
RESEARCH ARTICLE

Quantitative cell-based model predicts

mechanical stress response of growing tumor

spheroids over various growth conditions and

cell lines

Paul Van LiedekerkeID
1,2*, Johannes Neitsch3, Tim Johann2,3, Kevin Alessandri4,

Pierre NassoyID
4, Dirk DrasdoID

1,2,3*

1 INRIA de Paris and Sorbonne Universités UPMC Univ paris 6, LJLL Team Mamba, France, 2 IfADo -

Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany, 3 IZBI,

University of Leipzig, Germany, 4 Institut d’Optique Graduate School, Talence, France

* Paul.Van_Liedekerke@inria.fr (PVL); Dirk.Drasdo@inria.fr (DD)

Abstract

Model simulations indicate that the response of growing cell populations on mechanical

stress follows the same functional relationship and is predictable over different cell lines and

growth conditions despite experimental response curves look largely different. We develop

a hybrid model strategy in which cells are represented by coarse-grained individual units cal-

ibrated with a high resolution cell model and parameterized by measurable biophysical and

cell-biological parameters. Cell cycle progression in our model is controlled by volumetric

strain, the latter being derived from a bio-mechanical relation between applied pressure and

cell compressibility. After parameter calibration from experiments with mouse colon carci-

noma cells growing against the resistance of an elastic alginate capsule, the model ade-

quately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental

conditions where the mechanical stress is generated by osmosis via a high molecular weight

dextran solution, and iii) for other cell types with different growth kinetics from the growth

kinetics in absence of external stress. Our model simulation results suggest a generic, even

quantitatively same, growth response of cell populations upon externally applied mechanical

stress, as it can be quantitatively predicted using the same growth progression function.

Author summary

The effect of mechanical resistance on the growth of tumor cells remains today largely

unquantified. We studied data from two different experimental setups that monitor the

growth of tumor cells under mechanical compression. The existing data in the first experi-

ment examined growing CT26 cells in an elastic permeable capsule. In the second experi-

ment, growth of tumor cells under osmotic stress of the same cell line as well as other cell

lines were studied. We have developed an agent-based model with measurable biophysical

and cell-biological parameters that can simulate both experiments. Cell cycle progression
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in our model is a Hill-type function of cell volumetric strain, derived from a bio-mechani-

cal relation between applied pressure and cell compressibility. After calibration of the

model parameters within the data of the first experiment, we are able predict the growth

rates in the second experiment. We show that that the growth response of cell populations

upon externally applied mechanical stress in the two different experiments and over dif-

ferent cell lines can be predicted using the same growth progression function once the

growth kinetics of the cell lines in abscence of mechanical stress is known.

Introduction

Mechanotransduction is the mechanism by which cells transform an external mechanical

stimulus into internal signals. It emerges in many cellular processes, such as embryonic devel-

opment and tumor growth [1]. Cell growth in a confined environment such as provided by the

stroma and surrounding tissues increases cell density and affects the balance between cell pro-

liferation and death in tissue homeostasis [2, 3]. Tumor spheroids have long been considered

as appropriate in vitro models for tumors [4]. While the dynamics of freely growing spheroids

has been extensively studied both experimentally [5] and numerically (e.g. [6, 7, 18]), more

recent experiments have also addressed the growth of spheroids under mechanical stress.

Helmlinger et al. (1997) and later Cheng et al. (2009) and Mills et al. (2014) [8–10] experi-

mentally investigated the growth of spheroids embedded in agarose gel pads at varying agarose

concentration as a tunable parameter for the stiffness of the surrounding medium. Other

approaches such as the application of an osmotic pressure determined by a dextran polymer

solution have also been developed to investigate the impact of external pressure on spheroid

growth [11]. In all cases mechanical stress was reported to slow down or inhibit spheroid

growth. Delarue et al. [12] suggested that growth stagnation is related to a volume decrease of

the cells. However, a quantitative relation between pressure and cell fate is not reached yet.

The works of Helmlinger et al. [8] and their follow-ups have inspired a number of theoretical

papers aiming at explaining the observations, either based on continuum approaches consider-

ing locally averaged variables (e.g. for density and momentum, for overview see [13]) [3, 14–

17], or by agent-based models (ABMs) representing each individual cell [19, 20] belonging to

the class of models, which are extended and refined in the presented work. For example, the

growth kinetics of multicellular spheroids (MCS) embedded in agarose gel as observed by

Helmlinger et al. [8] could be largely reproduced, if cell cycle progression was assumed to be

inhibited either above a certain threshold pressure or below a certain threshold distance

between the cell centers, whereby growth inhibition occurred at different spheroid sizes for

different densities of extracellular material [19]. However, the model developed in that refer-

ence has no precise notion of cell shape, hence does not permit definition of cell volume, thus

pressure and compression cannot be physically correctly related [21].

Here, we first establish a computational model to quantitatively explain the growth kinetics

and patterns found for CT26 (mouse colon carcinoma cell line) multi-cellular spheroids con-

strained by a spherical elastic capsule, partially based on data previously published [26] and

partially based on new data introduced below. This novel experimental technique, called the

“cellular capsule technology” [26] allows to measure the average pressure exerted by the cell

aggregate onto the calibrated capsule by monitoring the radial expansion of the shell once con-

fluence is reached. Pressure can be recorded over periods as long as a week and the histological

data collected and analyzed on fixed and sliced spheroids can provide snapshots of the spatial

multicellular pattern. We refer to this experimental technique as “Experiment I”. The

Modeling permits quantitative prediction of stress response in spheroids
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thickness, and thus the stiffness of the capsule, was varied to mimic different mechanical resis-

tance conditions.

Delarue et al. (2014) [12] investigated the effect of mechanical stress on MCS growth using

the same cell line in a different experimental setting. We exploit these results to challenge our

model and determine whether the same computational model designed to match experiment I

is capable to quantitatively explain also this experiment (referred to as “experiment II”). In

experiment II, mechanical compression was imposed using the osmotic effects induced by a

dextran solution. The main difference between those two experiments is that whereas the pres-

sure gradually increases with increasing deformation of the elastic capsule in experiment I, in

experiment II a constant stress is applied due to osmotic forces in the absence of any obstruct-

ing tissue (see Fig 1A).

In this paper, we aim to decipher and quantify certain mechanisms of spheroid growth

altered by mechanical stress. At this stage, we establish a robust computational approach that

can be applied to various systems (cell lines and experimental procedures) and that allows to

recapitulate the growth dynamics and the observed cellular patterns. We will show that this

can be reached with a minimal number of hypotheses without having to explicitly integrate

specific molecular pathways. Gaining insight in the molecular mechanisms would require

additional challenging experiments in which the pathways are selectively inhibited or

enhanced in a three-dimensional environment, and would add further parameters to the

model. To the best of our knowledge, a specific mechanotransduction molecular pathway has

been highlighted once, demonstrating the impact of cell volume change on the expression of

the proliferation inhibitor p27Kip1 [12].

As modeling technique we here developed an agent-based model. Simulations with ABMs

provide a computer experiment representing an idealized version of the true wet-lab experi-

ment [77]. ABMs naturally permit accounting for cell to cell variability and inhomogeneities

on small spatial scales as they represent each cell individually. Center-Based Models (CBM)

are a prominent representative in the class of ABMs in which forces between cells are calcu-

lated as forces between their centers. Center-based models for multicellular systems were

derived from conceptual anologies to collodial particle dynamics by re-interpretation of

parameters and addition of growth and division processes [53, 75]. The model developed here

is fully parameterized in terms of physical parameters, which makes each component possible

to validate. However, it circumvents difficulties that standard center-based models have at

large compression (see [21]) establishing a hybrid modeling strategy to compute the mechani-

cal interaction forces by so-called three dimensional (3D) Deformable Cell Models (DCMs)

[70, 79]. A DCM displays cell shape explicitly at the expense of high computational cost (see

Fig 2). In our hybrid strategy the parameters of the CBM that considers the cell shape only in a

statistical, “coarse grained” sense thereby permitting simulations of large cell population sizes,

are pre-calibrated from a finer scale DCM. This strategy permits to combine the advantages of

the DCM with the short simulation time of the CBM. Both CBM and DCM are parameterized

by measurable quantities to identify the possible parameter range of each model parameter

and avoid non-physiological parameter choices.

We studied the series of experimental settings in the works [26] and [12] as both utilize a

common cell line, and exert stress on growing MCS of that cell line in different experimental

settings. The model is then further tested with experiments on other cell lines as provided in

the second work.

To unravel the dynamics of MCS subject to compression, our modeling strategy is to postu-

late and implement hypotheses on cell growth, quiescence and death, and iteratively adapt or

extend them in case the model simulations are falsified by comparison with the experimental

data. Pursuing a similar strategy enabled us to obtain predictions of subsequently validated

Modeling permits quantitative prediction of stress response in spheroids
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Fig 1. Summary of key experimental and simulation results. (A)Two experiments setups for growing spheroids considered in this study. In

experiment I, the spheroid is in mechanical contact with a capsule, and the mechanical resistance is determined by the wall thickness H. In experiment

II, the spheroid is immersed in a dextran polymer solution, and the mechanical resistance originates from the osmotic pressure related to the dextran

concentration. (B) Radial growth curves data of the spheroids in units of R0 (= 100 μm), for experiment I and II and respective model runs. The blue full

circles are the free growth data for CT26, from [26]. The thin blue line indicates theoretical pure exponential growth with doubling time of 17h. The data

Modeling permits quantitative prediction of stress response in spheroids
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mechanisms in liver regeneration [27, 28]. Based upon analysis of the relation between pres-

sure, cell density and cell compressibility in the two different experiments, our findings suggest

that contact inhibition can be regarded as a robust continuous process imposed by a reduction

of cell volume as a consequence of increasing pressure and individual cell compressibility (see

Fig 3). In addition, the high-resolution model shows that potential effects of micro-mechanics

at the interface with the capsule may depend on the mechanical properties of the cells. For the

sake of clarity, we below start to first present the minimal model that was able to explain the

data, before discussing in which ways simpler models with other hypotheses failed.

Results

Experimental observations

Experiment I: Following microfluidics-assisted encapsulation of CT26 cells into alginate cap-

sules, the growing aggregates of cells were monitored by phase contrast microscopy (see [26]

for details). After the tumor cells reached the inner border of the elastic alginate capsule corre-

sponding to a radius of about 100 μm (t = 0d in Fig 1B), they were observed to further induce a

dilatation of the capsule, which is an indicator of the exerted pressure. The capsule expansion

was measured from the point of confluence over several days, while histological data of the

spheroids were collected at the stage of confluence and at 48h past confluence. Capsules have

been designed to generate shells with two different thicknesses. The thin ones (H/R0� 0.08;

H = 8μm) are the softer while the thick ones (H/R0� 0.25;H = 30μm) mimic a larger mechani-

cal resistance against growth. Besides the data extracted from [26], we have also exploited and

analyzed unpublished data corresponding to new sets of experiments in order to critically test

the reliability of the method (see Fig 4). We extract four main observations from these

experiments.

(EI.OI) In the absence of a capsule, an initial exponential growth stage was observed with

doubling time Tcyc = 17h [26]. The growth kinetics however starts to deviate from exponential

growth for spheroid size R� 175 μm, (see Fig 1B).

(EI.OII) In the presence of a capsule, the exponential growth is maintained until conflu-

ence, i.e. R = R0� 100 μm, which shows that the capsule is permeable to nutrients and allows

normal growth. Once confluence is passed, the time evolution of the capsule radius exhibits

two regimes: i) an initial “fast” growth stage T1 (t< 1day), crossing over to ii) a “slow” quasi-

linear residual growth stage T2 (t> 1 day) that at least persists as long as the capsules are moni-

tored, i.e. up to one week. The transition happens roughly at a pressure of * 1.5 kPa, see Fig

4C. The observed long-time growth velocities were* 2 μm/day for the thin capsules (Fig 4A)

and 0.7 μm/d for the thick capsules (see Fig 5).

