterparts with a

certain probability. The inclusion of a substantial number of AAs is motivated by recent advancements in social network research,38 which

suggests that machine accounts make up approximately 32\% of all tweets based on empirical evidence from Twitter data. Moreover, there

is an increasing trend in the number of machine accounts, posing significant challenges in terms of reducing their potential risks.39 In the

context of human-agent games, we validate that minority cooperative AAs stimulate cooperation, which aligns with existing literature.40–42

However, our research reveals an unexpected result: the inclusion of a large number of AAs leads to a breakdown of the cooperative system,

surpassing the effects observed with a mere minority of AAs, as demonstrated in the defective region depicted in the left panel of Figures 3

and 4. This discovery emphasizes the potential risks posed by the growing prevalence of AAs in relation to human cooperation.

Secondly, we introduce defective AAs, whose role in fostering cooperation in two-player social dilemma games has been largely over-

looked in the context of human-agent interaction. Either replicator dynamics or pairwise comparison rule, we find that the inclusion of

defective AAs can indeed trigger the dominance of cooperation in SD games, an effect that remains hidden when solely focusing on coop-

erative AAs. Furthermore, although several existing studies primarily use AAs to address fairness or collective risk problems,28,29 they have

not introduced AAs in structured populations.43 These interactive environments have been recognized as important factors in the context

of human-human interactions. By introducing structured populations, we reveal tipping points that are triggered by AAs in the SH games.

Meanwhile, we investigate the effect of nodes with higher degrees on triggering human cooperation. These additional critical extensions

provide a comprehensive understanding of the role of cooperative and defective AAs in the evolution of human cooperation. They offer a

more realistic representation of interactive environments in human-agent interactions, shedding light on the complex dynamics at play in

social systems.

There are still intriguing avenues for future exploration in this field. In human-human interactions, punishment has been proven to be a

powerful behavior in eliciting cooperation.44 It’s also essential to understand its utility in human-agent populations, particularly in solving sec-

ond-order free-rider problems.45 Even though theoretical analysis helps identify critical values, it neglects human players’ emotional and so-

cial factors. Conducting experiments involving structured and unstructured populations to test these findings will open up exciting avenues

for research in human-agent interaction.

A B C

Figure 7. The frequency of human cooperation as a function of 4 in BA scale-free network with ten AAs

We examine two scenarios, one involves assigning AAs to the nodes with the largest degree (blue), while the other assigns AAs to randomly selected nodes (red).

Panels (A–C) show the results of the PD, SD, and SH games, respectively. Human cooperation closely approximates the results without AAs when AAs are

randomly assigned to nodes. However, if AAs are assigned to nodes with the largest degree, even with only 10 nodes, they can boost human cooperation

effectively, particularly in the PD and SH games. The circles show agent-based simulation results averaged over 60 times, and the shaded regions show

standard deviation. The parameter settings are the same as Figure 6.
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Limitations of the study

The current study has some limitations that should be acknowledged. Firstly, it focuses solely on the simplest social dilemmas involving two

decisions: cooperation and defection.While we have shown that artificial agents (AAs) with even simple intelligence can facilitate cooperation

in social dilemmaswhere players have no prior information about counterparts, it remains uncertain how they would perform inmore complex

scenarios, such as stochastic games and sequential social dilemma games.46,47 The interaction among players in these scenariosmay be influ-

enced by historical information or the state of the environment, which necessitates addressing these complex problems. Moreover, although

simple algorithms may be effective in stimulating cooperation,48 developing algorithms with more intelligence would further benefit the

development of artificial intelligence, particularly for human-machine or human-robot interaction.24

Furthermore, it is important to acknowledge that a purely theoretical study may overlook the complex motivations behind human

behavior. Conducting human experiments is crucial for testing predictions from theoretical models and gaining insights into various aspects,

including psychological effects, emotions, and cultural differences.20,26 Mechanisms such as communication sentiment, reward, and punish-

ment in human-human interactions have provided clear evidence of prosocial behavior.49–51 Empirical experiments not only test theoretical

possibilities but also reveal what actually occurs. As artificial agents increasingly integrate into human life, the study of human-agent coop-

eration from both theoretical and experimental perspectives becomes necessary. Building upon experimental findings of human-human in-

teractions, we can construct a theoretical model of human-agent interaction and explore the influence of cooperative and defective artificial

agents on human cooperation. Although our current work does not include human behavior experimental results, we believe that our theo-

retical work can serve as a valuable starting point for future human behavior experiments.

