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Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human 
immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in 
recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian 
approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development 
of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as 
experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. 
We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality 
and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to 
establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future 
developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use 
in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the develop-
ment of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.

Introduction

Exploring vaccine development strategies 
and predicting vaccine efficacy

The human immunodeficiency virus (HIV)/acquired immu-
nodeficiency syndrome (AIDS) epidemic is still a major 
global health challenge, with 38.0 million people living 

with HIV (PLWH) in 2019, and 1.7 million newly infected 
(https://​www.​unaids.​org/​en/​resou​rces/​press​centre/​press​relea​
seand​state​menta​rchive/​2020/​july/​20200​706_​global-​aids-​
report). Thus, there is an urgent need to implement effec-
tive strategies to prevent and cure HIV infection and reduce 
virus transmission [1].

Although combination antiretroviral therapy (cART) is 
effective in suppressing the virus and reducing mortality, it 
does not eradicate HIV, which invariably rebounds upon sus-
pension of treatment due to virus release by a small pool of 
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long-lived cells harboring latent provirus, which are insensi-
tive to cART and invisible to the immune system [2]. This 
hampers cART effectiveness in containing HIV transmission 
and spread [3].

Furthermore, despite great efforts and major advance-
ments in our understanding of HIV pathogenesis and in 
vaccine development, effective vaccines against HIV/AIDS 
are still lacking.

The challenges for developing a vaccine against HIV 
stem from (i) the high rate of intra- and inter-individual 
HIV genetic evolution, leading to the unceasing emergence 
of new (escape) variants, (ii) the failure to identify strong 
and unequivocal correlates of protection in studies of natural 
infection as well as in vaccine studies, and (iii) the knowl-
edge gap regarding the degree of protection conferred by 
the immune response to antigenic epitopes present in the 
transmitted/founder viruses versus viral variants emerging 
during chronic infection.

The first vaccine candidates largely focused on the gly-
coproteins of the virus envelope, which mediate the attach-
ment and entry of HIV into the cell (gp120 or gp160) [4, 
5]. AIDSVAX was the first of the Env-based vaccines to be 
tested in efficacy trials (VAX 003, NCT 00006327 and VAX 
004, NCT 00002441). However, AIDSVAX failed to induce 
a protective, neutralizing humoral response, most likely due 
to the high variability of Env in the circulating virus vari-
ants [6, 7]. These failures shifted the focus to cell-mediated 
immunity, owing to an accumulating body of evidence indi-
cating a major role for CD8+ T cells in controlling HIV 
infection [8–12]. Vaccines aimed at inducing effective cel-
lular responses were based on live recombinant viral vectors, 
mainly pox and adenovirus vectors, and/or DNA consist-
ing of the gag, pol, and nef genes from clade B or clade C 
HIV, with or without Env [13, 14]. Although all approaches 
induced measurable cell-mediated immune responses, they 
had to be halted due to the greater number of HIV-1 infec-
tions occurring in vaccinees as compared to placebo, as 
observed in the STEP (HVTN 502, NCT00095576) and 
Phambili (HVTN 503, NCT 00413725) trials, or they did 
not show efficacy (HVTN 505, NCT00865566) [4, 15–19]. 
The vectors used to deliver the HIV proteins are believed to 
have contributed to vaccine failure [20].

Expectations were then raised by the RV144 
(NCT00223080) trial utilizing a recombinant canarypox 
vector expressing Env from clade E and Gag and the HIV 
protease from clade B HIV (the ALVAC-HIV vCP1521 
vaccine antigen component), followed by a boost with an 
alum-adjuvanted subunit HIV gp120 from clades B and E 
(the AIDSVAX B/E vaccine antigen component). The vac-
cine induced a humoral immune response against gp120 and 
antibody-dependent cellular cytotoxicity that was able to 
confer protection from infection in 31.2% of the vaccinated 
volunteers [21], leading to the design of the HVTN 702 

trial (NCT 02968849) conducted in South Africa, which, 
however, did not show efficacy (https://​www.​niaid.​nih.​gov/​
news-​events/​exper​iment​al-​hiv-​vacci​ne-​regim​en-​ineff​ective-​
preve​nting-​hiv).

Concurrently, major efforts and resources were devoted 
to the isolation and characterization of broadly neutralizing 
antibodies (bNAbs) from infected patients [22]. It turned out 
that, in general, bNAbs have a very uncommon structure, 
are often polyreactive and autoreactive, possibly the result 
of escape from immune selection of the B cell repertoire, as 
also suggested by the lack of germline precursors in the B 
cell repertoire [23]. Accordingly, immunogens structurally 
designed to optimally bind bNAbs failed to induce them in 
vivo [24–26]. These obstacles are so difficult to overcome 
[27] that the efficacy of bNAbs is presently being evaluated 
in passive immunization strategies [28].

More recently, a computational methodology was devel-
oped to generate polyvalent mosaic immunogens starting 
from the sequences of naturally occurring variants of com-
mon T cell epitopes that may ensure coverage of HIV diver-
sity [29]. An example of this “mosaic” approach is the Ad26/
Ad26 plus gp140 HIV-1 vaccine, which was recently shown 
to induce robust humoral and cellular immune responses in a 
phase 1/2a clinical trial, and it is being evaluated in a phase 
2b efficacy study in sub-Saharan Africa (NCT03060629).

Efforts have also been directed to optimization of analysis 
of vaccine trial results with the aim of identifying correlates 
of protection. Among these, the COMPASS (Computerized 
Optimization Model for Predicting and Analyzing Support 
Scenarios) analysis, a bioinformatics tool to identify antigen-
specific T cell responses and subsets, was recently used to 
investigate vaccine-induced immune responses leading to 
the identification of new “correlates of protection/immunity” 
previously missed in the RV144 HIV vaccine efficacy trial 
[30, 31].

Failures in HIV preventative and therapeutic vaccine 
strategies have led us to focus on alternative strategies using 
a “pathogenetic” approach aimed at targeting the HIV Tat 
protein, alone or combined with other HIV antigens, for elic-
iting protective immunity for preventative and therapeutic 
vaccination of untreated or cART-treated patients.