(EI.OIII) The nuclei density, obtained from cryosections, increases from * 1 nucleus / 100

μm2 before confinement, to roughly 2 nuclei / 100 μm2 after confluence, with a relatively

higher number near the center of the spheroid (1.2 times more compared to the outer regions),

and a local increase at the border of the capsule. The distribution and shape of cell nuclei

starts deviating from an exponential after 2 days. The other lines are simulation results. The black dashed line indicates the optimal parameter set for the

stress response in experiment I, performed with the final model I. The full black line indicates the same model run for free growth in Exp.I. After re-

calibration of one model parameter in model I for the Exp.II conditions in absence of dextran (full red line), the model (referred to as model II to stress

the change of the parameter) predicts the stress response in experiment II (red dashed line). (C) Simulation snapshots of both experiments. The cells are

colored according to their volume (cells at the border are larger than in the interior). (D-G) Model simulations for Exp.II for the cell lines BC52, AB6,

FHI and HT29, respectively. Full red lines represent the same initial calibration procedure, while red dashed lines represent the predicted stress

conditions. The stress conditions are p = 5 kPa for AB6, FHI and BC52, and p = 10 kPa for HT29 (see Validation of model for experiment II: same cell

lines as for experiment I).

https://doi.org/10.1371/journal.pcbi.1006273.g001
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Fig 2. Model calibration overview. Simulations were performed with a center-based model (CBM). In step 1, the contact

forces in CBM were calibrated from DCM simulations with parameters (Ecor, hcor, K), yielding a variable effective contact

stiffness ~E of the CBM for each individual cell depending on the compression level. In step 2 the parameters fPC¼CT26g of the

CBM for cell line CT26 were determined. Comparing simulations of the CBM with stress-free growth of multicellular CT26

spheroids in experiment I determines most parameters of fPC¼CT26g (Fig 1B, full black line). step 3: those cell-line parameters

that are affected by the capsule, are specified by comparison with the data from experiment I in presence of the thin capsule.

The set of experiment-specific parameters fPExp¼1g (Young modulus and thickness of the capsule) are given by the

experimental setting. For the so specified complete set of parameters the simulation reproduces the experimental data I for the

Modeling permits quantitative prediction of stress response in spheroids
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thin capsule (Fig 1B, dashed black line), and, after replacement of the capsule thickness, predicts the experimental data for the

thick capsule (see Fig 5B). For CT26 cells growing in experiment setting II the cell parameters remain unchanged fPC¼CT26g.

The deviation of the growth dynamics of stress-free growth from an exponential in experiment II (Fig 1B, full red line) is

taken into account by an experiment-specific parameter, namely the proliferative rim. Without any further fit parameter, the

model then predicts the correct growth dynamics subject to dextran-mediated stress (Fig 1B, dashed red line). In order to

predict the stress-affected growth kinetics of the cell lines j = {CT26, AB6,HT29, BC52, FHI}, their cell cycle duration is

modified to capture the stress-free growth analogously to that of CT26 cells in experimental setting II (Fig 1D–1G, full red

lines). After determining the parameters, the growth kinetics of these cell lines subject to stress could be predicted (Fig 1D–

1G, dashed red lines).

https://doi.org/10.1371/journal.pcbi.1006273.g002

Fig 3. (A) Plot of Hill-type growth rate function as function of the volumetric strain �V = �V(p), for n = 1, 2 and a large

value of n, and for a constant growth scenario (�Vtr !1 in Eq (2)). Plot of a linear growth rate function with �Vtr such

that α/α0 = 1/2. Below the pink zone indicated by αqui cells become quiescent and growth stalls. In case of a sharp

threshold obtained by the choice of n!1, any cell with �V < �Vtr would proliferate with maximal rate α = α0, while

any cell with �V � �Vtr would be quiescent. For finite n, there are also proliferating cells for α< α0. The points on the

growth rate curves below which the cells go into quiescence are indicated by an (�). In this work we have found that the

parameter set n = 1, �Vtr ¼ 0:35 and αqui = 0.3 results in good fits for all cell lines. (B) simulation snapshots of a CT26

spheroid during the initial free growth, just before confinement (coloring according to cell radius), and at 48h of

confinement in capsule (coloring here indicates necrotic cells (dark) and viable cells (white)).

https://doi.org/10.1371/journal.pcbi.1006273.g003
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reported in [26] suggests that cells near the capsule border are deformed with a flatened shape,

while those in the interior look compact shaped.

(EI.OIV) Most of the cells in the core of the spheroid are necrotic after 48h of confinement,

while the cells located in a peripheral viable rim of roughly two cell layers thickness (λI� 20

Fig 4. (A) Time evolution of the radius of the thin capsule for the experimental data and the simulations using Model I showing the effect of a

parameter variation for n with αqui = 0.33, and n = 1 with αqui = 0.5. (B) Simulation and experimental values of the radial cell density in the spheroid at

T = 0h, and T = 48h for the optimal parameters. (C) Pressure curves indicating the pressure at the transition point from free spheroid growth to

spheroid growth against the thin capsule in ref. [26] and the simulation.

https://doi.org/10.1371/journal.pcbi.1006273.g004
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Fig 5. (top) (A) Time evolution of the thick capsule radius (H = 30 μm), shown for the experimental data and the simulation with Model I, indicating the

effect of the parameter n and �Vtr . As the number of data sets on the thick capsule did not suffice to estimate the experimental error, the errors on the

thick capsule data (gray zone) were estimated from the spreading on the thin capsule data, by determining the minimum—maximum intervals for the

thin capsule data. These were then rescaled by the ratio of thin—thick capsule dilatations and shifted on to the thick capsule curve. (B) Global view of

experiment I and II and respective model runs, including a model prediction for a capsule wall thicknessH = 60 μm. (C) Simulated evolution of the

average pressure in a capsule withH = 30 μm andH = 60 μm.

https://doi.org/10.1371/journal.pcbi.1006273.g005
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μm), show viability and proliferative activity during the whole time course of the experiment,

including period T2.

(EI.OV) Fibronectin staining indicates there is ECM present during free growth; staining

after 48h indicates more ECM regions near the capsule border and a weak signal inside the

spheroid.

Experiment II: in the work of Delarue et al. (2014) [12], CT26 spheroids (initial radius* 100

μm) were grown in a dextran polymer solution. To recover osmotic balance, water expulsion

out of the spheroid generates osmotic forces exerted to the outer cells that are transferred as

compressive stresses to the interior (bulk) cells. The concentration of dextran regulates the

applied pressure.

(EII.OI) The growth speed at p = 5 kPa is significantly lower than in control spheroids

where no pressure is exerted.

(EII.OII) The spheroid free growth data does not show an initial exponential phase found

in (EI.OI) (Fig 1B). This surprising discrepancy might result from the different culture condi-

tions between both experiments. In experiment I, the medium has repeatedly been refreshed

[26], while in experiment II this has not been done so often (private communication), leading

to lower concentrations of nutrients and other molecular factors in experiment II. During the

whole course of osmotic stress application, an over-expression of the kinase inhibitor p27Kip1

together with an increased number of cells arrested in the G1 phase was observed, but no sig-

nificant change in apoptosis rates after 3 days was reported.

(EII.OIII) Delarue et al. (2014) also considered the stress response for other cell lines (AB6,

HT29, BC52, FHI) performing steps EII.OI and EII.OII for each cell line. These data will be

used to validate our model despite less information concerning cell size and cycling times is

available for these cell lines.

Hypotheses for growth and death of tumor cells

As a first step we proposed a number of hypotheses for the growth dynamics common to

experiments I and II.

(H.I) In both experiments a linear growth phase was observed after exposing the MCS to

external stress. The growth of the cell population that is not constrained by either mechanically-

induced growth inhibition, nutrient, oxygen or growth factor limitations is exponential [4]. We

assumed that deviation of growth from an exponential indicates restriction of proliferation to a

rim. This may have different reasons, for example necrosis that has been only reported for

experiment I (EI.OIV), or of cells being quiescent. Both necrosis and quiescence can result from

a lack of nutrients or other factors [6, 29], that may indirectly be promoted by pressure, e.g. in

case the compression of the cell layer squeezed between the capsule shell and the inner cell layers

leads to the formation of an obstructive barrier for some nutrients (as glucose) to the cells

located more deeply in the interior of the tumor. However, cell quiescence (or cell death) may

also be a direct consequence of mechanical pressure, e.g. if cells subject to compression cannot

advance in cell cycle for too long and then undergo apoptosis [6, 29]. We do not specify the ori-

gin of the rim here, we take it into account through the definition of a thickness λk (k = I, II is

the experiment index). In Exp. I, λI distinguishes the necrotic cells from viable ones. In Exp.II,

λII separates the quiescent cells from the ones that can still proliferate. Necrotic cells as observed

in experiment I can undergo lysis, in which they steadily lose a part of their fluid mass. The

decrease of mass is limited to about 70%–90% of the total initial mass of the cell [30, 31].

(H.II) Cell growth rate may be declined or inhibited by pressure [8]. The authors of a

recent study [12] hypothesized that the growth rate may be down-regulated if the cell volume is

reduced as a consequence of pressure. We here test the hypothesis that growth rate is dependent

Modeling permits quantitative prediction of stress response in spheroids
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on the volumetric strain (“true strain”, commonly used in case of large strains),

�V ¼ � log ðV=Vref Þ; ð1Þ

where V is the actual compressed volume and Vref is the volume of the cell in free suspension.

The volumetric strain can be related with the pressure by integration of the relation dp =

−Kd�V. K is the compression modulus of the cell and depends on the actual volume fraction of

water, and the elastic response of the cytoskeleton [42]. It may also be influenced by the perme-

ability of the plasma membrane for water, the presence of caveolae, and active cellular responses

[32, 78]. As such, the timescale at which K is measured is important. In our final model (pre-

sented here first) we further assume that the cell exhibits strain hardening effects, and hence K
depends on the volumetric compression of the cell (see Section Models).

In our simulations, we regarded K as the long timescale modulus of cell, as growth and divi-

sions are slow processes. We studied constant and a volume-dependent compression moduli

(the calculation of growth, volume and pressure for each cell in the model is explained in Sec-

tion Cell growth, mitosis, and lysis, Eq 8).

On the molecular level, volume reduction correlates with over-expression of p27Kip1 which

progressively decreases the proliferating potential. Other molecular players such as the tran-

scriptional regulators YAP/TAZ were also reported to be mechano-sensitive [33]. In the scope

of the present work, these reports suggest that quiescence, and perhaps also apoptosis, may be

controlled by either pressure or cell volume. Experimental studies [34–37] mainly measured

the growth rate of dry mass or size. These indicate that the growth rate α varies within the cell-

cycle, yet a unique relationship is difficult to infer.

We propose as general form for growth rate α a Hill-type formula defined as (1—Hill func-

tion):

a ¼ a0

�nVtr
�nV þ �

n
Vtr

; ð2Þ

where α0 is the growth rate of the unconstrained cell, �Vtr is a threshold value1, and n is an inte-

ger. The parameter �Vtr is the value where the cells have lost 50% of their initial growth rate.

Note that for �Vtr !1 we retrieve a constant growth scenario, whereas increasing n from 1 to

1modifies the curve from a smooth decrease to a sharp pressure threshold (see Fig 3A). The

use of a Hill-type function thus makes a variety of growth scenarios possible. Hill formulas

have been used in the past to simulate contact inhibition in epithelial tissue and tumors [17,

38, 39]. We discuss the generality of this approach in the Discussion section.

(H.III) It is generally accepted that cells that have passed the G1 checkpoint (also known as

restriction point) are committed to divide, else they go into quiescence (G0). In our model we

assume this checkpoint is situated after 1/4 of the total cell cycle time [40]. The transition crite-

rion to the quiescence state can be defined as the one at which the growth rate “stalls”, i.e. α/α0

< αqui (see Fig 3A).