Several subsequent studies have examined the impact of the information level on human cooperation, specifically the extent to which hu-

man players know their opponents are artificial agents.24 These studies have revealed that human cooperation is often higher when human

players have no information about the true nature of their opponents.52 Conversely, even when participants recognize that artificial agents

perform better than human players at inducing cooperation, human players tend to reduce their willingness to cooperate. However, Shirado

and Christakis conducted human-agent interactions on network structures and presented contrasting results, showing that human cooper-

ation can still be promoted even if the identity of the agents is transparent.48 In social dilemmagameswith one-shot settings, the answer is still

not deterministic. Our study did not account for the intrinsic properties of artificial agents and focused on a scenario without learning bias

between humans and artificial agents. Therefore, it is crucial to consider the true nature of agents, particularly in one-shot settings, to expand

our understanding of their behavior and implications.
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Materials availability

No materials were newly generated for this paper.

Data and code availability

� The data that support the results of this study are available from the corresponding authors upon request.
� The code used to generate the figures is available from the corresponding authors upon request.
� All other items: any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Our study does not use typical experimental models in the life sciences.

METHOD DETAILS

Social dilemma games

Two-player social dilemmagame, a typical subclass of social dilemma, depicts the rational decision-making of two participants by introducing

a strategy set and payoff matrix. In the simplest version, each player selects a strategy from a strategy set S = fC;Dg, where C and D repre-

sent cooperation and defection, respectively. Mutual cooperation yields a reward R to both players, while mutual defection results in a pun-

ishment P. Unilateral cooperation leads to a sucker’s payoff S, while the corresponding defection receives a temptation to defect T . The

above process can be represented by a payoff matrix:

A =

�
R S
T P

�
: (Equation 1)

Using this payoff matrix, the so-called social dilemma is meeting if it follows these four conditions simultaneously:53

(i) R >P. Players prefer to cooperate with each other than to defect from each other.

(ii) R >S. Mutual cooperation is preferred over unilateral cooperation.

(iii) 2R >T +S. Mutual cooperation is more beneficial for the collective than defecting against a cooperator.

(iv) Either T >R (greed) or P >S (fear). The former condition means players prefer exploiting a cooperator to cooperating with him. The

latter condition means players prefer mutual defection over being exploited by a defector.

According to the ranking order of these parameters, these two-player social dilemma games can be classified into four different kinds of

games,7 which are PD games (T >R >P >S), SD games (T >R >S >P), SH games (R >T >P >S), and harmony (HG) game (R >T ;S > P). It is

noteworthy that the first three games exhibit social dilemmas,47,53 while the harmony game does not. Without a specific declaration, we set

R = 1 and P = 0 throughout this paper.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

T together with R, S, and P for social dilemma games Macy et al.53 https://doi.org/10.1073/pnas.09208009

y together with B for autonomous agents Cardillo and Masuda36 https://doi.org/10.1103/PhysRevResearch.2.023305

Software and algorithms

Dev C++ Bloodshed https://www.bloodshed.net/

OriginLab OriginLab Corporation https://www.originlab.com/
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Population setup and autonomous agents

We consider a well-mixed and infinitely large population P = f1; 2;/;Ng, whereN/+N, and each player can interact with each other with

equal probability. In the population, player i˛P can choose one of two strategies from setS = fC;Dg. We denote the strategy of player i as a

vector X i = ðx1; x2Þ0, where xj = 1 if the j th strategy is chosen and the other element is equal to 0. To investigate how AAs affect the coop-

erative behavior among human players, we consider a hybrid population consisting of human players and AAs (see Figure 1A). Human players

participate in the game and update their strategies through a social learning process. AAs, on the other hand, follow a pre-designed algo-

rithm to make their choices: they cooperate with a fixed probability 4ð0 %4 % 1Þ and defect with probability 1 � 4. We refer to them as

cooperative AAs if 0:5%4% 1, and defective AAs if 0%4< 0:5. In the human-agent hybrid population, each player has an equal chance

to engage in a two-player gamewith other players (see Figure 1B). Consequently, the interaction probability between humans and AAs signif-

icantly depends on the composition of this population.