Tat and HIV pathogenesis

Role of Tat in the virus life cycle

Tat‑mediated effects on HIV‑1 infectivity, replication, 
and transmission

The HIV Tat protein is a potent transcriptional transactivator 
of virus gene expression that is essential for virus infectivity, 
replication, and transmission (Fig. 1). Tat is incorporated 
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into HIV-1 virions [32] to prime both endogenous (intra-
virion) and post-entry reverse transcription [33], to activate 
virus gene expression, and to form a complex with HIV-1 
Env to enhance virus entry and spread [34, 35].

Tat is expressed very early upon infection, even prior to 
virus integration [36], most likely to ensure that the tran-
scriptional activity of the incoming virus can cross the 
extinction threshold. Tat expression, in fact, enhances both 
transcription initiation, which is mediated by its interaction 
with SP1 elements in the HIV-1 transcriptional promoter 
[37, 38], and transcription elongation, which involves Tat-
mediated recruitment of positive transcription elongation 
factor b (P-TEFb) to the transactivation responsive region 
(TAR) of the nascent RNA [39]. By these means, Tat 
increases viral transcription by 100-fold and establishes a 
strong positive transcriptional feedback loop at the HIV-1 
long terminal repeat (LTR) [40, 41]. Notably, the early 
expression of Tat appears to enhance, rather than stabilize, 

basal transcriptional fluctuations that occur naturally at the 
HIV LTR. As a consequence, Tat expression itself is driven 
into amplified stochastic oscillations around the extinction 
threshold [40, 41]. As described in the next section, this 
pattern of Tat expression plays a major role in determining 
whether infected cells enter a state of active replication or 
latency [40, 41]. In addition to these activities, Tat expres-
sion downregulates cell membrane expression of major his-
tocompatibility complex (MHC) class I [42] and II [43] sur-
face molecules, damping cell-mediated adaptive immunity 
against HIV. Moreover, in infected dendritic cells (DCs), 
Tat induces the expression of several chemokines, includ-
ing interferon-gamma-induced protein 10 (IP-10, CXCL10), 
human monokine induced by interferon gamma (huMIG, 
CXCL9), and monocyte chemotactic protein 2 (MCP-2, 
CCL8), attracting activated T cells and macrophages to the 
sites of infection, thus facilitating the dissemination of HIV 
infection [44].

Fig. 1   Roles of extracellular Tat in HIV in virus life cycle and in the 
latent virus reservoir. A Stochastic oscillations of HIV-1 Tat pro-
tein expression (the Tat stochastic switch) determine the fate of HIV 
infection [40]; B Membrane-bond extracellular Tat induces CTL 
apoptosis [64]; C Extracellular Tat binds Env to form a HIV entry 
complex [35] that increases virus infectivity and the HIV basic repro-
duction number (R0), thus increasing the chances of infection in tis-
sue compartments with low-drug penetration; at the same time, extra-
cellular Tat induces in naïve CD4+ T cells a non-classical activation 
pathway rendering these cells susceptible to HIV infection [54];  

D Extracellular Tat enhances the expansion and differentiation of 
naïve CD4+ T cells into effector-memory cells [75], thus increas-
ing the number of cells transitioning from the activated to the rest-
ing state, a cell state that favors latent infection [94]; E Extracellular 
Tat forms chemotactic gradients [46; 48, 49] recruiting monocytes/
macrophages and dendritic cells to the site of infection (51), induces 
the release of pro-inflammatory cytokines [59–63] and the maturation 
of dendritic cells with a Th-1 polarization [52];  F Tat upregulates 
BCL2 in CD4+ T cells, leading to increased reservoir cell survival 
[93] while rendering these cells resistant to CTL killing [94]
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Role of extracellular Tat in HIV‑1 infectivity and virus spread

A large proportion of the Tat protein produced by the 
infected cell is released in the absence of cell death or cell 
permeability changes in the extracellular milieu [45–47] to 
generate a local reservoir of extracellular Tat, which plays 
a key role in the establishment and propagation of HIV 
infection. In fact, once released, Tat binds through its basic 
region to heparan sulfate proteoglycans (HSPG) present in 
the extracellular matrix [45, 46, 48, 49], generating long-
lasting chemotactic gradients that attract HIV-1 target cells, 
particularly, activated endothelial cells and monocytes/mac-
rophages, to the sites of infection [50, 51]. In addition, extra-
cellular Tat enters dendritic cells [52] and activated endothe-
lial cells [53] very efficiently and, to a lesser extent, CD4+ T 
cells [54], activating the expression of genes favoring HIV 
dissemination. In particular, in naïve CD4+ T cells, Tat 
upregulates the expression of the HIV-1 co-receptors C-X-C 
motif chemokine receptor 4 (CXCR4) and C-C chemokine 
receptor type 5 (CCR5) [55], while antagonizing CXCR4 
[56], thus increasing the susceptibility of resting CD4+ T 
cells to infection by R5-tropic HIV-1 strains. Furthermore, 
extracellular Tat induces a non-classical activation pathway 
in naïve CD4+ T cells, rendering them susceptible to produc-
tive infection [54, 57]. Notably, extracellular Tat binds trim-
eric HIV-1 Env, forming a cell entry complex (the Tat/Env 
complex) that targets the RGD-binding integrins expressed 
at high levels by dendritic cells, enhancing the infection of 
these cells [34, 35]. Furthermore, extracellular Tat induces 
dendritic cells to mature to a T helper (Th)-1-polarizing 
phenotype [58] and stimulates the production and release 
of inflammatory cytokines by various cell types [59–63]. 
Of note, inflammatory cytokines activate endothelial cells 
and render them susceptible to Tat entry and permissive to 
productive HIV infection [53]. In addition, extracellular Tat 
bound to the HSPG of the infected cell membrane triggers 
the apoptotic death of engaged CD8+ T cell effectors [64]. 
Thus, extracellular Tat contributes to modeling a tissue 
microenvironment favoring the recruitment, infection, and 
immune escape of HIV-1 target cells. All of these activi-
ties of extracellular Tat contribute to ensuring that the basic 
reproduction number (R0) of HIV remains > 1 both upon 
virus acquisition at the portal of entry and during chronic 
infection.