“Sizer versus Timer”: According to hypothesis H.II growth rate depends on the compres-

sion of the cells, hence the volume doubling time can locally vary and is larger than for uncom-

pressed cells. Limiting cases would be that division occurred after volume doubling at a

variable time [6] (“sizer”), or after a pre-defined time (“timer”) often mentioned in develop-

mental biology [41]. We therefore also compared the effect of constant time vs. doubling of

volume criterion in cell division on the cell population behavior. Also mentioned in H.II, the

unconstrained growth rate α0 itself may vary during the cell cycle. To study the potential effect

of these variations we performed comparative runs considering constant growth rate as well as

exponential growth rate during the cell cycle (details in Cell growth, mitosis, and lysis).
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Establishment of the agent-based model and its parameterization

For the model development and parameterization we pursued a multi-step strategy sketched

in Fig 2 (see also Tables 1 and 2). The model parameters for the “model I” to mimic experi-

ment I, fPM1g, and “model II” to mimic experiment II, fPM2g, were step-wise calibrated from

experiments I and II, and in each case first for growth in absence of external mechanical stress

on the growing population, then in presence of stress. They can be categorized by separating

between cell line-specific parameters fPC¼jg, where j 2 {CT26, AB6,HT29, BC52, FHI}, deter-

mines the cell line, and experiment-specific parameters fPExp¼kg with k = I, II characterizing

the experimental setting. The simulations were performed with a center-based model (CBM).

As the model is parameterized by measurable physical and bio-kinetic parameters, parameter

ranges could readily be determined within narrow limits (Table 2, [27]).

First fPM1g was identified in three steps (1)-(3) (Table 1).

(1). As the “standard” CBMs are inaccurate in case of high compression [21], the cell-cell

interaction force in the CBM in this work was calibrated using computer simulations with

a deformable cell model (DCM), resulting in an effective stiffness ~E for every cell in the

CBM for every cell at high compression, that increases with increasing compression, see

Calibration of the CBM contact forces using DCM. ~E belongs to fPC¼CT26g of the CBM.

The DCM could not be directly used for the growth simulations, as it is computationally

too expensive to run simulations up to the experimentally observed cell population sizes

of* 104 cells. Next, the experimental information was taken into account (Fig 2).

(2). Comparing simulations of the CBM with the data from the stress-free growth control

experiment of multicellular CT26 spheroids (MCS) in experiment I permits determining

those parameters of fPC¼CT26g that were are unaffected by the presence of the elastic cap-

sule (Table 2), see Model setup and parameter determination.

(3). Adding a thin elastic capsule specifies the set of experimental parameters fPExp¼1g

(Young modulus, Poisson ratio and thickness of the capsule, etc.), and permits identifying

those cell line specific parameters that respond on the presence of the capsule.

In experiment I these are the parameters characterizing cell cycle entrance and cell growth

(2). Finally, model I is characterized by the conjunction of the cell-specific and the experi-

ment-specific parameter sets fPM1g ¼ fPC¼CT26g [ fPExp¼1g.

Replacing the thin by a thick capsule in the simulations by changing the experimentally

determined thickness parameter for the thin capsule in fPExp¼1g by that for the thick capsule

leads to a predicted simulated growth dynamics that matches well with the one experimental

data without any additional fit parameters (Fig 5B).

Experiment II has been performed with CT26, AB6, HT29, BC52, FHI cells. For CT26 cells,

the cell-line specific parameter set remains the same in experiment II as in experiment I. Dif-

ferently from experiment I, stress-free growth in experiment II is not exponential but linear,

reflecting different growth conditions that limit cell proliferation to a “proliferating” rim. This

Table 1. Nominal physical parameter values for the DCM to calibrate the CBM.

Parameter set symbol unit value ref

Cortex Young’s modulus Ecor Pa 2400 [42]

Cortex thickness hcor μm 0.1 [42]

Cell compression modulus K kPa [2.5, 10] CS, [12, 42–44]

https://doi.org/10.1371/journal.pcbi.1006273.t001
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determines the proliferating rim size λII as the experimental parameter of set fPExp¼2g that

summarizes the impact of growth medium under the conditions of experiment II in stress-free

growth. In presence of dextran, fPExp¼2g is expanded by only the measured pressure exerted

by dextran, which as it is experimentally determined, is no fit parameter (λII remains

unchanged). With the parameter set fPM2g ¼ fPC¼CT26g [ fPExp¼2g, the simulation model

predicts a growth dynamics that quantitatively agrees with the one experimentally found

Table 2. Reference physical parameter values for the model. CS indicates a model choice. If CS shows up with references next to it, the value was chosen from the param-

eter range in the references. A reference only means the value is fixed from literature. An (�) denotes parameter variability meaning that the individual cell parameters are

picked from a Gaussian distribution with ±10% on their mean value. The Gaussian distribution is clamped to 4 times the standard deviation to avoid potentially very low

values or very high values. Negative values are excluded.

Parameter set symbol unit value ref

PC¼CT26

Mean cell cycle time (�) Tcyc hours 17 CS, [26]

Mean cell radius R μm 7 Observation [26]

Cell Young’s modulus (�) E Pa 450 [6]

Cell compression modulus (�) K kPa 2.5−10 CS, [12, 42–44]

Cell motility D m2/s 10−16 CS, [19]

Cell Adhesion energy W J/m2 10−4 CS, [6]

Cell-cell friction || γcc,|| Ns/m3 5 × 1010 CS, [45, 46]

Cell-cell friction,? γcc,? Ns/m3 5 × 1010 CS, [45, 46]

Cell-ECM friction, γECM Ns/m3 5 × 108 CS, [45]

Cell relaxation time Trel hours 2 [47, 48]

Cell effective stiffness ~E Pa 450−106 CS

Stall growth rate αqui - 0.3 CS

Hill exponent n - 1−2 CS

Hill threshold (�) �Vtr - 0.35 CS

Cell lysis time (�) Tlys days 6 CS,[31]

Cell solid mass fraction ϕ - 0.1−0.3 [30, 31]

PEXPI
Cell-capsule friction γc,cap Ns/m3 2 × 1010 CS

Pressure threshold bulk (necrosis) (�) pth kPa 1.5 CS, [26]

Rim thickness (viable) λI μm 20 Observation [26]

Capsule Young modulus Ecap kPa 68 Observation [26]

Capsule Poisson ratio νcap - 0.5 Observation [26]

Capsule Radius Rin μm 100 Observation [26]

Capsule Thickness (thin/thick) H μm [8/30] Observation [26]

PEXPII
Rim thickness (proliferating) λII μm 30 CS

Pressure threshold bulk (necrosis) (�) pth kPa − Not observed [12]

PC;AB6≔PC;CT26

Mean cell cycle time (�) Tcyc hours 12 CS

PC;HT29≔PC;CT26

Mean cell cycle time (�) Tcyc hours 30 CS

PC;BC52≔PC;CT26

Mean cell cycle time (�) Tcyc hours 31 CS

PC;FHI≔PC;CT26

Mean cell cycle time (�) Tcyc hours 20 CS

https://doi.org/10.1371/journal.pcbi.1006273.t002
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indicating that the growth response only depends on the exerted pressure, not on any other

parameter (Fig 1B).

In a last step, the stress responses of the other cell lines, j = {AB6,HT29, BC52, FHI} have

been modeled for the experimental setting of experiment II, again in two steps (Fig 1D–1G).

The first step was to adjust the cell cycle time Tcyc of the cell line to fit the stress-free growth

leading to replacement of that one parameter in passing from fPC¼CT26g to fPC¼jg, the second

was predicting the growth subject to dextran-mediated stress without any parameter fitting

i.e., using fPExp¼2g for the experimental parameters.

Summarizing, almost the entire parameter determination is done by adjusting the model

parameters to experiment I for a thin capsule. After this step there is only one fit parameter for

each cell line, summarizing the cell-line specific effect of growth conditions of experiment II for

the stress-free growth (i.e., the control experiment). The step to simulate population growth

subject to external stress, both in the thick capsule for CT26 as well as in experiment II with dex-

tran for the cell lines CT26, AB6, HT29, BC52 and FHI is performed without parameter fitting.

Model for experiment I with thin capsule.

Calibration step:
Growth without external stress: First, we simulated CT26 cells growing freely in the liquid

suspension (EI.OI, Fig 2, for the parameters see Table 2). In this situation, CT26 cells grew

approximately exponentially indicating absence of growth inhibition. For the simulation we

needed to specify a subset of parameter set fPC¼CT26g, namely the division time Tcyc, cell radius

R, cell Young modulus E and cell compression modulus K, characteristic lysis time Tlys, the dif-

fusion constant D of the cell as it specifies the micro-motility, the perpendicular and tangential

cell-cell friction coefficients γcc,k and γcc,?, the cell-ECM (extra-cellular matrix) friction coeffi-

cient γECM, the cell relaxation time Trel, and the growth rate of the cell not subject to mechani-

cal stress α0. For each of these parameters, either estimates from experiment I or literature

estimates exist (see Model setup and parameter determination and Table 2).

For a constant cell cycle duration of Tcyc = 17h (no inhibition), in the observation period −2

d� t� 1 d, we found a good mutual agreement between the model, the experimental growth

curve, and an exponential, see Fig 1B. This determines the intrinsic cell cycle duration Tcyc of a

growing cell population subject to neither external mechanical stress nor nutrient limitation (a

movie S1 Video of this simulation is provided).

Growth in presence of external stress: In the next step, we used the same model to mimic

a growing multicellular spheroid in a thin capsule (H = 8μm). In the experiment after conflu-

ence, the growth curve crosses over into an approximately linear slope (t� 1d in Fig 1B) at a

measured pressure of pth� 1.5kPa (EI.OII) with a viable rim of size λI� 20μm (see EI.OIV

and H1) enclosing a necrotic zone. Necrosis indicates a lack of nutrients. It is possible that at

that pressure, border cells may be so compressed that nutrient diffusion becomes inhibited.

As the experimental data needed to explicitly model the influence of nutrients is not avail-

able and would require knowledge on many parameters (see [29]), we do not model nutrient-

dependency explicitly but directly implement the experimental observation that the cells fur-

ther inside the capsule than at distance λI die at pressure p = pth (observation EI.OII and Fig

4C), see Section Model setup and parameter determination for more details.

In our first attempts all cells in the viable rim were assumed to proliferate with a constant

rate α0. This assumption led to a too high spheroid growth speed, hence could not explain the

growth kinetics in presence of the capsule (see Model setup and parameter determination),

expressing that λI does not determine the growth speed, but only the size of the viable rim.

The constant growth speed for t> 2d, despite increasing pressure experienced with increas-

ing size of the MCS, indicates the viable rim to be of constant size. This was confirmed by
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visual observation of the spheroids (personal communication). This argues against an increas-

ing limitation of nutrients with tumor size in the linear growth regime, and in favor of an

impact of pressure on cell cycle progression.

In our model this was taken into account by replacing the constant growth rate α0 by a

compression-dependent growth rate α(�V) Eq 2 expressing, that cells can enter G0 if the rela-

tive growth rate α/α0 falls below a threshold αqui between division and restriction point, see H.

III and Fig 3). In our model, cells divide after their volumes have doubled. Consequently, a cell

subject to compressive stress has a longer cell cycle duration than an isolated cell.

With this model we found a very good agreement between experimental data and simula-

tion results for �Vtr � 0:35, n 2 [1, 2] and αqui� 0.33 (Fig 4). Values of n 2 [1, 2] do hardly dis-

criminate. Choosing n� 4 results in a faster growth in the beginning as here � < �Vtr , and an

experimentally not observed flattening of the residual growth resulting from the sharp

decrease of α for �V > �Vcr . n!1 leads to a plateau. Increasing αqui to 0.5 results in a signifi-

cant growth stall as cells then already enter quiescence at higher growth rates (Fig 4A). Increas-

ing �Vtr results in a faster capsule dilatation over the whole period as then the growth rate

decreases only above a larger pressure (noticing that d�V/dp> 0). We selected �Vtr � 0:35 as

best fit. The effect of �Vtr is shown in the thick capsule experiment (see Validation of model for

experiment I with thick capsule data, Fig 5A). The Hill-type function parameters complete

parameter set {PC=CT26} (Table 2).