Hybrid population game

In the hybrid population, the fraction of cooperation among human players is denoted as rC (0% rC % 1Þ. Assuming human players are one

unit, add y units of AAs to the hybrid population. Consequently, the fraction of human cooperation is denoted by fC = rC
1+y. The parameter y

can also be used to quantify the composition of the population: if 0<y < 1, it implies that the fraction of AAs is lower than that of human

players; whereas y > 1 indicates a higher proportion of AAs. Accordingly, the expected payoff of cooperation and defection among human

players in a hybrid population can be calculated as follows:

pC =
1

1+y
ðrCR + ð1 � rCÞSÞ+

y

1+y
ð4R + ð1 � 4ÞSÞ;

pD =
1

1+y
ðrCT + ð1 � rCÞPÞ+

y

1+y
ð4T + ð1 � 4ÞPÞ; (Equation 2)

where the first term on the right-hand represents the payoff from interacting with human players, and the second term signifies the payoff

obtained from interacting with AAs.

Replicator dynamics

The replicator equation33 is a widely used differential equation that depicts evolutionary dynamics in infinitely large populations. Following

this rule, the growth of a specific strategy is proportional to the payoff difference. Therefore, the dynamics of human cooperation can be rep-

resented by the following differential equation:

_rC = ð1 + yÞ _f C

= ð1 + yÞ rC

1+y

1 � rC

1+y
ðpC � pDÞ

=
rCð1 � rCÞ

1+y
ðpC � pDÞ; (Equation 3)

where

pC � pD =
rC+y4

1+y
ðR � T � S + PÞ+ S � P: (Equation 4)

By solving _rC = 0, we find that there exists two trivial equilibrium rC = 0 and rC = 1, and a third equilibrium r�C that is closely associated

with game models and AAs. By solving pC � pD = 0, one can derive:

r�C =
P � S

R+P � T � S
+ y

�
P � S

R+P � T � S
� 4

�

= brC + yðbrC � 4Þ; (Equation 5)

where brC = P�S
R+P�T �S. It is easy to deduce that the restriction T >R >S >P or R >T >P >S guarantees 0< brC < 1. Moreover, r�C increases with

y if brC � 4> 0, whereas decreases with y if brC � 4< 0. Since r�C measures cooperation rate in human players, this equilibrium will vanish if

r�C < 0 or r�C > 1: Note that brC is also the interior equilibrium when the population consists only of human players,54 i.e., the scenario y = 0.

Subsequently, the stability of the equilibrium will be discussed from three types of social dilemmas. As evidence has revealed that human

players may update their behaviors through social learning,34 one may ask: what results can be obtained when considering pairwise compar-

ison rule? Under this rule, we can also examine the effect of imitation strength on the outcomes.
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Pairwise comparison rule

Pairwise comparison is a well-known cultural process that effectively portrays game dynamics. Note that we employ the Fermi rule during

the strategy updating stage.5 In this process, strategy updating takes place within a randomly chosen pair of players, denoted as i and j,

with strategy X and Y (X, Y ˛S). If XsY, player i takes j as a reference and imitates its strategy with a probability determined by the Fermi

function,

WX)Y =
1

1+e�KðpY �pX Þ ; (Equation 6)

where K represents selection intensity (which is also known as imitation strength) andmeasures the irrational degree of human players (or the

extent players make decisions by payoff comparisons).5,30 In the hybrid population defined, the probability of a cooperator taking a defector

as an indicator is given by:

P1 =
rCð1 � rC+yð1 � 4ÞÞ

1+y
:

Subsequently, the probability that cooperators decrease by one is

Q� = P1WC)D =
rCð1 � rC+yð1 � 4ÞÞ

1+y

1

1+e�KðpD �pC Þ : (Equation 7)

Similarly, the probability that a defector taking a cooperator as an indicator is

P2 =
ðrC+y4Þð1 � rCÞ

1+y
:

Consequently, the probability that cooperators increase by one is

Q+ = P2WD)C =
ðrC+y4Þð1 � rCÞ

1+y

1

1+e�KðpC �pD Þ : (Equation 8)

In total, the dynamics of cooperation can be represented as follows:

