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Effective clinical treatments for volumetric muscle loss resulting from traumatic injury
or resection of a large amount of muscle mass are not available to date. Tissue
engineering may represent an alternative treatment approach. Decellularization of tissues
and whole organs is a recently introduced platform technology for creating scaffolding
materials for tissue engineering and regenerative medicine. The muscle stem cell niche
is composed of a three-dimensional architecture of fibrous proteins, proteoglycans, and
glycosaminoglycans, synthesized by the resident cells that form an intricate extracellular
matrix (ECM) network in equilibrium with the surrounding cells and growth factors. A
consistent body of evidence indicates that ECM proteins regulate stem cell differentiation
and renewal and are highly relevant to tissue engineering applications. The ECM also
provides a supportive medium for blood or lymphatic vessels and for nerves. Thus,
the ECM is the nature’s ideal biological scaffold material. ECM-based bioscaffolds can
be recellularized to create potentially functional constructs as a regenerative medicine
strategy for organ replacement or tissue repopulation. This article reviews current
strategies for the repair of damaged muscle using bioscaffolds obtained from animal ECM
by decellularization of small intestinal submucosa (SIS), urinary bladder mucosa (UB), and
skeletal muscle, and proposes some innovative approaches for the application of such
strategies in the clinical setting.

Keywords: biomaterials, extracellular matrix, tissue engineering, regenerative medicine, skeletal muscle, scaffold,

decellularization

INTRODUCTION
Tissue engineering aims to mimic neo-organogenesis to pro-
duce ex-vivo living tissue (Carosio et al., 2013). Initial clinical
experiences with bioengineered tissues have been reported in
skin, cartilage, vascular grafts, bones, and several other special-
ized internal tissues, such as liver and kidney (Olson et al.,
2011). However, owing to its intrinsic complexity, skeletal muscle
remains a challenge for in vitro tissue engineering. Most engi-
neered muscle structures have been obtained by employing an
artificial scaffold, such as matrigel (Lü et al., 2009, 2012), or
native or modified collagen (van Wachem et al., 1996; Okano
and Matsuda, 1997, 1998). Decellularization of tissues and whole
organs is a recently introduced platform technology for creating
scaffolding materials composed of an extracellular matrix (ECM)
for skeletal muscle tissue engineering. The resulting bioscaffolds
(i.e., scaffold of biological origin) can then be recellularized to
create potentially functional constructs as a regenerative medicine
strategy for organ replacement or tissue repopulation. Indeed,
the ECM represents the secreted product of the resident cells of
each tissue or organ. It includes both functional and structural