We verified that the replacement of α0 by α(�V) did not result in a disagreement between

model simulation and experimental data for stress-free growth (black full line in Fig 1B) indi-

cating that no critical pressure builds up for MCS growth in liquid suspension in absence of

the capsule during the experimental observation time period.

We have also tested the hypotheses whether cells either have a growth rate α, constant dur-

ing the cycle, or an exponential increase (see Cell growth, mitosis, and lysis), yet we did not

find any significant differences for the spheroid growth, indicating robustness of the results

against such variations.

As an alternative mechanism to cell division after volume doubling we also tested the

assumption that a cell rather divides after a fixed cell cycle time (“timer”). This resulted in

smaller daughter cell volumes if the mother cell experienced compressive stress during growth,

and as a consequence in a too large nuclei density at 48h (see section Cell-specific parameters

K and Tlys during stress conditions).

Concluding, using Model I a good agreement with data could be obtained whereby the

main underlying assumption is that the cell growth rate and thereby the duration of the cell

cycle is controlled by the cells’ degree of volumetric compression. (A movie of this simulation

is provided in S2 Video).

Validation of model for experiment I with thick capsule data. In the first validation

step, we considered the thick capsule experiment (H = 30 μm). A thicker capsule provides a

stronger resistance against the spheroid expansion. In simulations with model I and the

parameter set (n 2 ½1; 2�; �Vtr ¼ 0:35; aqui ¼ 0:3) that was able to explain the MCS growth

against a thin capsule, we obtained a good agreement also for the thick capsule data without

any additional fit parameter (Fig 5A).

For higher or lower values for the volumetric strain threshold �Vtr , respectively, an overesti-

mation or underestimation for the residual growth would be observed consistently with the

thin-capsule data. Values n� 2 resulted in a clear deviation the end of the observation period

and were hence rejected.

In the work of Alessandri et al., additional experiments were performed using thick cap-

sules with a larger sizes (R0 * 400 μm) and thicker walls yet with the same aspect ratioH/R0
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* 0.25. The experiments show that the presence of a capsule did not affect the free growth of

the MCS. The growth dynamics after confluence for the large thick capsule could not be

uniquely determined as the duration of this phase was too small. For this reason we here did

not simulate this case (see S1 Text). Yet, to permit further validation of the model we also

depict simulations for a capsule with thickness H = 60 μm. This run predicts a slightly lower

dilatation rate (Fig 5G) yet the pressure increase per day in the capsule (Fig 5C) is comparable

with the 30 μm case, about 250 Pa/day.

Validation of model for experiment II: Same cell lines as for experiment I.

Model II:
We challenged the model calibrated for experiment I by studying whether it would be able

to predict the observed growth of CT26 multicellular spheroids subject to osmotic stress

(Experiment II, [12]). The concentration of dextran regulates the applied pressure. The growth

rate at p = 5 kPa here is also significantly lower than those in control spheroids (freely growing

in iso-osmotic conditions). Surprisingly however, the control spheroids in experiment II grow

slower than in Experiment I, revealing an overall linear but not exponential growth kinetics.

Since the cell line is identical, we associate this difference to varying culturing conditions (e.g.

less frequent change of medium).

Growth without external stress: To take the different culture conditions into account

within our simulations, we first simulated again the freely growing spheroid. Linear growth is

characteristic for a proliferative rim of constant size, with the size and spatial distribution of

proliferating cells in the rim determining the speed of spheroid expansion [29, 49]. Following

the same reasoning as for experiment I, we impose a proliferating rim of size λIImeasured

from the edge of the spheroids inwards to capture the linear growth of the MCS. Here, the

edge of the spheroid is computed as the average of the radial positions of the most outer cells

plus one mean cell radius (see Fig 6A). We found that for λII = 30 μm with cells adopting the

same parameter set as in Experiment I, Model I (n ¼ 1; �Vtr ¼ 0:35; aqui ¼ 0:3), matches well

with the data for freely growing spheroids (Fig 7A). As in experiment II no increase in cell

death, neither by apoptosis nor by necrosis has been reported, cells outside of the proliferating

rim are assumed to rapidly enter a quiescent state without undergoing necrosis i.e., they do

not shrink. This is referred to as Model II. Notice that λII is the only parameter value by which

Model II differs from Model I, reflecting the response on the growth conditions (therefore

attributed to the parameter set PEXP¼2).

Growth in presence of external stress: The same parameter values are kept for the growth

simulations in the presence of dextran (see Fig 6B–6D). In another work by Delarue et al.

(2014) [43], slight cell elongations were reported towards the tumor center. We neglected here

this effect to test whether the experimentally observed response of a growing tumor subject to

osmotic stress can already be captured with the model originally developed for the capsule,

with the only difference being an adaptation for the free growth conditions.

In accordance with the known pressure-exerting effect of dextran, we apply an external force

only to a thin boundary of outer cells, directed towards the center of the spheroid, mimicking

the osmotic effects which induce depletion-induced adhesion and an increase of the contact

area between the cells [50]. Every force vector is directed towards the center of the spheroid.

The magnitude of the applied force on every outer cell was here approximated by:

Fext ¼ F0

V
Vref

: ð3Þ

This relation in combination with a proper choice of F0 (fixed parameter) has been verified in

the computer simulations to maintain the average cell pressure hpi in the bulk of the spheroid
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during growth, as it has been experimentally observed. The volume-scaling factor is needed to

compensate for the change of cell volume and the number of the cells in that rim. As there is no

confining volume of the MCS, we use a local calibration approach to compute the contact forces

in the agent-based model, see section “Local” calibration approach, needed for experiment II.

Remarkably, the slope of the growth curve obtained from a simulation with the model with-

out any further adjustment matches very well with the data (Figs 7A and 1B). This indicates

that the response of the CT26 cells on compressive stress is robust and reproducible even if the

cells are subject to different environmental conditions. Moreover, the surprisingly good agree-

ment between model prediction and experimental observation suggests that the slight cell

elongations observed in [43] might not be a fundamental determinant in the overall response

of a growing tumor to external mechanical stress by osmosis. The major contribution to the

stress response may be controlled by the proliferating cells that are mainly located close to the

border. As proliferating cells, which are on average larger than resting cells, are mainly local-

ized at the border, the nuclei-nuclei distance is larger close to the border of the spheroid than

inside (see Fig 6D), consistent with reported experimental observations in [12] and in freely

growing spheroids [49].

Fig 6. (A) Simulation snapshot at the beginning of a free growing CT26 spheroid (R = 100 μm), indicating quiescent (dark) and

proliferating cells (light). (B-D) Simulation snapshots of growing CT26 spheroids at R = 120 μm during dextran application

(p = 5 kPa), indicating quiescent and proliferating cells (B), individual cell pressure (C), and volume for the cells (D).

https://doi.org/10.1371/journal.pcbi.1006273.g006
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Within our model we find that i) the pressure distribution in the bulk cells is quite homoge-

neous, and ii) the pressure is locally lower for the most outer cells because some of these cells

are experiencing less contact forces from their neighbors (see Fig 6C).

In simulation runs testing parameter sensitivity of the growth kinetics in Experiment II we

found for growth parameters αqui> 0.33, �Vtr < 0:2 or n> 2 a significant underestimation of

grow (too many cells go into quiescence), in agreement with our simulations for Experiment I.

Fig 7. (A-B) Detail of the time evolution of radius of the CT26 and FHI spheroid relative to its initial state. Data from [12]

shown for free growth and at p = 5 kPa. Runs with Model II are for free growth and for p = 5 kPa. In the CT26 cell line an additional

model run is shown assuming a linear cell cycle progression function. In the FHI cell line the vertical line indicates the presumed

changes in experimental conditions for free growth over time resulting in a lower surface growth (v1! v2). The gray zones in the

plots indicate the min-max values of the data.

https://doi.org/10.1371/journal.pcbi.1006273.g007
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Validation of model for experiment II: Other cell lines. In order further challenge our

model, we also simulated the dextran experiments performed with other cell lines, i.e. AB6

(mouse sarcoma), BC52 (human breast cancer), FHI (Mouse Schwann) all at p = 5 kPa, and

the cell line HT29 (human colon carcinoma) at p = 10 kPa. Since these experiments were less

documented, our assumptions are that i) in the simulations the experimental conditions are a

priori the same, but ii) cell cycling times are different. These doubling times were estimated by

calibration of the growth curves without external stress before predicting the growth curves in

presence of external stress without any additional fit parameter following the same strategy as

for experiment II above for the CT26 cell line. Doing so, we found that the long-term growth

speed was again surprisingly well predicted by the model for all three cell lines. Only transients

partially deviate from experimental curves (Figs 1D–1G, 7B).

We here adjusted the cell cycle duration Tcyc to capture the growth kinetics of the MCS in

absence of externally exerted mechanical stress but we could also have modified, for example,

the thickness of the proliferating rim λII, as the expansion speed vf of the freely growing MCS

is vf/ λII/Tcyc [51], so that changing λII has the same effect as the opposite change in Tcyc. We

emphasize in this context that λII does not determine the growth speed vS under dextran-

induced stress, as vS� vf. Thus, our prediction is not dictated by parameter λII.
For AB6 (Fig 1E), we found a doubling time of 13h to make the simulated free growth case

matching well with the experiment (comparing slopes over period of * 9d; full red line in Fig

1E). We however, did not have any additional information concerning cell size and doubling

time on this cell line. Applying the pressure of 5kPa in the simulations, one still sees that the

simulation agree quite well with the experiment (Fig 1E, dashed red line).

For HT29 (Fig 1G), a pressure of 10 kPa was applied in the experiment, and hence this puts

an extra challenge as the growth model is tested for larger compression. In the simulations, we

now had to double the applied forces in the most outer cells to reach the same average pres-

sure. The calibrated doubling time of HT29 for growth in absence of dextran was found to be

46h, in agreement with values in reported in [52] (full red line in Fig 1G). The cell size is com-

parable to that of CT26 [12]. The simulation results in presence of dextran indicates a signifi-

cant differences in the beginning of the experiment, yet overall the growth slope matches quite

well with the data (Fig 1G, red dashed line).

Finally, for BC52 (Fig 1D) and FHI (Figs 1F and 7B), the experimental results show a more

complex behavior, as there seem to be two regimes in the growth. In the case of BC52 the

spheroid first grows with v1 * 0.41 μm/h for the first 9d, then in the subsequent period the

growth slows down to v2 * 0.29 μm/h (see Fig 1D). We attribute this to a change in growth

conditions in the experiment. The model a-priori does take the cross-over effect into account,

but we still can test it by imposing ad-hoc changes of experimental conditions after a period of

9d. To do so, we assume in the simulations for the dextran-free growth that the thickness pro-

liferating rim has decreased during the cross-over by λII! λII × v2/v1� 0.7λII, which resulted

in an overall good calibration curve (full red curve in the Fig 7B). The same procedure was

applied to the FHI cells, with here the factor v2/v1� 0.35 for the simulation in absence of dex-

tran (see full red line in Fig 7B). The corresponding simulations in presence of dextran for

BC52 (Fig 1D, dashed red line) and FHI (Fig 7B, dashed red line) then shows that the model is

again able to predict the experimentally observed slopes in both regimes reasonably well.

Hence, we conclude that this model is able to predict the effect of mechanical stress on the

expansion speed of the MCS in the elastic capsule experiment (experiment I) and the dextran

experiment (experiment II) after calibration of the model parameters with experimental

growth data in absence of capsule and dextran i.e., with experimental growth kinetic data in

absence of externally exerted mechanical stress.
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Robustness of the proposed cell cycle progression function. In our model we have pro-

posed that the cell growth rate decreases according to a general Hill-type function (Eq 2).