Role of the Tat feedback transcriptional loop in the “choice” 
between latent and active infection

HIV-1 infection is characterized by the early establishment 
of a self-renewing, large pool of short-lived, actively infected 
cells producing viral progeny. However, concomitant latent 
infection occurs in a minority of cells that show prolonged 
longevity and are maintained for a long period of time. As 

described previously, the choice between productive and 
latent infection of CD4+ T cells appears to be determined 
by stochastic oscillations in the expression levels of Tat 
around the threshold of viral transcriptional extinction [41]. 
This modality of Tat expression (the “Tat stochastic switch”) 
(Fig. 1) appears to operate irrespectively of the state of cell 
activation [41]. Nevertheless, the activation or deactivation 
of the HIV-1 transcriptional promoter by environmental or 
epigenetic stimuli can increase or decrease the probability 
ratio between latent and active infection [41]. The Tat sto-
chastic switch likely explains several characteristic features 
of HIV infection both in vitro and in clinical studies. In par-
ticular: (i) distinct pools of latently and productively infected 
cells are simultaneously established upon experimental 
infection of activated or resting CD4+ T cells [65–67]; (ii) 
clonal CD4+ T cell populations harboring the same provirus 
at the same integration site show a ‘bifurcating’ expression 
pattern, where HIV expression is high in some cells and low 
in others [40]; (iii) polyclonal TCR stimulators stochasti-
cally reactivate HIV in only a small number of cells in the 
latently infected pool present in cultures of CD4+ T cells 
isolated from HIV-infected patients [68, 69]; (iv) a sponta-
neous fluctuation between a latent and productive infection 
phenotype is observed in clonal cultures of infected CD4+ 
T cell lines [40]; (v) virus rebound in patients undergoing 
analytical treatment interruption follows a stochastic, expo-
nential distribution [70]; (vi) the “shock and kill” strategy to 
cure HIV, based on the use of HIV latency-reversing agents 
believed to deterministically reactivate latent HIV, has failed 
to reduce the HIV reservoirs [71]; and (vii) HIV reactivation 
in latently infected CD4+ T cells is virtually abolished by 
treatment with compounds that block the interaction of Tat 
with TAR, a finding that has led to the development of strat-
egies to permanently shut off HIV transcription (the “block 
and lock” strategy) [72].

Role of extracellular Tat in the dynamics of latent HIV 
reservoirs

The small pool of long-lived cells harboring latent HIV 
persists indefinitely in infected individuals despite cART. 
Sporadic reactivation of latent provirus results in waves 
of virus production that, although it may not succeed in 
infecting other cells due to antiretroviral treatment, can 
give rise to intermittent low-level viremia that persists 
even after years of treatment [73]; if cART is suspended, 
low-level viremia leads to virus rebound [74]. Although 
several cell types can harbor latent or silent HIV, rest-
ing naïve and memory CD4+ T cells constitute the most 
prominent HIV reservoir [73]. Considering the capabil-
ity of extracellular Tat to target and enter CD4+ T cells 
[54], to stimulate the expression of host cell genes [54, 
55, 75], and to reactivate latent provirus [40, 45, 76], it 
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can be speculated that extracellular Tat plays a prominent 
role in the dynamics of HIV reservoirs. This conclusion 
is supported by the faster kinetics of proviral DNA decay 
observed in individuals on long-term cART immunized 
with a Tat vaccine [77, 78], suggesting that immunity 
against extracellular Tat, the vaccine target, may destabi-
lize the HIV reservoirs. The following lines of evidence 
point to the possible mechanism(s) underlying this effect 
of Tat immunization.

Despite lack of evidence of virus evolution during 
long-term cART [79–84], indirect evidence indicates that 
ongoing cycles of virus replication may indeed occur in 
low-drug lymphoid tissue compartments, replenishing 
the HIV reservoirs [85–89]. However, HIV reproduction 
in these infection niches would be prone to extinction 
due to the reduction of R0 caused by the suboptimal drug 
levels of the microenvironment. Hence, the enhancement 
of infectivity conferred to HIV by the Tat/Env complex, 
which appears to be particularly effective at a low mul-
tiplicity of infection [35], would conceivably be of key 
importance for virus reproduction in these tissues. Since 
anti-Tat Abs produced during natural infection or induced 
by Tat immunization neutralize the Tat/Env complex [35], 
these data suggest that immunization with Tat might blunt 
this potential pathway of reservoir replenishment. CD4+ 
T cells undergoing the effector-to-memory transition may 
be pivotal in this context. These cells have been shown 
to be particularly susceptible to latent HIV infection 
due to the transient upregulation of the HIV co-receptor 
CCR5 and the concomitant downregulation of cellular 
and proviral gene expression [90]. Hence, activated CD4+ 
T cells transitioning to the resting state represent a key 
target to enrich latent-HIV reproduction in compartments 
with suboptimal drug levels. Since extracellular Tat is 
known to enhance the expansion and differentiation of 
naïve CD4+ T cells towards the effector-memory pheno-
type [75], we speculate that immunization with Tat may 
decrease the density of transitioning cells in these tissue 
niches. Moreover, extracellular Tat delays Fas-mediated 
apoptosis in infected CD4+ T cells [91] and upregulates 
the anti-apoptotic gene B-cell lymphoma 2 (Bcl-2) in 
peripheral blood mononuclear cells (PBMCs) and CD4+ 
T cells, as well as endothelial cells [92], promoting their 
survival [93]. Notably, recent findings indicate that Bcl-2 
upregulation renders reservoir CD4+ T cells resistant to 
cytotoxic T lymphocyte (CTL) killing [94]. Thus, extra-
cellular Tat may prolong the half-life of latently infected 
CD4+ T cells, which, conversely, would be decreased by 
anti-Tat Abs induced by Tat immunization. Finally, anti-
Tat Abs would abrogate the capacity of cell-membrane-
bound Tat to induce the apoptosis of CD8+ T cell effec-
tors [64], restoring, at least in part, the effectiveness of 
cell-mediated immunity against the virus reservoirs.