_rC = Q+ � Q� =

�
rC � r2C+y4 � rCy4

�
eKðpC �pD Þ

ð1+yÞð1+eKðpC �pD ÞÞ � rC � r2C+rCy � rCy4

ð1+yÞð1+eKðpC �pD ÞÞ : (Equation 9)

We can derive the equilibrium by solving _rC = 0. Since the denominator is larger than 0 evidently, the equilibrium is mainly determined by

the numerator. We then denote the numerator as f ðrCÞ and examine the condition:

f ð0Þ = y4e
K

�
y4
1+y ðR�T � S+PÞ+S�P

�
;

f ð1Þ = y4 � y: (Equation 10)

In the presence of AAs, f ð0ÞR 0 and f ð1Þ% 0 are established. The equality holds when 4 = 0 and 4 = 1, respectively. Therefore, there

exists at least one interior equilibrium when 0<4< 1. Note that 4 = 1 is the so-called zealous cooperator.36 In addition to analytical results,

we verify our findings through agent-based simulations. The simulation procedure includes the following steps: (i) Initially, each human

player is assigned either cooperation with probability p or defection with a probability 1 � p initially, where p controls the initial frequency

of cooperation. Each AA adopts cooperation and defection with probability 4 and 1 � 4 in each round. (ii) With a specific strategy, a

randomly chosen player (presumed to be human), denoted as i, obtains an expected payoff by interacting with other N � 1 individuals.

(iii) Individual i decides whether to imitate the strategy of a randomly chosen individual j, who obtains a payoff in the same way, according

to the Fermi function. Repeat (ii) and (iii) until the population reaches an asymptotically stable state. We get the simulation results by

setting N = 1000.

Simulation for complex networks

Building upon the aforementioned results, we further study the network structure effect on human-agent cooperation in this section. Since

interaction, in reality, is not limited to well-mixed populations, we also implement experiments in complex networks that contain local inter-

actions. This means that players can only interact with a limited set of neighboring individuals. To assess the effect of network structure on

cooperation, we employ pairwise imitation as a strategy updating rule and measure the expected cooperation rate among human players.

Following this, players are matched in pairs and imitate their opponent’s strategy based on a probability determined by their payoff differ-

ence.35 We begin by introducing three types of complex networks.
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Network settings

Denote G = fV;Eg as a complex network, where V = f1; 2;/Ng represents node set, and E3V3V is link set. Each node i˛V represents

either a human player or an AA. For the edge ði; jÞ˛ E, each player i is paired up with another player j to play a two-player social dilemma

game. We consider a network with N = 10000 players and an average degree of 4<k > = .

� Square lattice is a homogeneous network. Each player interacts with their four neighbors and receives a payoff by playing with its north,

south, east, and west neighbors. It is noteworthy that here we consider lattice with periodic boundary.
� Barabasi Albert scale-free network is generated following the growth and preferential attach rules.55 The degree distribution of the

ultimate network satisfies a power-law function.
� Erdos Renyi random network is generated by linking two different nodes with a random probability.56 The degree distribution of the

ultimate network satisfies the Poisson distribution.

Agent-based model

Agent-based simulation

We utilized the Monte Carlo simulation to examine the variation of cooperation across different networks. Initially, each human player is as-

signed either cooperation or defection with a probability of 0.5, whereas each AA adopts cooperation and defection with probability 4 and

1 � 4, respectively. With the specific strategy, a randomly chosen player (assumed to be human), denoted as i, obtains the payoff by inter-

acting with connected neighbors

Fi =
X
y ˛Ui

X0
iAX j; (Equation 11)

whereUi represents neighbor set of player i,A is the payoff matrix given by Figure 1B. After calculating the cumulative payoff, player i decides

whether to adopt one of his/her neighbors’ strategies with the probability given by the Fermi function

WXi)Xj =
1

1+e�KðFj � FiÞ ; (Equation 12)

where j is a randomly chosen neighbor. We set K = 10 in the simulations. Results are calculated by conducting 60 realizations. For each real-

ization, we fix the total step as 50000, and each value is averaged over 5000 steps when the network reaches an asymptotic state.

QUANTIFICATION AND STATISTICAL ANALYSIS

Our study does not use typical statistical analysis.
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