molecules arranged in a unique three-dimensional ultrastructure
that supports the phenotype and the function of the resident
cells (Reing et al., 2009, 2010). Appropriate tissue decellular-
ization preserves not only the ECM integrity, bioactivity and
spatial structure, but also the vascular, lymphatic and nervous
network (Badylak et al., 2012). Moreover, a native ECM scaf-
fold obtained by means of decellularization is also biodegradable,
thereby responding to another important requirement of an ideal
biomaterial for tissue engineering. Thus, a tissue-derived ECM
is the ideal bioscaffold, and all the components that are retained
during its preparation are likely to contribute to the success of
the ECM upon implantation. Indeed, the ECM is not merely a
static entity that supports the tissues, but plays a critical role
in cell signaling and tissue homeostasis, provides molecules for
cell-matrix interactions (such as laminin and fibronectin), main-
tains the appropriate physico-chemical properties, and repre-
sents a fundamental structure for mechano-transduction signals
(Chiquet, 1999; Badylak et al., 2012). The ECM helps to struc-
ture niches spatially and modulate the concentration of adhesive
and signaling molecules locally (Kim et al., 2011). A niche is
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considered as a subset of tissue, cells and extracellular sub-
strates (matrix and soluble factors) that support stem cells and
control their self-renewal in vivo (Escobedo-Lucea et al., 2012).
In this regard, recent studies provide strong evidence that the
niche is composed of both soluble factors and ECM macro-
molecules that direct cell fate (Brown and Badylak, 2014). Thus,
the niche represents a specialized local microenvironment that
contributes to the establishment and maintenance of the stem
cell phenotype and stem cell differentiation (Jones and Wagers,
2008). Indeed, the use of ECM-derived scaffolds in tissue engi-
neering is strictly dependent on its niche properties in stem
cell recruitment and differentiation. When implanted in vivo,
an ECM-derived scaffold elicits an immune response from the
host (Keane and Badylak, 2014), which in turn is responsible for
one of the key events of tissue regeneration/remodeling: ECM-
derived scaffold degradation. Some authors have demonstrated
that ECM degradation releases both growth factors such as basic
fibroblast growth factor (bFGF), vascular endothelial growth fac-
tor (VEGF), insulin-like growth factor, hepatocyte growth factor
(Crapo et al., 2012; Choi et al., 2013; Hoganson et al., 2010),
and cryptic peptides (Agrawal et al., 2011a,b; Ricard-Blum and
Ballut, 2011) which activate cell surface receptors (Davis, 2010)
and are required for cell viability, motility, and differentiation
(Voytik-Harbin et al., 1997; Hodde et al., 2001, 2005; Badylak
et al., 2009). They all may subsequently induce the events that
lead to tissue regeneration. In particular, these factors are hypoth-
esized to polarize the macrophage phenotype toward an M2
anti-inflammatory phenotype (Turner and Badylak, 2013), rather
than toward an M1 pro-inflammatory phenotype, and to recruit
different stem or progenitors cells that may give rise to new tissue
formation (Agrawal et al., 2011a,b), vasculature and innervation
(Agrawal et al., 2009; Sicari et al., 2012; Turner et al., 2012).
Indeed, it has recently been demonstrated that native ECM scaf-
folds from skeletal muscle elicit M2 macrophage polarization
during the host inflammatory response (Valentin et al., 2009;
Turner and Badylak, 2013). M2 macrophages play a key role in
the resolution of inflammation as well as in the activation of
satellite cells during skeletal muscle regeneration (Kharraz et al.,
2013). In skeletal muscle tissue engineering, the use of an ECM-
derived scaffold in vivo has been shown to recruit CD133+ cells
(Turner et al., 2012), recently identified as progenitors of a myo-
genic cell population, as well as Sca1+/PW1+ cells identified
as muscle interstitial stem cells, named PICs (Perniconi et al.,
2011), Sox2+, and Sca1+,Lin- cells (Agrawal et al., 2011a,b).
The suggestion that ECM degradation products directly affect
macrophage polarization is also supported by evidence indi-
cating that chemically cross-linked ECM scaffolds, which are
not biodegradable. The fact that the ECM of each specific tis-
sue has a specific biochemical composition and 3D structure
that influence the host response through the release of suit-
able GFs (Hoganson et al., 2010; Agrawal et al., 2011a,b; Crapo
et al., 2012; Choi et al., 2013) and of specific cryptic peptide
(which are retained after decellularization and are released dur-
ing ECM degradation), implies that the tissue specific ECM
may elicit the growth and differentiation of those tissue specific
cells and has some advantages over ECM from non-homologous
tissues.