Figure 1 summarizes the main pathways through which 
HIV-1 Tat regulates the virus life cycle and the genesis 
and maintenance of the virus reservoirs.

Tat and comorbidities

The experimental and epidemiological data reported above 
indicate that Tat is an optimal target for HIV cure and eradi-
cation strategies. However, a Tat-based therapeutic immuni-
zation may have other beneficial effects against HIV/AIDS, 
since in vitro and in vivo evidence indicates that HIV-1 Tat 
plays a role in the increased incidence and aggressiveness 
of several AIDS- and non-AIDS-defining comorbidities, 
including tumors and cardiovascular, renal, liver and neu-
rological diseases. The development and progression of 
these comorbidities are attributed to the combined effects of 
reduced immune surveillance, immune activation, immune 
dysregulation, and viral coinfections (Epstein-Barr virus 
[EBV], human herpesvirus 8 [HHV-8], human papilloma-
virus [HPV], hepatitis B virus, hepatitis C virus) character-
izing HIV infection [95].

Of note, the introduction of highly effective new antiret-
rovirals and new drug combinations capable of suppress-
ing viral replication has greatly reduced the burden of most 
AIDS-related complications by restoring and preserving 
immune function from the decline associated with HIV 
infection, with a general increase in quality and expectancy 
of life [96]. However, since cART does not eliminate non-
replicating virus, life-long cART is essential for insuring 
viral suppression. Moreover, even under fully successful 
therapy, residual viral replication and/or gene transcription 
persist [97, 98], particularly in lymphoid tissues with subop-
timal antiviral drug penetration [89, 99]. As a result, chronic 
inflammation and immune dysregulation persist, leading to 
premature aging and a much higher incidence and mortality 
rate for chronic noninfectious comorbidities as compared 
to the general population, particularly in patients starting 
cART with very low CD4+ T cell counts or in those who 
are poorly compliant with therapy [96]. An increased life 
expectancy, longer exposure to risk factors, and drug toxic-
ity also correlate with the appearance of non AIDS-related 
comorbidities. However, although cART reduces the risk for 
AIDS-defining comorbidities, including tumors and oppor-
tunistic infections, their incidence is still higher than in the 
general population and can also occur in patients responding 
to therapy [96, 100].

In this context, experimental evidence indicates that 
HIV-1 Tat may play a direct pathogenetic role in HIV-asso-
ciated comorbidities by modulating the cellular pathways 
that lead to their development and/or progression. Although 
a comprehensive examination of these data is outside of the 
scope of this review, some of these direct effects are briefly 
described below and summarized in Table 1.
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Table 1   Evidence indicating that the HIV-1 Tat protein is directly involved in the increased incidence and severity of comorbidities and coinfec-
tions affecting PLWH

Direct effects of Tat References

AIDS-associated tumors
Kaposi’s sarcoma Proliferation, migration and invasion of KS cells [48, 49, 92, 101–110]

Recruitment of HHV-8-infected circulating KS cells; HHV-8 reactivation from 
latency; increase of tumor progression induced by HHV-8-encoded oncopro-
teins

Induction of inflammatory cytokines/adhesion marker expression in endothelial 
cells and KS cells

Induction of inflammatory cell adhesion and extravasation
Induction of angiogenesis and vascular permeability in synergy with bFGF or 

inflammatory cytokines, by activating MMPs and cell-cycle progression in 
endothelial cells

Increased survival by promoting Bcl-2 expression in endothelial cells
Cervical carcinoma Disruption of epithelial tight junctions and HPV entry into epithelium by activa-

tion of integrin and MAPK signaling
[111–116]

Transactivation of the HPV long control region and increase of HPV-E7 expres-
sion

Upregulation of HPV-E6 expression and decrease of p53 protein levels
Lymphoproliferative disorders Enhancement of EBV-driven B cell proliferation [117–122]

Induction of mutagenic DNA repair h-polymerase
Repositioning of the MYC locus near the immunoglobulin heavy chain gene 

locus in B cells with increased risk of chromosomal translocation
High rate of mutation leading to B cell malignancies

Comorbidities
Cardiovascular diseases Modulation of adhesion molecules expression, with increased vascular adhesion 

of monocytes and endothelial dysfunction associated with atherosclerosis, coro-
nary artery disease, myocarditis, and hypertrophic cardiomyopathy

[123–126]

Decrease of endothelium-dependent vasorelaxation and endothelial NOS produc-
tion in coronary arteries

Nephropathy Increase of glomerular permeability by altering cytoskeleton organization and 
nephrin distribution in human podocytes

Renal expression of HIV genes, bFGF and VEGF-A

[127, 128]

Osteoporosis Reduced differentiation of bone marrow osteoblast precursor stem cells into 
osteoblastic cells

[129–131]

Upregulation of osteoclast bone resorption
Enhanced osteoclast differentiation

Enteropathy Pro-oxidant and pro-apoptotic effects on colonic epithelial cells and consequent 
disruption of intestinal barrier integrity

[132–134]

Direct anti-proliferative effects on enterocytes, with intestinal mucosal atrophy
Increased excitability of the enteric nervous system

Pulmonary disease Suppression of CFTR with alteration of mucociliary clearance
Release of reactive oxygen species and activation of platelet-derived growth fac-

tor with development of pulmonary hypertension

[135–137]

CNS neuropathy Disruption of the blood-brain barrier and neuronal synapses [126, 128, 138–141]
Increased expression of inducible NOS and NO release in astrocytes, microglia, 

and brain endothelial cells, with induction of oxidative stress, mitochondrial 
injury, and inflammation

Involvement in the development of HIV-1-associated neurocognitive disorders
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HIV-1 Tat has been implicated directly in the pathogen-
esis of AIDS-associated tumors, such as Kaposi’s sarcoma 
(KS), cervical cancer, and lymphoproliferative disorders, 
while only indirect evidence is available for those tumors 
whose risk is only modestly increased during HIV infec-
tion, such as lung and liver cancer (non-AIDS-defining 
cancers). In particular, Tat promotes the migration, inva-
sion, and proliferation of KS cells and activated endothe-
lial cells [48, 49, 92, 101–106] (Table 1). This is due to the 
ability of Tat to mimic and/or enhance the effects of extra-
cellular matrix molecules, which regulate and enhance 
the effects of angiogenic growth factors on endothelial 
cell growth and locomotion through RGD-binding inte-
grins that function as Tat receptors [50, 101–103]. Tat 
also induces angiogenesis and vascular permeability in 

synergy with angiogenic factors or inflammatory cytokines 
by activating matrix metalloproteinases (MMPs) [92] and 
promotes the recruitment of HHV-8-infected circulating 
KS cells into tissues [103], triggers HHV-8 reactivation 
from latency, and accelerates tumor progression induced 
by HHV-8-encoded oncoproteins [107–110] (Table 1).