From the capsule simulations, we observed that neither a constant growth scenario (�Vtr !1)

nor a sharp threshold (n!1) could explain the data. However, in order to justify the choice

of the Hill functional shape as compared to a simpler functions, we have performed compara-

tive simulations with a linear progression function. This function has the same boundary value

α = α0 at �V = 0, and α = 0.5 × α0 at �V = 0.35, but has a steeper decrease further on (dashed

line in Fig 3). We found that with this function the experimental data for small and large cap-

sule thickness could still be reproduced with a fair agreement (see Figure BG, “Linear I” in S1

Text). However using the same function, we could subsequently not match the data of Experi-

ment II, for the CT26 cell lines as well as for the other cell lines. In that case the simulations

systematically underestimated the growth (see Fig 7A, black line) indicating the tail of the Hill-

type function is important as it controls the still non-negligible contribution to growth at high

strains occurring in the dextran experiment. On the other hand, a linear function (boundary

value α = α0 at �V = 0) calibrated such that the CT26 dextran experiment could be reproduced,

resulted in an overestimation of growth in the capsule experiment (see Figure BG, “Linear II”

in S1 Text). Concluding, a sufficiently long “tail” in the diagram α versus �V seems to be neces-

sary to explain the residual growth of the cells. This points towards an nonlinear response of

inhibition of growth of the cells upon compression, and further shows that the choice of a non-

linear progression function is necessary so that a Hill-type growth function, despite it looks

complex, seems the most simple one that is able to explain simultaneously growth of MCS sub-

ject to externally applied stress in both experiment types.

Discussion

By establishing a quantitative model of growing multicellular spheroids (MCS) subject to com-

pressive stress calibrated with data on growth in an elastic capsule we were able to demonstrate

that the stress response of a growing tumor is quantitatively robust and reproducible even if

cells grow under different conditions and if the pressure is exerted by different experimental

methods. Given the enormous complexity of intracellular processes involved in the control of

MCS growth this is fascinating as it might open the possibility that largely separated robust

functional modules may be identified and studied in separation without the need to analyze all

interactions of the components of one module with the components of other modules, and

without incorporating all interactions at the molecular level. In particular, we first developed a

model to study CT26 cells grown in an elastic thin and thick capsule, and then modified this

model in a minimal way by taking into account the remarkably different growth behavior of

freely growing tumor spheroids (i.e. not subject to compressive stress) to simulate the tumor

growth response of CT26 and other cell lines in a dextran solution. We show that the mechani-

cal stress response is quantitatively the same despite significantly different culture and protocol

conditions. Without the model, it would have been very difficult to identify this equivalence.

The key results of our analysis are:

(R.I) With increasing compression the cell growth rate decreases. This relation could be

well captured by a Hill-type function for the growth rate α that depends on the volumetric

strain (Eq 2), and a transition into quiescence if the growth rate dropped below a threshold

value. A sharp volume or pressure threshold below which no cell cycle entrance would occur

anymore, is not compatible with the data. Together with the strain hardening assumption of

cells during compression, this overall points to a nonlinear increasing growth resistance of the

cells upon mechanical stress.
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(R.II) Cells divide when their dry mass has doubled during the cycle. A “timer” as a deci-

sion mechanism for dividing could not explain the data.

A particular point of concern in many studies of spheroids is the appearance of cell death.

Our work is based on the observations of Alessandri et al. (2013), who observed necrosis

(CT26 cells, using FM4-64) in capsule confined cells, while their free growing spheroids exhib-

ited the normal exponential growth for R< 150 μm. Helmlinger et al. (1996) [8] observed a

decrease in apoptotic (LS174T cells, using TUNEL) events during compression, and reported

little necrosis (not quantified) for spheroids with R< 150 μm. They concluded that the hal-

tered growth of the spheroids is mainly due to the increasing compressed state, which can be

partially confirmed by our simulations. In the work of Delarue et al. (2014) [12], no increase of

apoptosis (HT29 cells, using cleaved-caspase 3) was observed after 3 days for spheroids with

R* 100 μm. Contrary, earlier Montel et al. (2012) [11] did report increased apoptosis using

cleaved-caspase 3 for CT26 cells, while Cheng et al. (2009) [9] did observe an increase of necro-

sis (67NR cells, using propidium iodide) even in very small spheroids R* 50 μm, yet mainly

for the interior cells. At the periphery, cells were still dividing. Whether necrosis and apoptosis

occurs may well be dependent on the cell type and experiment, but overall it seems that the

peripheral cells are unaffected.

Another issue that deserves attention is that despite recent significant advances in exploring

the relations between the cell mechanical parameters and cell responses during an externally

applied mechanical stress, a coherent consensus has not been reached. One issue in this discus-

sion is the cell compression (bulk) modulus. For instance, in Delarue et al. (2014) [12], one

concludes that cells are compressible reporting a rapid cell volume reduction at the level of the

MCS (Multicellular Spheroids) under compressive stress. Another work of Delarue et al.

(2014) [43] indicates bulk moduli of the order of 10 kPa. Both works consider the long-term

effects (> 1h) of compression on spheroids.

The work of Lin et al. (2008) [44] seems to concur with this as they measure cell bulk mod-

uli of about 10 kPa with measurements on a timescale of minutes.

On the other hand, the Monnier et al. (2016) [78] report individual cell compression mod-

uli of several orders of magnitude higher (1MPa) than the ones reported above, also on short

time periods of minutes. Yet they state in their paper that on longer timescales, the cell

response may become more complex due to intracellular adaptations. We emphasize that in

our paper we are considering timescales of larger than one hour as cells are doubling their vol-

ume in about a day so that the rate of percentage of the volume increase is about 0.07%/min.

As such, the compression moduli of the cells that we find should be regarded as long-term val-

ues, where the cell can respond differently as compared to short timescales. For instance, the

cell may respond by expelling fluid through aquaporins. In the work Tinevez et al. (2009) [42],

the cytoplasm bulk modulus is estimated as ±2500 Pa. Despite not being the modulus of the

whole cell, it indicates that if cells are able to expel water through the aquaporins on longer

timescales, their resulting bulk moduli agree with our values.

Our modeling strategy is based on in silico experiments i.e., abstracted experiments on the

computer, where each individual cell was represented as modeling unit with those properties,

actions and interactions that were considered as necessary to quantitatively explain the cellular

growth response on mechanical compression. The implementation of cell-cell and cell-envi-

ronment interaction directly accounts for physical laws with (in principle) measurable physical

parameters that permit straightforward limitation of parameter ranges to those physiologically

relevant. This made it possible for us to largely confine the parameter values to published or

directly observed relatively narrow ranges, and introduce free fit parameters only for the cell

cycle progression. A particular challenge was to construct an individual agent-based model

that permits stable and robust simulations up to several tens of thousands cells under high
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compression. Under these conditions cell displacements may have to be minimal, which rules

out models operating on lattices unless the lattice size would be chosen a very small fraction of

the cell diameter (in which case they would lose their computational advantage). Thus, the

requirements of constraining the parameters, and providing realistic simulation trajectories in

time favored models operating in lattice-free space implementing a dynamics simulated by

equations of motion (as opposed to a Monte Carlo dynamics, which under some condition

mimics a master equation). The prototype of lattice free models are center-based models that

calculate the forces between cells as forces between cell centers. However, as mentioned above

and explained in more detail elsewhere [21] this model type has significant problems in dealing

with cell populations under large compressive stress i.e., with exactly the situation we are faced

with in this work. To solve this issue, we developed a deformable cell model, which represents

each individual cell in much greater detail as in center-based models but at the expense of

much longer simulation times. As simulations with that model up to several thousands of cells

were not feasible, we performed simulations with this model of characteristic MCS configura-

tions under large compressive stress and used the results to establish a new interaction force

model within center-based models that permit to mimic large cell populations under large

compression.

Furthermore, we mention that despite their limit on cell numbers, simulations with DCM

can give valuable information on micro mechanics. In our study, we found that stiffer cells in a

scaled capsule model more likely could cause a gradient in cell pressure from the border to the

center of the spheroid than soft cells (section Cell deformation and pressure distribution dur-

ing in a compressed spheroid in DCM). These potential effects are difficult to investigate with

center-based models and prove the necessity of further development of high resolution mod-

els, and perhaps running them on high performance computers.

Finally, we discuss briefly how to include the effect of extracellular matrix (ECM) into the

model more explicitly. The quantity of ECM that is produced may depend on the cell type. For

instance, fibroblast generally produce more ECM than epithelial cells. In the capsule experi-

ment by Alessandri et al. (2009) [26] the sparse ECM signal suggests that ECM is sparse in the

compressed spheroids. In case ECM would be present at higher volume fractions, a more

important part of the compression might be attributed to ECM, which might change the

growth response of multicellular spheroids subject to externally applied mechanical stress.

There are several ways how this can be included in our model which, despite it was not in the

scope of this paper, would be a natural future step to perform. This can be either a detailed

model of ECM [81], taking into account ECM in a global calibration approach similar to the

global approach detailed in absence of ECM (see S1 Text), or a composite material approach,

where instead of considering as basic modeling unit a single cell, it is regarded as a cell plus its

embedding ECM (for the concept in agent-based models, see Drasdo et al. (2007) [53]). A

more detailed description can be found in S1 Text.

Models

This section summarizes the most important model assumptions and components, and then

explains how model parameters were calibrated. More details about the mathematical formula-

tions, can be found in S1 Text.

We start from a standard center-based model in which cells are represented by spheres.

However, this model needs to be extended by calibration with a model that can deal with high

compression, the “deformable cell model”, in order to obtain realistic results for the envisaged

in vitro multi-cellular systems (see Calibration of the CBM contact forces using DCM).
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Center-based model (CBM)

In CBMs cells are approximated as simple geometrical objects capable of active migration,

growth and division, and interaction with other cells or a medium [53]. In CBMs the precise

cell shape is not explicitly modeled but only captured in a statistical sense. Here, the cells are

represented by homogeneous isotropic elastic, adhesive spheres.

Equation of motion for the cells. The center of mass position of each cell i is obtained

from an overdamped Langevin equation of motion, which summarizes all forces on that cell

including a force term mimicking its micro-motility:

GECM~vi þ Gc;cap~vi þ
X

j

Gccð~vi � ~vjÞ ¼
X

j
~Fcc;ij þ~Fmig;i þ~Fcap;i þ~Fdext;i ð4Þ

The lhs. describes cell-matrix friction, cell-capsule friction and cell-cell friction, respectively.

Accordingly, ΓECM, Γc,cap, and Γcc denote the friction tensors for cell-ECM, cell-capsule, and

cell-cell friction. The first term on the rhs. of the equation of motion represents the cell-cell

repulsive and adhesive forces~Fcc, the 2nd term is an active force term~Fmig , mimicking the cell

micro-motility.~Fmig is mimicked by a Brownian motion term with zero mean value and uncor-

related in time (see S1 Text). The existence of the 3rd and 4th term depends on the growth

condition. In presence of an elastic capsule as in experiment I, the 3rd term denotes the inter-

action force experienced by the cell from the capsule~Fcap;i for those cells i that are in physical

contact with the capsule. As cells cannot adhere to the capsule,~Fcap;i is purely repulsive. In

absence of a capsule this term is dropped,~Fcap;i ¼ 0. Analogously, in presence of dextran,~Fdext;i
denotes the body force induced by dextran on the outermost cells i. In absence of dextran,

~Fdext;i ¼ 0.

Due to high friction of the cells with their environment, inertia is neglected [54]. Based on

the observation that some ECM is produced by the cells (EI.OV), which forms a substrate for

the cells to actively migrate before confluence is reached, the first term on the lhs and the 2nd

on the rhs express interactions with ECM. The ECM network from fibronectin indicates a

mesh size of the order of the cell size [76]. We assume momentum transfer to the ECM by the

ECM friction and active micro-motility term but we do not model the ECM explicitly (how

ECM could be included more explicitly is discussed in S1 Text). After confluence has been

reached, the ECM signal declines (EI.OV) and the expansion of the spheroid originates from

the volume increase of the cells against the mechanical resistance of the capsule or the osmotic

forces, while the active micromotility forces become negligible. This is further confirmed by

simulations performing parameter variations in the micromotility forces which do not signifi-

cantly influence the results (see S1 Text).