The maintenance of 3D architecture has a significant relevance
to the regeneration of complex organs and tissues. In particular,
skeletal muscle functionality is strictly dependent on the cor-
rect alignment of myofibers (Boontheekul et al., 2007; Klumpp
et al., 2010). A native ECM scaffold from skeletal muscle tis-
sue presumably preserves the correct architecture of the native
ECM surrounding each myofiber. On the basis of these consider-
ations, a novel approach to tissue engineering of skeletal muscle,
which involves the use of three-dimensional bioscaffolds made of
an allogeneic or xenogeneic ECM derived from skeletal muscle
tissue, has been proposed. The large scaffolds required for this
approach may be of cadaveric origin and may to some extent
be stored. However, the harvesting of muscle tissue from the
same patient may be considered for minor defects or for plastic
surgery. Owing to the scarcity of studies on skeletal muscle-
derived ECM, the present review investigates the reconstruction
of skeletal muscle tissue based on both skeletal muscle and non-
skeletal muscle (SIS and UB) ECM decellularized tissue. The state
of the art regarding studies on ECM derived from decellular-
ized tissues for skeletal muscle tissue regeneration/remodeling
worldwide, their current applications in clinics and future per-
spective are also discussed. A review of cartilage- and bone-
derived ECM bioscaffold production and use, as opposed
to skeletal muscle-derived ECM, has been recently published
(Cheng et al., 2014).

DECELLULARIZATION OF TISSUES FOR ECM-BASED
SCAFFOLD PRODUCTION
Decellularization is the first step of a strategy that attempts to
obtain a biologically engineered construct that resembles the
native tissue or organ as closely as possible (Badylak et al.,
2012). This strategy is particularly suitable for complex tissues
or organs that require the maintenance of spatial architecture for
translational applications.

Processing methods play a critical role in determining the type
of host response (Valentin et al., 2009; Faulk et al., 2014a,b). The
challenge faced by each decellularization method is to completely
remove the cellular component and DNA content (less than 50ng
of dsDNA per 1 mg dry weight of ECM scaffold) while preserv-
ing the ECM biochemical features, architecture, ultrastructure,
and porosity (Crapo et al., 2011). Decellularization protocols are
based on physico-chemical agents, enzymes, detergent solutions,
or a combination of these (Crapo et al., 2011). Physical reac-
tions, such as freeze-thaw cycles, and mechanical forces, such as
hydrostatic pressure, are sufficient to induce cell lysis. Chemical
agents include: per-acetic and acetic acid, which remove nucleic
acids but affect collagen; bases (such as NaOH), which destroy
growth factors; hypertonic or hypotonic solutions, which lyse
cells through osmotic shock (Crapo et al., 2011). Commonly used
detergents include Triton X-100 and CHAPS for thick tissues,
or low percentages of SDS (sodium dodecyl sulfate) for whole
organ decellularization. These detergents solubilize the cell mem-
brane and disrupt DNA (Meyer et al., 2006; Jones and Wagers,
2008; Giusti et al., 2009; Petersen et al., 2010; Reing et al., 2010;
Crapo et al., 2011), though they have negative effects on protein
and ultrastructure. Chelating agents, such as EDTA (ethylene-
diaminetetraacetic acid) and EGTA (ethylene glycol tetraacetic
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acid), help to dissociate cells from the ECM, while serine pro-
tease inhibitors, such as PMSF (phenylmethylsulfonyl fluoride),
aprotinin, and leupeptin, prevent ECM damage (Crapo et al.,
2011). Several types of enzymes, such as nuclease, trypsin, and
collagenase, can be used to specifically and quantitatively per-
form some of the afore-mentioned tasks. A balance must be
achieved between chemical and physical treatments during the
decellularization process (Macchiarini et al., 2008; Ott et al., 2008;
Escobedo-Lucea et al., 2012). The most effective agent for decel-
lularization of a specific tissue or organ depends on many factors,
including the tissue size, cellularity, density, lipid content, and
thickness. For thin tissue laminae, such as the urinary bladder,
intestine, pericardium, and amnion, decellularization techniques
include freezing and thawing, mechanical removal of muscle or
submucosa, and brief treatment with detergents or acid (Crapo
et al., 2011). For thick tissue laminae, such as dermis, a more
extensive biochemical exposure and a longer incubation time are
required. Adipose tissue, brain, and pancreas typically require the
addition of lipid solvents (Crapo et al., 2011). For whole organ
decellularization, the action of detergent and biological agents is
enhanced by antegrade or retrograde perfusion, as demonstrated
for the heart (Ott et al., 2008; Wainwright et al., 2010), lung,
liver, and other organs (Petersen et al., 2010; Price et al., 2010;
Shupe et al., 2010; Bonvillain et al., 2013; Tsuchiya et al., 2014),
or even by agitation in the decellularization solution, as is done
for the majority of tissues (Crapo et al., 2011; Perniconi et al.,
2011). As far as skeletal muscle tissue decellularization is con-
cerned two of the most recent methods are very different. Some
authors described a method requiring several days for tibialis
anterior murine muscle (TA), based on treatment with latrun-
culin B that disrupts actin, osmotic shock for cell lysis, and ionic
salt solution for depolymerizing myosin. The resulting bioscaffold
is completely decellularized, but preserves the amount of collagen
and glycosaminoglycans (GAGs) required, the overall architecture
of the native ECM, and the mechanical integrity (Gillies et al.,
2011). By applying the same protocol, Fishman et al. (2013) also
achieved the decellularization of rabbit cricoarytenoid dorsalis
muscle (CAD). The second method (Perniconi et al., 2011) is
based on a 1% SDS detergent solution and requires only 48 h to
obtain a murine TA scaffold. This method resulted in the decel-
lularization of skeletal muscle, while preserving the biochemical
features (such as collagen, laminin, and fibronectin) and 3D-
architecture of the native ECM. Moreover, when implanted to
replace the whole host homologous muscle in vivo, this bioscaf-
fold represented a pro-myogenic environment (Perniconi et al.,
2011). Previous studies that have addressed skeletal muscle tis-
sue engineering using a native-ECM approach were based on long
and complex decellularization processes. One such example is the
decellularization of rat abdominal muscles achieved by means
of a protocol based on osmotic shock, 4% sodium deoxycholate
and DNase-I, which required more than 3 days (Conconi et al.,
2005). The resulting scaffold supported myoblast growth and dif-
ferentiation in vitro. When the decellularized muscle seeded with
myoblasts was implanted between the obliquus externus abdominis
and the obliquus internus abdominis, neovascularization and the
formation of new myofibers occurred within 2 months (Conconi
et al., 2005). Merritt et al. decellularized a rat gastrocnemius