Moreover, among the various effects in the other AIDS-
associated tumors, Tat can also interact with several onco-
genes. For example, it upregulates HPV-E6 and -E7 onco-
protein activity in cervical cancer, thus increasing cell 
proliferation and survival and angiogenesis [111–116], and 
it promotes Myc repositioning near the immunoglobulin (Ig) 
heavy chain locus in normal B cells, thus increasing the risk 
of specific chromosomal translocations during lymphom-
agenesis [117–122] (Table 1).

Abbreviations: KS, Kaposi’s sarcoma; HHV, human herpes virus; bFGF, basic fibroblast growth factor; MMPs, matrix metalloproteinases; bcl-2, 
B-cell lymphoma 2; HPV, human papillomavirus; MAPK, mitogen-activated protein kinases; EBV, Epstein-Barr virus; JCV, John Cunningham 
virus; CMV, cytomegalovirus; TNFα, tumor necrosis factor alpha; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; HSV-
1, herpes simplex virus 1; BCG, bacillus Calmette–Guérin; TGF- β1, transforming growth factor β1; IL-10, interleukin 10; TLR, Toll-like recep-
tor; VEGF-A, vascular endothelial growth factor A; NOS, nitric oxide synthase; NO, nitric oxide; HIV, human immunodeficiency virus; CFTR, 
cystic fibrosis transmembrane conductance regulator; T-bet, T-box  expressed on T cells; Eomes, eomesodermin; hTERT, human telomerase 
reverse transcriptase

Table 1   (continued)

Direct effects of Tat References

Chronic immune activation and aging Involvement in production of proinflammatory cytokines by dendritic cells and 
monocytes/macrophages

[62, 63, 75, 142–144]

Activation of CD4+ T cells, inducing the release of proinflammatory cytokines 
and the expression of transcription factors such as T-bet and Eomes

Alteration of functionality of CD8+ T cells through the induction of T-bet, Eomes 
and Blimp-1 expression

Immune senescence by impairment of hTERT levels and telomerase activity in 
CD4+ T cells

Opportunistic infections
Viruses Transactivation of heterologous viral promoters (JCV, CMV, HHV-6) directly or 

indirectly through TNFα-induced NF-κB signaling
[145–151]

Interaction with HSV-1 ICP0 to induce HIV-1 transcription and translation in 
HIV-1/HSV-1-coinfected cells

Increased viral replication and/or protein translation in HHV-8, HHV-6, or BKV-
infected cells

Bacteria Increased Mycobacterium avium replication efficiency in macrophages through 
integrin binding and increased production of TGF- β1

[152–160]

Synergy with Mycobacterium smegmatis, BCG, Mycobacterium avium, and 
Mycobacterium tuberculosis to enhance HIV-LTR transcription

Enhanced bacterial proliferation through binding the promoters of genes regulat-
ing cell division (Escherichia coli and Pseudomonas aeruginosa)

Protozoa and fungi Increased uptake and growth of Leishmania and other intracellular parasites by 
inducing TGF- β1 or IL-10 expression

Reduced clearance of Cryptosporidium parvum by modulation of TLR transla-
tion in infected cholangiocytes

Binding to Candida albicans and accelerated germination and elongation
Increased phagocytosis of Tat-bound and serum-opsonised Candida albicans by 

monocytes
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Individuals with HIV also have a disproportionate risk 
of various comorbidities to which the Tat protein appears to 
contribute. In particular, Tat plays an important role in HIV-
related cardiac dysfunction by modulating the expression of 
adhesion molecules on the endothelium and facilitating the 
adhesion of monocytes [123]. This leads to vascular inflam-
mation and endothelial dysfunction, which is associated with 
the pathogenesis of cardiovascular complications affecting 
PLWH, including atherosclerosis, coronary artery disease, 
myocarditis, and hypertrophic cardiomyopathy [124–126] 
(Table 1). Tat may also contribute to functional alterations 
occurring in HIV-associated nephropathy by altering glo-
merular permeability and by inducing the redistribution and 
loss of nephrin in podocytes [127, 128] (Table 1). By inter-
fering with osteoblastic differentiation and enhancing osteo-
clast differentiation, Tat also contributes to increased osteo-
penia/osteoporosis affecting PLWH [129–131] (Table 1). Tat 
also plays a key role in HIV-1-associated intestinal disorders, 
as it alters the expression of many genes regulating survival 
and growth of enterocytes and the excitability of the enteric 
nervous system, contributing to the gut dysfunction that has 
been described in HIV patients [132–134] (Table 1). Moreo-
ver, Tat may be implicated in pulmonary complications in 
PLWH by altering mucociliary clearance and contributing 
to the development of pulmonary hypertension [135–137] 
(Table 1). Tat is also known to induce neurotoxicity by dis-
rupting the blood-brain barrier and neuronal synapses, pro-
moting oxidative stress in astrocytes, microglia, and brain 
endothelial cells, and activating inflammation, thus contrib-
uting to the development of HIV-1-associated neurocogni-
tive disorders [126, 128, 138–141] (Table 1). Finally, Tat 
is involved in overstimulation of the immune system and 
production of the high level of inflammatory responses seen 
in HIV-infected patients, contributing to the exacerbation of 
several immune dysfunctions observed during disease pro-
gression, such as chronic immune activation and premature 
aging [62, 63, 75, 142–144] (Table 1).