Adhesive and repulsive forces. Interphase cells are approximated by homogeneous, iso-

tropic, elastic and adhesive spheres which split into two adherent cells during mitosis. Under

conditions met in this paper [45, 53], the total cell to cell interaction force can be approximated

by the sum of a repulsive and an adhesive force:

~Fcc ¼ ~Frep þ~Fadh: ð5Þ

The repulsive Hertz contact force reads:

Frep;ij ¼ 4=3Eij
ffiffiffiffiffi
Rij

p
d

3=2

ij ; ð6Þ

Modeling permits quantitative prediction of stress response in spheroids

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006273 March 8, 2019 23 / 40

https://doi.org/10.1371/journal.pcbi.1006273


in which Eij and Rij are defined as

Eij ¼
1 � n2

i

Ei
þ

1 � n2
j

Ej

 !� 1

and Rij ¼
1

Ri
þ

1

Rj

 !� 1

;

with Ei and Ej being the cell Young’s moduli, νi and νj the Poisson numbers and Ri and Rj the

radii of the cells i and j, respectively. δij = Rj + Ri − dij denotes the overlap of the two unde-

formed spheres, whereby dij ¼ jj~rj � ~rijj is the distance of the centers of cells i and j (see S1

Text).

The original Hertz contact model does not take into account volume compression under

large pressure by many surrounding cells. To account for multi-body interactions while using

the classical Hertz model, we replace the Young moduli Ei by an “apparent” contact stiffness ~Ei
that increases as function of the cell density (Eq 14), see section Calibration of the CBM con-

tact forces using DCM. The modification of the Hertz model is calibrated with a Deformable

Cell Model (DCM) that represents cell shape explicitly.

The adhesive force term between cells can be estimated as proportional to the contact area

and the energy of the adhesive contactW [21]:

Fadh;ij ¼ � pWRij: ð7Þ

Cell volume and compressibility. In our model, cells are compressible meaning that cell

volume is related to pressure by

dpi ¼ � Ki
dVi
Vi
¼ �

Ei
3ð1 � 2nÞ

dVi
Vi

; ð8Þ

in case the cells’ properties are largely controlled by the elastic properties of its cytoskeleton

and other cytoplasmic constituents. Ki is the bulk modulus of the cell. The observed volume

change in general depends on the speed of compression. For slow compression, water can be

squeezed out of cells (and tissues), while for fast compression, it would result in a nearly

incompressible resistance [78]. In case Ki = K0,i is a constant, integration of the above equation

yields the cell volume Vi as a function of the pressure on cell i, �V,i = (pi − p0)/K0,i with p(Vref) =

p0. Here, �V,i = −log(Vi/Vref,i) is the logarithmic strain permitting to capture large strains and

Vref ;i ¼ 4=3pR3
ref ;i is the uncompressed cell volume the cell would have in isolation, with Rref,i

being considered as constant for a quiescent cell. For small deviations V� Vref the known rela-

tion �V = log(V/Vref)� (V − Vref)/Vref is recovered.

Several authors have reported strain hardening effects leading to an increased elastic modu-

lus upon mechanical stress [55–57]. Stiffening of the cells can occur as the cytoskeleton gets

denser [58]. In case of strain hardening, K increases with decreasing volume. We mimicked

this by [58]:

KiðViÞ ¼ K0;i

Vref ;i
Vi

ð9Þ

with K0,i the compression modus of cell i in absence of stress. In this case, �V,i = log((pi − p0)/

K0,i + 1). The quantity of interest is the volume response on a pressure change pi − p0, whereby

throughout this paper we set pi� pi − p0.

Now we assume that as a consequence of internal friction and by remodeling of the cyto-

skeleton, a cell subject to pressure adapts its volume with a certain delay according to the
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equation

gint;i
d�V;i
dt
þ K0;i�V;i ¼ gðpiÞ ð10Þ

where γint,i is a lumped parameter expressing the relaxation behavior after an imposed change

of the pressure. It is related to the relaxation time by γint,i = KiTrel for a single cell (an analogous

argument applies to the whole spheroid). The relaxation period may range from several sec-

onds or minutes up to hours, depending on how long the stress has been applied [12, 47, 59].

This is related to both intracellular and intercellular reorganizations. In our simulations, we

assume Trel � Oð1hÞ for viable cells motivated by observations of relaxation times in compres-

sion experiments [48]. For Ki = K0,i we have g(pi) = pi, while in case of a dependency as by

Equation it is g(pi) = K0,i log(pi/K0,i + 1).

Measures for stress and pressure. The external pressure pi on a cell i is derived from the

viral stress and given by:

pi ¼
1

3
trðsiÞ with si ¼

1

Vi

X

j

~Fij �~rij
� �

ð11Þ

being the stress tensor quantifying the stresses cell i experiences subject to contact forces~Fij
with other cells j [21]. Here,~rij is the vector pointing from the center of cell i to the cell j with

jj~rijjj ¼ dij=2 and V i is the sampling volume which can be taken as the cell volume. The stress

tensor can be diagonalized in order to find the principal direction of stress.

Cell growth, mitosis, and lysis. Our basic model assumes constant growth rate during

the cell cycle and updates the volume Vref,i of cell i in time as

dVref ;iðtÞ
dt

¼ aiðtÞ; ð12Þ

where αi(t) is the growth rate. We studied both, a constant volume growth rate (αi(t) = C1) and

an exponentially increasing cell volume mimicked by αi(t) = C2 × Vref,i(t) [34–37]. The cell

cycle times in both cases are equal for C2 = log 2 × C1/V0,i. However, on the time scale (several

days) of growth considered here, growth rate variations on time scales of an hour turned out

to be negligible. After a cell has doubled its reference volume, it splits into to spherical cells

(see S1 Text).

Cells dying either by apoptosis or necrosis eventually undergo lysis. During lysis they grad-

ually shrink. In experiment I the necrotic core appeared very solid like, indicating that the

water was drained as a consequence of the high pressure. We mimic the lysing process by set-

ting first Vref,i! ϕVref,i after necrosis, where ϕ is the volumetric solid mass fraction.

The cell volume change rate is mimicked by Eq 10 and controlled by γint. This effectively

mimics plastic deformation of the cells during water loss (for more sophisticated models on

cell elasticity and remodeling, we refer to Koppenol et al. (2017) [80]). We assumed that lysis

times Tlys have a physiological range of 5h to 15 days [31], and we set γint* KTlys in Eq 10 dur-

ing lysis.

Deformable Cell Model (DCM)

Agent-based models permitting large deformations and representing cell shape explicitly are

generally called Deformable Cell Models (DCMs) [21–23, 25, 60, 71, 74]. In a basic DCM the

cell surface is discretized with nodes which are connected by viscoelastic elements. Nodes and

their connecting elements represent a flexible scaffolding structure. The discretization can be
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extended to the entire cell cytoplasm and even organelles be represented, yet here we regard

the cell interior as a homogeneous matter. The nodes at the boundary form a triangulated

structure, accounting for the mechanical response of the membrane and cortical cytoskeleton.

The total force on each node consists of cell-cell interaction and intracellular interaction

forces, the latter describing membrane and cortex mechanical behavior, and cell volumetric

compressibility.

The basic equations of motion in DCM is formally the same as for the center-based model

(Eq 4), but is now applied to each node i of a cell2:

Gns;i~vi þ
X

j

Gnn;ijð~vi � ~vjÞ ¼
X

j

~Fe;ij
|fflfflffl{zfflfflffl}
in� plane

þ
X

m

~Fm;i
|fflfflffl{zfflfflffl}
bending

þ ~Fvol;i
|{z}

volume change

þ
X

T

~FT;i
|fflfflffl{zfflfflffl}

area correction

þ~Frep;i þ~Fadh;i
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

contact
ð13Þ

with the matrices Γns and Γnn representing node-substrate friction and node-node friction,

respectively.~vi denotes the velocity of node i. The first and the 2nd term on the rhs represent

the in-plane elastic forces and bending force, the third term on the rhs a volume force con-

trolled by the cell compressibility. The fourth term is a force that avoids excessive triangle

distortion. The two last terms (~Fadh;i,~Frep;i) describe the adhesion and repulsion forces on the

local surface element in presence of nearby objects as e.g. another cell or the capsule in

experiment I (for details see S1 Text). Different from CBMs, the cell bodies in contact do

not overlap and therefore triangles belonging to different cells will be repelled upon

approaching each other. For consistency with the CBM we chose the model components of

the DCM such that cells are inherently isotropic. As the DCM directly represents cell com-

partments, the range of its parameters can readily be determined (Table 1. For further details

see S1 Text).

Calibration of the CBM contact forces using DCM

During the process of compression, cells rearrange and deform to a closer packing. As dis-

cussed above, common models to model the interactions between cells (such as Hertz, JKR,

extended Hertz, Lennard-Jones, etc.) are based on pair-wise interaction force calculations and

do not take into account the effect of volume compression emerging from the simultaneous

interaction of many cells [21, 53]. In simulations using these interaction force models, the

apparent volume (as seen in the simulation) that the spheroid occupies upon strong compres-

sion, may become much smaller than consistent with the material parameters; even incom-

pressible cells having Poisson ratio ν = 0.5 reduce their volume [21, 62]. Simulations of

spheroid growth in a capsule performed with an uncalibrated model result in an unrealistic

capsule dilatation (see S1 Text).

The deformable cell model (DCM) does not suffer from such shortcomings, but is not ame-

nable to the amount of cells observed in experiments I and II in reasonable computing time on

standard desktop computers. For this reason we here chose a hybrid strategy: we corrected the

interaction force in the CBM based upon numerical compression experiments performed with

the DCM, and used the so calibrated CBM to perform simulations reminiscent of virtual com-

puter experiments in the experimental settings I and II (Fig 8).

In order to estimate the repulsive contact forces in case of many cell contacts, we have con-

structed a DCM spheroid computer experiment with * 400 cells initially positioned in a clos-

est sphere packing. In this computer experiment, the outer cells were then pushed towards the

spheroid center quasi-statically to avoid friction effects, using a shrinking large hollow rigid

sphere encompassing the cells (see Fig 8A). All cells have the same size but taking into account
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Fig 8. (A) Cartoon illustrating the compression experiment using deformable cells in a capsule to calibrate the center-based model. (A, bottom) Equivalent

compression experiment using the center-based model with indication of the maximal principal stress directions of the cells in the capsule during compression using

Eq (11). (B) Cartoon showing the volume compartments Vi, Vint and Vcaps in a capsule with thicknessH. (C) Average contact force vs. ~dij ¼ 1 � dij=ðRref ;i þ Rref ;jÞ for

different K values simulated using DCM (diamonds), and CBM with corrected Hertz contact force (full colored lines) replacing E by ~E, see Eq 14. dij is the distance

between the centers of cells i and j, Rref,k the radius of a free cell k 2 {i, j}. The modified Hertz force shows the same evolution as the force in the DCM, while an

uncorrected Hertz force (gray line, Eq 6) strongly underestimates the interaction force for strong volumetric compression. (D) Pressure curves during compression of

the spheroid as a function of the inter-cellular volume fraction simulated with the DCM and the CBM with modified Hertz force using here K(V). The pressure for

CBM was computed using both the capsule pressure and average virial stress per cell calculated from Eq (11). A representative movie (S3 Video) of these simulations is

provided).

https://doi.org/10.1371/journal.pcbi.1006273.g008
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a moderate variable cells size were found to not affect the results significantly. Interestingly we

observed in the calibration simulations, that cell shape of isotropic cells in the calibration com-

pression simulations with the deformable cell model appear distorted near the capsule border

in agreement with the shapes one would infer from the position of the cell nuclei in the capsule

experiments [26].