(GAS) by means of a protocol based on osmotic shock and deter-
gent solutions that required several days (Merritt et al., 2010b).
The resulting decellularized GAS was used as a patch to repair a
muscle defect: the graft did not elicit an immune response and
was capable of supporting the growth of myofibers (between 28
and 42 days after transplantation) and blood vessels (between 7
and 28 days after transplantation). More recently, Fishman et al.
(2013) decellularized rat TA by cycles of freeze-thaw and distilled
water for 72 h, followed by enzymatic treatment (trypsin) and
Triton X-100 for a further 4 days. The acellular native ECM was
transplanted to repair a volumetric muscle injury. Two weeks after
transplantation, the graft displayed extensive infiltration of CD68
positive cells, few regenerating myofibers in the areas surround-
ing the injured muscle and vascularization (Wu et al., 2012). To
sum up, the afore-mentioned studies demonstrate (i) that native
ECM-derived scaffold from various tissues can be obtained by
means of different protocols that may require several days (Gilbert
et al., 2006), and (ii) that this scaffold supports growth and sur-
vival of myogenic cells both in vitro and in vivo, and that it
represents a pro-myogenic environment.

The importance of decellularization methods and their effect
upon the resulting ECM structure and composition is currently
highly relevant, as is demonstrated by the fact that at least two
other reviews, besides ours, are being published in 2014. Since
the advantages and drawbacks of several decellularization meth-
ods have been systematically reviewed (Badylak, 2014; Brown and
Badylak, 2014; Faulk et al., 2014a,b), we recommend that they
be referred to for details on these issues. We believe that each of
these studies unveils important information on the native-ECM
derived scaffold used to reconstruct skeletal muscle tissue: on its
ability to support cell viability and growth in vitro, to provide a
pro-myogenic environment in vivo, to elicit an immune response
polarized toward an M2 macrophage phenotype and to preserve
its molecular and structural features, as well as on the time
and mode of decellularization and possible storage conditions.
However, none provides details leading to the full reconstruction
of a whole muscle. An overview of the literature on the topic is
shown in Table 1.