HIV-1 Tat has also been shown to interact with various 
opportunistic pathogens during AIDS progression, increas-
ing the incidence and severity of infections. In this context, 
Tat can increase the transcription of the genomes of other 
viruses, such as John Cunningham virus (JCV) [145], cyto-
megalovirus (CMV) [145], and HHV-6 [146], either directly, 
by binding heterologous viral promoters, or indirectly, by 
activating the nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) signaling pathway through its 
binding to the tumor necrosis factor alpha (TNF-α) promoter 
(Table 1). Tat also modulates the transcription and transla-
tion of herpes simplex viruses, and of HHV-6 and HHV-8 
[146–151] (Table 1), which are considered cofactors for the 
development of several tumors, including nodular sclerosis 
Hodgkin lymphoma, gastrointestinal cancer, glial tumors, 
and/or KS.

Moreover, via its RGD motif, Tat can bind integrins pre-
sent on the surface of pathogens such as mycobacteria and 
fungi [152, 153] (Table 1). This binding increases mycobac-
terial replication efficiency and accelerates the germination 
and elongation of Candida albicans to form pseudohyphae, 
contributing to the increased severity of these opportunistic 
infections in HIV-infected patients [154–156]. In addition, 
HIV-1 Tat can cooperate with bacteria to synergistically 
enhance transcription from the HIV LTR and can regulate 
some bacterial gene expression and proliferation [157, 158] 
(Table 1). HIV-1 Tat has also been shown to interact with 
protozoa of the family Trypanosomatidae [159, 160]. It was 
reported to induce the uptake of Leishmania parasites and to 
increase their intracellular growth (Table 1). Thus, in HIV 
coinfections, Tat enhances infection and replication of both 
pathogens and HIV-1, further worsening the infectious bur-
den in the host.

Taken together, all of these findings provide a strong 
rationale for targeting Tat in intervention strategies aimed 
at improving the clinical management and the quality of life 
of PLWH, even in the cART era.

The Tat‑based concept for HIV vaccine 
development

Regulation of immune responses by HIV Tat

The biologically active Tat protein displays immunomodu-
latory features that make it an attractive antigen, alone or 
combined with other HIV proteins, for the design of new 
HIV vaccines [161–165]. In particular, native Tat protein is 
very efficiently taken up by monocyte-derived dendritic cells 
and, upon cellular entry, promotes DC maturation and acti-
vation, leading to a more efficient presentation of both allo-
geneic and exogenous antigens and resulting in an increased 
antigen-specific T cell response [52]. By modifying the cata-
lytic subunit composition of the immunoproteasome, the Tat 
protein broadens epitope-specific CTL and Th-1 immune 
responses to heterologous antigens [161–166]. Moreover, 
through its basic domain, Tat increases the surface expres-
sion of peptides complexed with MHC class I molecules 
[167], whereas dimerization promoted by the cysteine-rich 
region confers on Tat the capability to trigger strong immune 
response against itself as well as other antigens [168].

Taken together, these findings clearly demonstrate that 
Tat is not only an antigen but also a novel and potent immu-
noregulatory protein capable of promoting Th-1 responses 
and broadening the spectrum of epitopes recognized by T 
cells. This property may be important for the design of adju-
vant-free Tat-based vaccines, or for using Tat as an immu-
noregulator to improve the efficacy of other vaccines. It is 
noteworthy that co-immunization with Env and Gag proteins 
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together with Tat induces T-cell responses to all of these 
antigens, ruling out potential interference and providing evi-
dence that a vaccine formulation containing Tat and other 
relevant HIV target proteins is feasible, and it may have the 
advantage of controlling virus replication at both the early 
and late stages of the infection [165]. The inherent ability 
of Tat to broaden the T cell repertoire may indeed be par-
ticularly relevant in vaccination strategies against other viral 
infections or tumors. In fact, it is widely held that increasing 
the size and broadening the diversity of T cell responses to 
a given antigen would increase the efficacy of a vaccine and 
reduce epitope mutation and CTL escape [165, 166]. In this 
regard, vaccination with a live attenuated herpes simplex 
virus (HSV) vector expressing Tat increased memory CD8+ 
T cell responses against epitopes present in subjects without 
recurrences, who were therefore called “asymptomatic”, and 
it was considered protective, inducing anti-HSV IgG2a (an 
indicator of a Th1-driven B cell response) and protecting 
mice from death after a lethal challenge with wild-type HSV 
[142, 169–171]. In particular, Tat increases in vitro and in 
vivo IFN-γ, granzyme B, and interleukin-2 (IL-2) release 
[142, 144], and in mice, injection with Tat increases the 
frequency of HSV1-specific effector memory CD8+ T cells 
[142], which are associated with asymptomatic HSV infec-
tion in humans [172]. Finally, Tat upregulates expression 
of T-box in T cells (T-bet), Eomes, B lymphocyte-induced 
maturation protein 1 (Blimp-1), and Bcl-2 in activated CD8+ 
T cells [144], factors that are upregulated in HSV1-specific 
CD8+ T cells of asymptomatic but not symptomatic indi-
viduals [173]. Thus, inclusion of the tat gene in attenuated 
or replication-defective HSV1-based vectors is an innovative 
strategy for development of effective preventive and thera-
peutic HSV vaccines. Furthermore, administration of Tat 
to mice acutely infected with Mycobacterium tuberculosis 
(Mtb) significantly reduced leucocyte infiltration and tis-
sue damage in the lung, suggesting a modulatory role for 
Tat, also in the early response to Mtb, affecting tuberculosis 
pathogenesis [174].