“Local” calibration approach, needed for experiment II. For the DCM simulations we

adopted Ecor� 2400 Pa, hcor� 100 nm and νcor� 0.5 [42] as fixed elastic properties of the cor-

tex. The cortical stiffness Ecorhcor = 0.24 mN/m, is close to values deduced from other experi-

ments performed on fibroblasts [63]. As the cell compression modulus Kmaybe variable and

further plays a significant role in this work, we constructed the calibration method such that it

works for different values of K.

During the simulated DCM compression experiment (Fig 8A) we “measure” all the contact

forces between a bulk cell i and the surrounding cells j in our simulation, which gives us the

force, pressure and volumes change on that cell, as a function of their relative positions,

~dij ¼ 1 � dij=ðRref ;i þ Rref ;jÞ. The distance dij is computed as the length of the vector connecting

the two center of masses of the two cells i, j. Rref,k is computed as ð 3

4p
Vref ;kÞ

1=3
, with k = i, j. The

average contact force of the central cell i with its neighbors j as a function of the cell-to-cell

average distance ~di ¼
PNc
j¼1

~dij=Nc (Nc = number of contacts) is depicted in Fig 8C, for

K = 2500 Pa, 5000 Pa, and a variable K = K0(V) using K0 = 5000 Pa due to strain hardening

(see Cell volume and compressibility). Overall we find that this contact force curve still can be

characterized as initial Hertzian contact for ~di < 0:08, but is after a transition zone followed

by a steep increase (~di > 0:12). The first part in this curve is largely determined by the

mechanical properties of the cortex and the changing contact area of the cells, whereas the

behavior at larger compression is determined by the bulk modulus of the cells.

We have developed a CBM calibration approach where we keep the original Hertz contact

law (Eq 6) but replaced the Young modulus Ei by an apparent contact stiffness ~Ei (i.e.,

Ei ! ~Ei) of the cells as they get nearer to each other. In other words, ~Ei gradually increases in

Eq 6 as the cells get more packed, based on the reasoning that indenting a piece of material

with another object gets more difficult when confined. The total strain of the cell is composed

of a deformation of the cortex largely determined by the apparent stiffness ~Ei, and the volumet-

ric compression determined by Ki. The volume (and radii) of the cells are adapted using Equa-

tion Eq 10. It is important to stress here that ~Ei only reflects the contact stiffness of the cell

through Eq 6, while the bulk modulus (Eq 8) is determined by the original cell Young’s modu-

lus Ei.
To take into account the limited cell volume compressibility in a pairwise cell-cell interac-

tion force, we fitted ~Ei by a function that depends on the local average distance ~dij for a bulk

(i.e., interior) cell in the simulated experiment in Fig 8A:

~Eið~di;K;Ecor; hcorÞ ¼

(
Ei 0 � ~di � 0:08;

a0 þ a1
~di þ :::þ a6

~d6
i 0:08 < ~di:

ð14Þ

Here, the ak with k 2 [0, 6] are fit constants (see S1 Text). They are calibrated such that the

function is monotonically increasing and results in an optimal fit to the average force a cell i
experiences upon compression of the cell aggregate (see Fig 8A) as function of the distance

between the center of cell i and its neighboring cells j in the DCM simulations (see Fig 8C).

The higher the compression, the higher gets the contact stiffness, so that at strong
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compression, the contact forces only result in a very small increase of indention, yet the cell

volume decreases (Eq 10).

At the point of confluence when outer cells touch the capsule wall, the DCM cells exert a

total interaction force Fcap = ∑i Fcap,i on the capsule wall. The capsule pressure was then com-

puted by pcap = Fcap/Acap where Acap is the inner surface area of the capsule. On the other hand

we defined the intercellular volume fraction, as �int = Vint/Vcap (see Fig 8C). Here Vint = Vcap −
∑i Vcell,i is the volume of the space in between the cells, Vcap is the total capsule volume. We

then compared for the DCM simulations and calibrated CBM the resulting pressure versus

intercellular volume fractions. These curves do not match exactly, but follow each other closely

(Fig 8D).

We further complemented this study by pursuing a “global” approach where we estimated

the forces and pressure exerted by the MCS on the capsule as a function of the total intercellu-

lar space fraction occupied by cells within the elastic capsule (see S1 Text), obtaining the same

results. Both calibration approaches can be used for arbitrary values of K.

Cell deformation and pressure distribution during in a compressed spheroid in DCM.

The DCM simulations of a small spheroid compression experiment show that the cells have a

flattened shape at the border of the capsule, see Fig 9. As a consequence of compression forces

acting on the cells at the border normal to the capsule border, those cells are observed to

extend in the DCM simulation tangentially to the capsule (and shrink along the direction to

the capsule border normal vector) elevating the force exerted on their neighbor cells in the

same layer. In the CBM simulation, cell shape is not explicitly given hence this effect is missed

out3. In order to balance normal stress from the capsule cells close to the capsule need to rear-

range as they cannot deform, while in the DCM they can both deform and re-arrange.

We further considered whether the apparent boundary effect (EI.OIII) could be attributed

purely to mechanical effects. For this, we used a spheroid compression experiment with a

scaled capsule system using 400 (quiescent) DCM cells with different cortex properties (i.e.

cells that have the reference Ecor and cells with 10 times this value). It is shown in Fig 9 that

there can be a small mechanical effect in the case for a “high” stiffness of the cortex, as the sim-

ulations show that the cells near the boundary acquire higher pressures as compared to the

bulk cells and a weak gradient from the center to the spheroid edge can be observed. This can

be attributed to arching effects (a phenomenon frequently observed in grannular mechanics),

where outer layers of cells bear more stress and form a shield for the inner layers. The effect

increases with increasing cortex stiffness. Contrary, reference parametrized cells spread out

more easily, diminishing the pressure differences.

To investigate the boundary mechanics in a more realistic system with dividing cells, the

DCM could be extended with the capability to mimic mitosis. In our simple compression

experiment with cells having estimated cortex properties, the boundary effect appears

acceptable.

Elastic capsule model

The capsule is made of an quasi-incompressible alginate gel exhibiting a strain hardening

behavior. The stress-strains relationship was measured in a stretching experiment of an thin

alginate cylinder. Strain hardening behavior was observed for strains>15%. In case of a thick

walled capsule, the expansion strain is low and hence linear elasticity can be applied. We refer

to the hollow sphere example as described in [64] to compute the radial displacement of the

capsule from the internal pressure. If on the other hand the capsule has a thin wall, strains can

become large, and the linear elasticity hypothesis fails. For this case, in line with ref. [26] the

original young modulus is modified instead of employing nonlinear elasticity theory. The
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nonlinear relationship in stress and strain (�cap) was phenomenologically characterized in ref.

[26]:

Ecap ¼ Ecap;0ð1þ a�capÞ ð15Þ

where �cap is the strain and a = 1.5 to obtain an optimal fit with the experiment.

The capsules have an initial inner and outer radius Rin,0 and Rout,0 respectively, whereby

typicallyH = Rout,0 − Rin,0 > 0.2Rin,0 for thick capsules, H being the capsule thickness. The

pressure difference along the capsule wall can be related to the change in radii by [26]:

pcap ¼
4

3
EcapsR

0 uðRinÞ
Rin

ð16Þ

Where Ecaps is the Young modulus of the capsule material, Rout is the outer radius, and u(Rin)
= Rin − Rin,0 is the displacement at the outer radius. Furthermore, R0 ¼ ð1þ 1

1þDR3
0
=R3
in
Þ, in which

the outer radius is related to the inner radius Rin by DR3 ¼ R3
out � R

3
in ¼ R

3
out;0 � R

3
in;0, assuming

incompressibility of the elastic shell. To simulate the radius evolution of the capsule, one com-

putes pressure pcap by dividing the sum of all contact forces of the cells with the capsule by the

actual inner surface area. Taking into account the damping by the alginate material, we arrive

Fig 9. (A) Simulation snapshots of DCM cells within a scaled capsule model, for the cases of cells with a reference cortex stiffness

(top) and a “stiff” cortex stiffness (bottom). The coloring is according to pressure (B) Internal cell pressure for deformable cells in a

shrunk capsule for nominal cells and stiff cells, as function of distance to the capsule center. The stiff cell types show a gradient in cell

pressure if moving from the spheroid center towards the edge (indicated by dashed red line), while a higher variability as compared

to the softer types. Notice that like in the calibration simulations we use cells of equal volume prior to compression but the method

can equally be applied to any prior volume distribution.

https://doi.org/10.1371/journal.pcbi.1006273.g009
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at an ODE, formally similar to Eq 10:

gcap

RinðtÞ
dRinðtÞ
dt

¼ pcapðtÞ �
4

3
EcapsR

0 uðRinðtÞÞ
Rin

; ð17Þ

with a lumped material damping parameter γcap. It was shown in [48] that the viscosity of the

capsule material is low and does not influence the much slower dynamics of the spheroid.

Accordingly, in our model γcap was chosen low to reflects the material’s ability to rapidly adapt

to a change in spheroid radius while not affecting the slow growth dynamics.

Model setup and parameter determination

We here explain the determination of the mechanical model parameters starting from the thin

capsule experiment. A large fraction of the parameters are fixed from direct observations or

published references, see Table 2 for more details.

Within parameter sensitivity analysis simulations the parameters that could not be fixed by

experimental observations, were varied within their physiological ranges to study their impact

on the simulation results. Some parameters turned out to only negligibly affect the simulations

results, see S1 Text.

As the simulation time was too long to determine the parameters within their physiological

ranges based on a maximization of a likelihood function, or to perform a parameter identifia-

bility analysis, we identified plausible parameters by a two-step procedure.

We first determined those model parameters that determine the simulated growth behavior

in case of free growth by comparison to the experimental data for CT26 cells in experiment I.

In the next step the parameters relevant for the specific experiment were fixed. After this, two

remaining parameters, namely K and Tlys were calibrated by the thin capsule simulations,

yielding a model without a growth rate adaptation (see Cell-specific parameters K and Tlys dur-

ing stress conditions).

Each simulation result was compared to the experimentally observed spheroid diameter of

the growing spheroid prior to confluence, and the slope of the residual growth curves after

48h, thereby retaining the parameters that are physically plausible and can best explain the

data at the same time.

Cell-specific parameters {PC=j} to obtain the initial spheroid configuration and free

growth. Starting from the calibrated model (step 1), a single run was performed with a small

aggregate of 10 CBM cells, all at the beginning of their cell cycle, to grow a spheroid up to the

size of R = 100 μm, which corresponds to the size before confluence, see Fig 3B. A cell cycle

time of Tcyc = 17h was assigned to each of the cells as this matches the experimental observa-

tion. Cells increased their radius from * 6 μm until their radius reached the division size (7.5

μm). After each cell division, a new cell cycle time was assigned to each of the daughter cells,

randomly chosen from a Gaussian distribution with hTcyci = 17h and standard deviation of

±10/%. The intrinsic free growth cell cycle time defines the growth rate α0 = 1/Tcyc.
The cell-cell adhesion energyW determines how close the cells approach each other in

aggregates not subject to compression by external forces, and has been chosen such that the

area density, measured in a cryosection of width 10 μm of the resulting spheroid with R = 100

μm, matches that of the experiments (* 0.85/100μm2) [26]. In these simulations the cells

have a fixed Young’s modulus of E* 450 Pa and a cell motility coefficient D of 10−16m2/s
[19]. The compression modulus was here set to K = 5 kPa inferred as an average from values

reported in literature, see Table 2. For MCS grown in absence of external stress, K, if varied

in the range of experimentally observed values, had no significant effect on the growth simu-

lation results.
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The physical parameters responsible for the inter-and intracellular friction are in the CBM

represented by γint, γcc,?, γcc,|| 2 {PC=j}. Mechanical relaxation time of spheroids compressed

over a longer time period indicate relaxation times of 1 to 5 hours in experiments [47, 48]. We

have calibrated the friction parameters in the model from a relaxation experiment starting

from a compressed spheroid (see Fig 8A) such that Trel* 2 h, lying well in the reported range

[1h, 5h], was obtained using as observable the spheroid size as function of time. The calibrated

coefficients correspond to those found in [45, 46].