CHARACTERIZATION OF ECM BIOSCAFFOLDS
FROM XENOGENIC MATRIXES TO SKELETAL MUSCLE
The biomechanical and biochemical properties of ECM scaf-
folds derived from porcine small intestinal submucosa (SIS) and
porcine urinary bladder mucosa (UB) have been well character-
ized (Derwin et al., 2006; Freytes et al., 2008a,b). Porcine SIS
ranges in thickness from 0.05 to 0.22 mm and has a variable
porous microstructure, though it is always sufficient for oxy-
gen diffusion to sustain cell proliferation and viability and is
biodegradable in 3 months. It is primarily composed of type I
collagen fibers, but also contains a minor amount of elastin and
collagen types III, IV, and VI. Multi-domain glycoproteins such as
fibronectin and laminin, which mediate cell adhesion to the extra-
cellular matrix, have also been identified in SIS. Moreover, SIS
contains glycosaminoglycans and proteoglycans that provide cell
attachment and growth factor binding sites, sequesters matrix-
degrading enzymes and enhances cellular infiltration into injured
tissue. It has also been documented that SIS releases growth
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Table 1 | Overview of the literature on ECM-based bioscaffolds.

Who, When Where Source Target

Agrawal et al.,
2009

University of Pittsburgh, Pennsylvania,
USA

Porcine urinary bladder matrix Canine oesophagus; rat abdominal
muscular wall

Alberti and Xu,
2013

Tufts University, Medford, USA Bovine achilles tendon Potential role for nerve guidance
conduits and blood vessel tissue
engineering

Borschel et al.,
2004

University of Michigan, Ann Arbor, USA Murine skeletal muscles C2C12 culture in vitro

Chen and Walters,
2013

United States Army Institute of Surgical
Research, Extremity Trauma and
Regenerative Medicine Research
Program, San Antonio, TX, USA, and
Wake Forest Institute for Regenerative
Medicine, Winston-Salem, NC, USA

Rat muscle-derived extracellular matrix Reconstruction of VML in rat latissimus
dorsi

Carmignac and
Durbeej, 2012

Lund University, Lund, Sweden ECM-cell membrane-cytoskeleton
interactions

Treatment of muscle disorders

Conconi et al.,
2005

University of Padova, Italy Rat skeletal muscle seeded with
myoblasts

Muscle fibers in syngeneic host

Corona et al., 2013 US Army Institute of Surgical research,
Fort Sam, Houston, USA

Rat skeletal muscle Enhanced mechanical stability in VML

Dai and Xu, 2011 Tufts University, Medford, USA Adult cow tendons Future application in other natural
materials, e.g., muscles

Gillies et al., 2011 University of California San Diego, La
Jolla, USA

Murine skeletal muscles C2C12 culture in vitro

Mase et al., 2010 Institute of Surgical Research, Houston,
USA

Porcine intestinal submucosa Human right thigh medialis muscle

Merritt et al.,
2010a

University of Texas, Austin, USA Rat muscle-derived ECM seeded with
bone-marrow-derived mesenchymal stem
cells

Rat lateral gastrocnemius skeletal
myofibers

Milner and
Cameron, 2013

University of Illinois, Urbana, USA Skeletal muscle Amphibian limbs

Perniconi et al.,
2011

Sapienza University of Rome, Rome, Italy Murine skeletal muscles Muscle fibers in syngeneic host