Role of the immune response to Tat

Epidemiological evidence

Epidemiological studies have shown that asymptomatic 
patients and non-progressors have a higher prevalence of 
anti-Tat Abs than progressors [175], as shown by a slower 
and milder evolution of the disease and a better responsive-
ness to antiretroviral therapy. In particular, the presence 
of anti-Tat Abs correlates with a significant containment 
of CD4+ T cell loss and plasma viral load (VL) increases 
[175–183]. Regarding cell-mediated immunity, CTLs to 
Tat are frequently detected in asymptomatic HIV-1-infected 
individuals and have been shown to inversely correlate with 

progression to AIDS [184, 185]. Because HIV-infected 
cells express Tat very early after infection, vaccine-induced 
anti-Tat CTLs may eliminate infected cells and block HIV 
infection at an early stage. Furthermore, the detection of 
anti-Tat CTL escape mutants early after infection in humans 
highlights the selective pressure that the immune system 
exerts on Tat and the importance of anti-Tat CTLs early 
after infection [186, 187]. Thus, the control of HIV repli-
cation by CTLs targeted to early proteins, and in particu-
lar to Tat, is relevant for the containment of the infection 
and progression to disease. Indeed, we have very recently 
reported [188] that, in individuals on long-term ART, anti-
Tat immunity was associated with higher nadir CD4+ T-cell 
counts, control of low-level viremia, and long-lasting CD4+ 
T cell recovery, but not with decreased immune activation. 
In particular, individuals with both humoral responses and 
a high frequency of cell-mediated responses experienced a 
progressive increase in CD4+ T cells and the CD4+/CD8+ 
T-cell ratio. These changes were not observed in individu-
als lacking these responses. Furthermore, the cell-mediated 
response to Tat, alone or associated with the anti-Tat Ab 
response, was also found to be predictive of a significant 
increase in NK or B cells, respectively. Notably, the anti-Tat 
antibody level was associated with control of very-low-level 
viremia, suggesting a block of HIV reactivation from virus 
reservoirs by Abs targeting extracellular Tat [188].

Altogether, these studies indicate that both the cellular 
and humoral Tat-specific immune response contribute to the 
control of infection and/or disease progression.

Preclinical studies with a Tat‑based vaccine

Based on the above epidemiological evidence and its key 
role in the HIV life cycle and disease pathogenesis, the Tat 
protein was chosen as a vaccine candidate for preclinical 
and clinical development for the prevention and treatment 
of HIV-1 infection. In preclinical studies in nonhuman pri-
mates, the Tat protein or tat DNA were found to be safe 
and to elicit a broad and specific immune response, which 
protected macaques against challenges with the X4-tropic 
SHIV89.6P [189–194]. In particular, Tat-specific Ab levels 
and CD4+ and CD8+ T cell responses were high and stable 
only in the animals that controlled primary infection at its 
early stages. Of interest, vaccinated and protected macaques 
did not experience virus rebound upon administration of 
tetanus toxoid, a stimulus known to activate the immune 
system and to trigger HIV replication [192]. In addition, 
vaccinees, but not control animals, were able to contain a 
second, fivefold higher, intravenous challenge with the same 
virus upon initial overt infection [193]. Overall, these results 
indicate that vaccination with Tat had induced long-term 
memory Tat-specific immune responses, allowing long-term 
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containment of virus replication and spread in blood and 
tissues.

Co-immunization with Tat and other HIV antigens, par-
ticularly with Env, underscores the contribution of anti-Tat 
immunity to vaccine efficacy. In particular, no infection or 
a statistically significant reduction of viral load and provi-
ral DNA was observed in cynomolgus macaques that had 
been co-immunized with HIV-1 Tat and Env-ΔV2 (an oli-
gomeric gp140 protein deleted of the V2 region) proteins 
in a complex and challenged intrarectally with a high dose 
(70 MID50) of the R5-tropic SHIVSF162P4cy [35]. Rhesus 
macaques were immunized mucosally with replicating 
adenovirus vectors carrying the HIV-1 clade B tat and env 
transgenes and then boosted at the systemic level with the 
Tat and Env proteins. All macaques became infected follow-
ing intravenous challenge with a high dose of homologous 
SHIV-89.6P. However, macaques vaccinated with Tat/Env 
displayed a 4-log lower chronic viremia and experienced 
a mild CD4+ T cell loss as compared to control animals 
[195]. Furthermore, sterilizing immunity or control of infec-
tion was observed in rhesus macaques immunized with a 
multicomponent vaccine (multimeric HIV-1 clade C gp160, 
HIV-1 clade B Tat, and SIV Gag-Pol particles) delivered 
either systemically or mucosally and then challenged with 
the heterologous HIV-C env SHIV-1157ip [196]. The search 
for humoral correlates of protection identified anti-Tat Abs 
against the N-terminus of Tat as a relevant one, a finding 
corroborated by binding and functional assays [197]. Thus, 
in monkey models of efficacy, both humoral and cellular 
anti-Tat immunity plays a role in preventing infection and 
disease progression. Furthermore, Tat/Env co-immunization 
studies also indicate a role of Tat in modulating the immu-
nogenicity of Env towards potentially protective responses.

Clinical development: preventative and therapeutic phase 
I trials

Based on these results, preventative and therapeutic, double 
blind, placebo-controlled phase I trials with the biologi-
cally active Tat (ISS P-001, ClinicalTrials.gov Identifier: 
NCT00529698; ISS T-001, ClinicalTrials.gov Identifier: 
NCT00505401) were conducted in Italy, meeting both pri-
mary (safety) and secondary (immunogenicity) endpoints 
[198–200]. The Tat vaccine was safe and, in the HIV-
infected volunteers, did not induce virus replication, as 
indicated by preservation the of CD4+ T cell counts and 
by the absence of significant plasma viremia rebounds. The 
long-term follow-up (ISS OBS P-001, ClinicalTrials.gov 
Identifier: NCT01024764) showed the persistence of anti-Tat 
NAbs up to five years after the first immunization [199, 200].

A phase I preventive trial was also conducted with the 
combination of Tat and V2-loop-deleted Env (∆V2-Env) 
in Italy (ISS P-002, ClinicalTrials.gov Identifier: 

NCT01441193). This was a multicentric, open-label, phase 
I trial conducted in healthy volunteers to evaluate the safety 
and the immunogenicity of the vaccine based on the asso-
ciation of HIV-1 Tat and ∆V2-Env proteins, as compared 
to vaccination with single proteins. Tat and ∆V2-Env pro-
teins, either in association or as single components, were 
administered by a prime-boost regimen consisting of three 
intradermal priming doses followed by two intramuscular 
boosting injections. The Tat/∆V2-Env vaccination was 
safe and immunogenic, as indicated by the development of 
Ab responses to the vaccine antigen(s) in all participants 
[Ensoli, unpublished data]. Importantly, while the highest 
anti-Tat Ab response was detected in the subjects vaccinated 
with Tat alone, the highest anti-Env Ab responses were 
recorded in the volunteers co-immunized with Tat/∆V2-
Env, which is consistent with previous studies showing 
better priming provided by Tat-mediated entry of Env in 
dendritic cells [165].