The parameter set as determined above resulted in a good agreement for free growth simu-

lation with data from experiment I. The model robustness was finally tested by varying these

parameters to see how they affected the simulation results of the thin capsule (see S1 Text).

Experiment specific parameters {PEXP}. Here, we determined the parameters that are

exclusively related to the experiments. See Table 2 for an overview.

Experiment I: From the data for the capsule radius at which the curve is in the transition

stage T1 to T2 (Fig 10, t = 1d) and using Eq 16, a pressure of pth* 1500 Pa could be inferred

(Fig 4C), at which bulk (interior) cells further away from the border than λI are experimentally

observed to become necrotic. We impose an additional variability to the threshold pressure to

avoid a sharp transition from T1 to T2 in the simulation, as a sharp transition is not observed

in the experiment. The chosen variability is in line with the generally observed variability in

physical properties between individual cells. To express the variability in the cells’ response on

pressure we chose pth from a Gaussian distribution with mean 1500 Pa and standard deviation

of 150 Pa (10%) in all simulations. A variation of ±300 Pa on the mean value reduced the

agreement with data in all simulations. The rim thickness λI within which the cells remain via-

ble is fixed during the simulations as it did not change during the experiment. Notice however,

that the value of λI does not explain the MCS expansion speed that differs for the thick capsule

from that for the thin capsule, as it is demonstrated below (Fig 10A). We further assumed that

cell-capsule friction coefficients γc,cap are similar to those of cell-cell friction. However, the

simulation results are robust with respect to wide variations on friction parameters, see S1

Text. The elastic properties of the capsule are fixed to the values measured in [26].

Experiment II: In Experiment II, λII was calibrated to match the growth rate kinetics of the

spheroid in the absence of dextran (see EII.OII). Contrary to Experiment I, after adding exter-

nal mechanical stress via dextran, no increase of necrosis was observed (EII.0II). This was for-

mally captured by setting pth!1 in the model. The magnitude of the osmotic forces to

obtain the desired bulk spheroid pressure was computed from Eq 3, fixed for each experiment.

Cell-specific parameters K and Tlys during stress conditions. In the next step the com-

pression modulus and the cell specific lysis time have been specified. To acquire the most real-

istic parameters within their physiological range, we consider the spheroid growth in the

capsule, first with the constant growth rate α0 of the cells as determined from free spheroid

growth in Experiment I.

Compression modulus of the cells: The compression modulus of the cells influences the vol-

umetric strain and hence through Eq 10 the growth rate α. First we tested the hypothesis that

K remains constant during the experiment, varying K in the range K 2 [2.5 kPa, 150 kPa] in

simulations for Experiment I. K* 2.5 kPa has been measured for quasi uncompressed L929

fibroblasts [42], K* 10kPa for compressed CT26 cells [12].

Simulations with K = 10 kPa resulted in a cell density increase at 48h by only a factor of 1.5,

while experimentally a factor of two is observed (Fig 10B), suggesting that this value of K is too

high. Moreover, a significant overestimation of both the initial and the residual radial growth

could be observed (Fig 10A). We further tested two extremes for K. For K = 150 kPa the cell

density at 48h is now only 1.3 times the original one (Fig 10B), with a largely overestimated

Modeling permits quantitative prediction of stress response in spheroids

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006273 March 8, 2019 32 / 40

https://doi.org/10.1371/journal.pcbi.1006273


initial radial growth. By contrast, for a much smaller value K* 2.5 kPa, the cell density is

strongly overestimated (increase by 3-fold at 48h), hence we reject such low values.

In a next step we tested the consequence of strain hardening (Cell volume and compress-

ibility, [55–57]). K(V) can be initially relatively small, leading to a higher overall cell nuclei

density (Fig 10B), yet gradually increasing during compression. For an applied pressure of 5

kPa, we find K(V) = 10 kPa while for an applied pressure of 10 kPa we have K(V) = 15 kPa,

comparable to the values reported in [12, 43]. The simulations with strain stiffening show a

better estimation of the cell density at 48h.

However, the stiffening alone did not solve the discrepancy between data and model simu-

lation results. It allows a rapid nuclei density increase in a spheroid for low pressure but at the

same time leads to higher mechanical resistance with increasing pressure. The capsule pressure

generally shows a highly nonlinear behavior with a maximum (Fig 10C). This is typical because

the mechanical stiffness of a capsule drops at high dilatation [65] as confirmed in the experi-

ment by the observation of cells sometimes breaking through the capsule at later stages [26].

Fig 10. (A) Time evolution of the radius of the thin capsule, shown for the experimental data and the simulation using Model I, with

parameter variation on the individual cell compressibility (K(V) means strain hardening). (B) Time evolution of the simulated cell

density. The dashed horizontal line indicates the experimentally observed cell density at 48h. (C) Pressure in the capsule versus time.

https://doi.org/10.1371/journal.pcbi.1006273.g010
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Note further that all the simulations of the capsule radius upon deformation by the growing

MCS with time exhibit a short initial lag, in where the capsule dilatation is small (Fig 10A). In

this stage, the spheroid touches the capsule border but cells are mainly pushed inwards, filling

up intercellular spaces. This is less visible in the experiment, yet there the exact point of conflu-

ence is difficult to determine. After this period, cells are becoming more and more compressed

and the mechanical resistance of the spheroid increases.

Overall, these results demonstrate that the viable rim with λI = 20μm, constant growth rate

and neither constant nor strain-dependent growth rate cannot explain the velocity of the

growing spheroid in the linear phase, as it is not possible to simultaneously fit the nuclei den-

sity and the long-time radius expansion. For any value that would be capable of fitting the

nuclei density, the slope of the radius expansion would be too high.

Lysis time: In a next step we studied whether incorporating the effect of intrinsic volume

loss of necrotic cells due to lysis would lower the radius expansion and establish agreement

Fig 11. (top) (A) Time evolution of the radius of the thin capsule, shown for the experimental data and simulations using Model I,

showing the effect of a parameter variation for the lysis time Tlys. (B) Time evolution of the simulated cell density. (C) Cell density at

48h obtained from final model run with optimal parameters, but in which cells divide after a fixed cycle time (”timer“) instead of a

fixed size.

https://doi.org/10.1371/journal.pcbi.1006273.g011
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between model and data. Lysis as defined in ref. [31] induces an irreversible water loss and

decrease of cell volume (see Cell volume and compressibility) limited to the solid volume of

the cell. Contrary to in vivo experiments, there are no macrophages present to phagocytose the

remaining cell bodies, and phagocytosis by neighbor cells is very slow [29]. In line with [31],

we studied lysis times Tlys 2 [5h, 14d] using Model I. We notice that the shorter Tlys, the more

the curves bend off in the beginning. However, because lysis results in more compression and

thus gradually leads to stiffer cells, the numerical growth curves largely fail to reproduce the

observed linear behavior (see Fig 11). The effect becomes striking at very low lysis times (Tlys =

5h). Here, the initial behavior of the spheroid is determined by cells quickly loosing their vol-

ume (hence a low resistance against pressure). Further in time, a large stiff core develops

which will eventually overcome the mechanical resistance of the thin capsule. Nevertheless,

adopting Tlys� 5d yields a good agreement with the cell nuclei density at 48h (Fig 11B), which

is in line with values found in an in silico model for ductal carcinoma in situ [31] and is rela-

tively close to the apoptosis time found by fitting phenomenological growth laws for spheroids

(* few days) [12, 66]. Note that the lysing cells in the bulk tend to move very slowly towards

the center of the spheroid (see S2 Video).

Non-constant growth rate: Even including lysis it was still not possible to simultaneously fit

growth and density curves as improvement of growth kinetics was accompanied by increasing

mismatch of density and vice-versa. This prompted us to study non-constant growth rates,

decreasing with increasing volumetric strain as explained in the main text.

Supporting information

S1 Text. Supplementary information. This text contains more information about the model

algorithms and parameters, model calibration and parameter sensitivity.

(PDF)

S1 Video. Free growth simulation. CT26_free_growth.avi shows the simulated evolution of

pressure a free growing CT26 spheroid. Note that a gradient in cell pressure gradually builds

up from the center to the border of the spheroid.

(AVI)

S2 Video. Capsule growth simulation. CT26_spheroid_capsule.avi shows the simulated evo-

lution of pressure and cell volume of the CT26 spheroid growing in a thin capsule. The pres-

sure increases gradually but remains approximately uniform over the spheroid.

(AVI)

S3 Video. DCM compression experiment simulation. DCM_spheroid_compression.avi

shows the simulation of a compression experiment of a spheroid in a capsule containing 400

deformable cells. Cell pressure and global volume fraction of the cell volume is indicated. The

capsule radius shrinks gradually so that equilibrium pressures are measured. The cell pressure

may be slightly higher at the spheroid border due to arching effects of the outer cells.

(AVI)

S1 Experimental Data. All_Experimental_data.xlsx (sheet 1) provides the capsule data from

[26] plus new data. Sheet 2 provides the dextran data that was extracted from [12].

(XLSX)

1We assume V/Vref� 1 in the experiment meaning the cells are always in a compressive state

2The cell index has been dropped here for clarity.
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3In the CBM the lack of cell deformation is reflected in the principal stresses (indicated in Fig

8A by arrows) that can be computed from the stress tensor Eq 11. One observes that the

direction of maximal compressive stress points radially to the border cells, while minimal

stress direction points tangential to the capsule wall. CBM cells cannot deform to relax the

radial stress component hence need to re-arrange in position.

Acknowledgments

We would like to thank M. Delarue for his input. P.N. would like to thank J. Prost for the use-

ful discussions.

Author Contributions

Conceptualization: Dirk Drasdo, Paul Van Liedekerke, Pierre Nassoy.

Data curation: Paul Van Liedekerke, Kevin Alessandri, Pierre Nassoy.

Formal analysis: Paul Van Liedekerke, Dirk Drasdo, Johannes Neitsch, Kevin Alessandri,

Pierre Nassoy.

Funding acquisition: Dirk Drasdo, Pierre Nassoy.

Investigation: Paul Van Liedekerke, Dirk Drasdo, Johannes Neitsch, Kevin Alessandri, Pierre

Nassoy.

Methodology: Dirk Drasdo, Paul Van Liedekerke.

Project administration: Dirk Drasdo, Pierre Nassoy.

Resources: Dirk Drasdo, Pierre Nassoy.

Software: Paul Van Liedekerke, Johannes Neitsch, Tim Johann.

Supervision: Dirk Drasdo, Pierre Nassoy, Paul van Liedekerke.

Validation: Paul Van Liedekerke, Dirk Drasdo, Pierre Nassoy.

Visualization: Paul Van Liedekerke.

Writing – original draft: Paul Van Liedekerke, Dirk Drasdo.

Writing – review & editing: Paul Van Liedekerke, Dirk Drasdo, Pierre Nassoy.

References
1. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix Elasticity Directs Stem Cell Lineage Specification.

Cell. 2006; 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044 PMID: 16923388

2. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nature reviews Can-

cer. 2009; 9(2):108–22. https://doi.org/10.1038/nrc2544 PMID: 19165226

3. Basan M, Risler T, Joanny JF, Garau XS, Prost J. Homeostatic competition drives tumor growth and

metastasis nucleation. HFSP Journal. 2009; 3(4):265–272. https://doi.org/10.2976/1.3086732 PMID:

20119483

4. Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model.

Science (New York, NY). 1988; 240(4849):177–84. https://doi.org/10.1126/science.2451290

5. Freyer JP, Sutherland RM. Regulation of growth saturation and development of necrosis in EMT6/Ro

multicellular spheroids by the glucose and oxygen supply. Cancer research. 1986; 46(7):3504–12.

PMID: 3708582
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