Sicari et al., 2012 University of Pittsburgh, Pennsylvania,
USA

Porcine intestinal submucosa VML in murine quadriceps

Stern et al., 2009 Wake Forest University School of
Medicine, Winston-Salem, USA

Hamster skeletal muscles Coating for C2C12 colture in vitro

Turner et al., 2010 University of Pittsburgh, Pennsylvania,
USA

Xenogeneic ECM Dog distal gastrocnemius
musculotendinous junction

Turner et al., 2012 University of Pittsburgh, Pennsylvania,
USA

Dog small intestinal submucosa Dog quadriceps skeletal muscle

Valentin et al.,
2010

University of Pittsburgh, Pennsylvania,
USA

Carbodiimide-crosslinked porcine SIS;
autologous tissue; polypropylene mesh

Rodent abdominal wall

Vindigni et al.,
2004

University of Padua, Italy Rat rectus abdominis seeded with
satellite cells

Reconstruction of homologous muscle

Wolf et al., 2012 University of Pittsburgh, Pennsylvania,
USA

Dog skeletal muscle; porcine small
intestine submucosa

Rat abdominal muscular wall

Wu et al., 2012 University of Texas, San Antonio, Texas,
USA

Rat tibialis anterior muscle Rat tibialis anterior muscle

List of works dealing with the production, characterization, and use of ECM-derived bioscaffolds obtained by means of tissue/organ decellularization and proposed

for tissue engineering applications.

factors, including FGF-2, TGF-β1, and VEGF (Voytik-Harbin
et al., 1997; Badylak et al., 1998; Mase et al., 2010). In a body wall
repair, a canine model SIS has been shown to elicit the formation
of new ECM associated with skeletal muscle and adipose tissue

regeneration (Badylak et al., 2002). Thus, SIS is an ideal remode-
lable biomaterial for muscle tissue engineering, thanks to its size,
thin membranous configuration, relative uniformity, and avail-
ability. SIS has so far been used to repair inguinal hernia and large
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abdominal wall defects, the urinary tract, achilles tendon, muscu-
lotendinous tissues and dura mater, and as vascular graft material
and for dermal wounds (Prevel et al., 1995; Cobb et al., 1996,
1999; Dejardin et al., 1999, 2001; Kropp, 1999; Shalhav et al.,
1999; Portis et al., 2000; Badylak et al., 2002).

ECM scaffold materials derived from porcine UB have been
extensively studied recently. Two ECM bioscaffolds can be derived
from adjacent layers of porcine UB: urinary bladder matrix
and urinary bladder sub mucosa, derived from tunica mucosa
including the basement membrane and from tunica sub mucosa,
respectively. The advances made in ECM scaffold technology
have led to the development, manufacturing, and commercial-
ization of a naturally-occurring porcine urinary bladder matrix
(Lecheminant and Field, 2012; Kruper et al., 2013; Rommer et al.,
2013). It has been demonstrated that it allows the retention of
multiple growth factors including VEGF, transforming growth
factor beta (TGFβ), platelet derived growth factor (PDGF), bone
morphogenetic protein 4 (BMP4), and basic fibroblast growth
factor (BFGF), which contribute to regeneration and healing.
Recent studies have demonstrated the antimicrobial properties of
UB-ECM to both S. aureus and E. coli (Brennan et al., 2006) as
well as a pre-dominance of macrophage phenotype 2 in the early
post-operative period, which has been shown to reduce scar for-
mation and enhance healthy functional tissue regeneration with
increased chemotactic activity (Turner and Badylak, 2013).

FROM SKELETAL MUSCLE TO SKELETAL MUSCLE
In spite of the extensive characterization of SIS and UB, as yet
very little information has been provided on ECM derived from
skeletal muscle tissue. The need for a bioscaffold that preserves
the native 3D-architecture of the ECM is particularly evident
for skeletal muscle tissue engineering applications, in which the
correct parallel alignment of myofibers and the maintenance
of mechanical properties are essential for tissue functionality.
Indeed, the only extensive report demonstrating that decellular-
ized skeletal muscle preserved its biochemical features, such as
collagen, laminin, and fibronectin, as well as the 3D-architecture
of the native tissue, is the one by Perniconi et al. (2011).
Their study provides evidence indicating that such a muscle
ECM-derived scaffold provides the correct support for myofiber
development and the appropriate architecture for muscle fiber
formation. In particular, when this bioscaffold was orthotopically
grafted in syngeneic animals, the activation of myogenic cells and
the formation of new myofibers in areas within the bioscaffold
was observed. However, 4 weeks after transplantation, the grafts
had almost completely degraded, probably owing to digestion
by neutrophils and macrophages. In this regard, immunosup-
pressors such as Cyclosporin A have been reported to enhance
the myogenic process and delay graft digestion (Perniconi et al.,
2011). The decellularized bioscaffold, together with the removal
of the host muscle, is likely to have elicited an inflamma-
tory response dominated by neutrophils and macrophages. The
inflammatory process peaked 2 weeks after transplantation and
then declined. This process was, however, accompanied by the
presence of stem cells expressing PW1, a global stemness marker
described by Sassoon and co-workers (Besson et al., 2011) and
by the formation of new myofibers within the bioscaffold from

1 to 3 weeks after transplantation. In the 4th week, the graft
started undergoing biodegradation (Perniconi et al., 2011). This
study also demonstrated that the decellularized scaffold can be
stored for several weeks in sterile conditions at either +4◦C in
PBS or +36◦C in DMEM in culture conditions, though laminin
preservation in the latter case was worse. The possibility of stor-
ing the acellular scaffold is highly relevant to the use of such
devices in future clinical applications. Other recent skeletal mus-
cle acellular scaffold preparations (described in the decellulariza-
tion section) from TA and CAD have been shown to retain the
overall architecture of native ECM. In particular, Gillies et al.
(2011) demonstrated that TA-derived acellular scaffolds not only
maintained their collagen and glycosaminoglycan (GAG) lev-
els, the overall architecture of the native ECM, their mechanical
integrity, but also supported murine myogenic cells C2C12 sur-
vival in vitro. By contrast, decellularized CAD implanted in the
rat abdominal wall modulated the immune response, polariz-
ing macrophages toward the M2 phenotype and inducing T-cell
hypo-responsiveness (Fishman et al., 2013).

STATE OF THE ART OF ECM BIOSCAFFOLD GRAFTING
Although the use of the decellularized ECM for skeletal muscle
tissue engineering is a recent innovation, the results of studies that
have been published to date on this topic are promising. Indeed,
the majority of data have demonstrated that the ECM can sup-
port muscle and blood vessel regeneration, though recovery of
function is not complete (Merritt et al., 2010b).

Animal models, consisting mainly of rats, mice, rabbits, and
dogs subjected to experimentally induced skeletal muscle injury,
have been used as recipients of xenogeneic ECM scaffold grafts to
test surgical treatment for volumetric muscle loss. To our knowl-
edge, such treatment has been applied to humans a very limited
number of times. One such case was described in a case report
by Mase et al., who used porcine SIS to restore multiple injuries
in the quadriceps muscle in a young soldier (Mase et al., 2010).
Implantation of the SIS supported by intensive physical therapy
improved the pick torque, total work, and average power of the
grafted limb 16 weeks post-operatively (Mase et al., 2010). A
very recent study demonstrated the remodeling characteristics of
xenogeneic porcine SIS ECM bioscaffolds when used to surgically
treat volumetric muscle loss in five male patients (Badylak et al.,
2012; Sicari et al., 2014). That study showed that ECM bioscaffold
implantation was associated with perivascular stem cell mobi-
lization and accumulation within the site of injury and de novo
formation of skeletal muscle cells. Overall, the studies in the lit-
erature demonstrate that ECM bioscaffold implantation recruits
stem cells within the bioscaffold and promotes differentiation and
de novo formation of skeletal muscle cells. Although the mecha-
nism of action underlying stem and progenitor cell recruitment
is not yet fully understood, it might be ascribed to extracellu-
lar matrix chemotactic cryptic peptide (Agrawal et al., 2011a,b;
Ribeiro et al., 2012) and the host’s immune response, which
induces the macrophage 2 phenotype (Brown et al., 2012; Turner
and Badylak, 2013). This is in agreement with our observation
that macrophages largely account for the inflammatory invasion
of muscle ECM-derived bioscaffolds, and are consequently likely
to play a major role in muscle graft integration (Perniconi et al.,
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2011). The ability of bioscaffolds to alter the macrophage pheno-
type response, coupled with the release of latent growth factors
and chemotactic degradation products, means these materials
lend themselves to being used as scaffolds to promote skele-
tal muscle reconstruction following trauma and volumetric loss
(Mase et al., 2010; Turner and Badylak, 2013). The clinical results
of these applications may vary for a wide range of reasons that
include not only the characteristics of the source tissue, methods,
and efficacy of tissue decellularization, and methods of process-
ing/manufacturing, but also the response of the host to these
implanted biological scaffold materials, which may hamper the
success of the implant. Although several studies on the remod-
eling characteristics of ECM scaffolds are currently in progress,
to the best of our knowledge a systematic temporal evaluation
of the structural and functional muscle remodeling following
the implantation of acellular scaffolds is still lacking in the
literature.

PROBLEMS AND CHALLENGES
The use of ECM biologic scaffolds for skeletal muscle tissue recon-
struction is attracting a high degree of interest in regenerative
medicine. Recent advances have opened new perspectives for
the replacement of skeletal muscle tissue in clinical applications,
such as traumatic injury and pathological conditions. However,
these highly promising applications in the field of regenerative
medicine require a greater understanding of the biochemical, cel-
lular, and mechanical mechanisms that stimulate the constructive
remodeling response. Although ECM bioscaffolds implanted in
an injury site have been shown to promote the migration and
proliferation of progenitor cells, the triggers that cause these cells
to differentiate into site appropriate tissue are still unknown.
Moreover, a better characterization of ECM bioscaffolds derived
from different tissues may help to select ECM bioscaffolds that
are most suited to constructive remodeling in different sites.
Improved methods of decellularization and ECM bioscaffold
preparation may improve the retention and release of growth fac-
tors, and consequently increase the success of implantation. Last
but not least, improved quality control should be aimed at the
optimization of ECM scaffold decellularization and implantation
so as to enhance the likelihood of survival and reduce that of
rejection (Koch et al., 2012). For example, image cytometry tech-
nologies of tissues (also referred to as tissue cytometry Heindl
et al., 2013) could easily be adapted to quantify the remaining
cells or cell fragments on scaffolds after staining with appropri-
ate fluorescent markers for DNA, RNA, organelles, specific cells,
etc. By adopting suitable approaches, image cytometry may also
be adopted for acellular or hypocellurar tissues (Fueldner et al.,
2012). Moreover, like all cytometry techniques, tissue cytom-
etry may be standardized to optimize reproducibility (Mittag
and Tarnok, 2009), and since tissue cytometry can be multi-
plexed by using different colors for different targets (Gerner et al.,
2012), minimal specimen amounts are needed. Non-invasive
label free detection methods may also be applied (Nallala et al.,
2013), implying that this technique may prove useful for pre-
implantation quality assessment. Last, despite progresses made in
the research and clinical application of skeletal muscle tissue engi-
neering in recent decades, further efforts aimed at whole muscle

engineering are required. Indeed, the use of generic ECM scaf-
folds for a wide range of applications are unlikely to be sufficient
for complex organs, and ECM derived from homologous organs
may be required to support site specific differentiation of appro-
priate cells. Investigations on whole organ scaffolds are needed to
shed further light on this issue in the future.
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