Clinical development: therapeutic phase II trials

Moving forward, the therapeutic vaccination was prioritized 
over the preventive one as a shorter and more cost-effective 
route to proof of efficacy [201]. Therapeutic phase II trials 
for cART intensification were conducted in Italy and South 
Africa in patients on successful cART. The Italian phase II 
study (ClinicalTrials.gov Identifier: NCT00751595) was an 
exploratory phase II open-label therapeutic trial, randomized 
on the different regimens utilized [77, 78]. It enrolled 168 
HIV-infected (B clade) anti-Tat Ab-negative adults on long-
term (mean >6 years) cART who were virologically sup-
pressed, with CD4+ T cell counts ≥200 cells/mmc, and were 
vaccinated with 7.5 or 30 μg of the Tat protein (clade B) 
without adjuvant, administered intradermally 3 or 5 times, 
one month apart. Both primary (immunogenicity) and sec-
ondary (safety) endpoints were met. No increase in viro-
logical biomarkers was observed. The results also showed 
a reduction in immune activation and durable increases 
in CD4+ T cells, B cells, NK cells, and CD4+ and CD8+ 
central memory T cell subsets, with a reduction in effector 
memory cells, indicating a shift of the immune response 
towards homeostasis [77]. None of these changes were 
observed in anti-Tat-Ab-negative subjects on effective cART 
enrolled in a parallel observational study at the same clini-
cal centers (ISS OBS T-002) (ClinicalTrials.gov Identifier: 
NCT01024556) [77, 78]. Of note, Tat immunization induced 
a reduction of HIV-1 DNA load in blood, especially in vol-
unteers receiving 30 μg of Tat, given three times, that con-
tinued throughout the 8-year follow-up (ClinicalTrials.gov 
Identifier: NCT02118168) [78, 202]. Tat-specific cellular 
responses also contributed to HIV proviral DNA reduction. 
Furthermore, the induction, upon vaccination, of CD38+/
HLA-DR+ CD8+ T cells and natural killer (NK) cells 
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endowed with killer activity against virus-infected cells may 
have also contributed to the reduction of the virus reservoir. 
cART intensification by the Tat vaccine was durable, as the 
increase in CD4+ T cells persisted during the 8-year follow-
up and was accompanied by a progressive, slow decrease in 
HIV proviral DNA in the peripheral blood, which became 
undetectable in 34% of all vaccinees and in 48% of vol-
unteers in the group receiving 30 μg of Tat three times 
[202]. These results indicate that the induction of anti-Tat 
immune responses intensifies cART efficacy and attacks the 
cART-resistant virus reservoir. A confirmatory randomized, 
double-blind, placebo-controlled (randomization ratio, 1:1), 
safety and immunogenicity phase II therapeutic trial (ISS 
T-003, ClinicalTrials.gov Identifier: NCT01513135) was 
then conducted in South Africa in 200 HIV-infected (C 
clade) anti-Tat Ab-negative adults who were virologically 
suppressed, with CD4+ T cell counts ≥200 cells/mmc [203]. 
The clade-B Tat vaccine (30 μg) was administered intrader-
mally three times at monthly intervals. The vaccine was safe 
and induced durable and high titers of anti-Tat Abs that were 
capable of cross-recognizing the Tat protein from different 
HIV clades and cross-neutralizing both clade B and C HIV 
viruses. Cross-recognition and cross-neutralization corre-
lated with an increase in CD4+ T cell counts, a key target for 
cART intensification [203]. Of note, vaccination contained 
the VL rebound and maintained CD4+ T cell counts above 
the baseline levels in subjects who were noncompliant with 
therapy as compared to (noncompliant) placebo, suggesting 
that Tat vaccine intensification of cART may counterbal-
ance incomplete adherence to treatment [203]. An extended 
follow-up study of this trial (ISS T-003 EF-UP) is underway. 
Overall, the Tat vaccine study shows for the first time that 
cART can be intensified by therapeutic immunization and 
that the proviral DNA load can be progressively lowered.

Conclusions

So far, HIV vaccine design based on structural proteins has 
not been successful, nor have empirical vaccines, reinforcing 
the concept that a pathogenetic approach must be undertaken 
to identify key virulence factors to target with a vaccine. 
In particular, a “pathogenesis-driven” approach should be 
aimed at targeting key viral products responsible of virus 
transmission and activation and maintenance of virus reser-
voirs. For this, evidence provided by the natural history of 
infection and lessons from earlier trials are key.

Tat vaccination represents an example of a “pathogenic-
driven” intervention that is potentially effective for both 
preventative and therapeutic strategies, since it is aimed 
at blocking virus transmission and spread. The rationale 
is based on the evidence that HIV-1 Tat, which is neces-
sary for HIV gene expression, replication, and cell-to cell 

transmission, appears also to be critical in the initial steps of 
virus acquisition. In fact, it has been shown that Tat, which 
is present on virus particles, binds to Env spikes, promoting 
HIV infection of dendritic cells and spreading to T lympho-
cytes, even in the presence of anti-Env NAbs, and that anti-
Tat Abs are necessary to restore neutralization and prevent 
HIV dissemination, as demonstrated by virus containment 
at the site of inoculation in macaques vaccinated with Tat 
and Env-ΔV2 proteins and challenged intrarectally with the 
SHIVSF162P4cy, but not in control animals [35].

In a therapeutic setting, cART intensification by a Tat 
vaccine has proven effective at promoting immune sys-
tem restoration by improving CD4+ T cell recovery and 
immune system functions while reducing virus reservoirs 
and immune activation/dysregulation [77, 78, 202]. These 
combined effects may reduce the negative effects of non-
adherence to therapy on virus transmission, and hence global 
community VL, new infections, and drug resistance. Thus, 
an intervention that restores immune responses may allow 
periodic drug-free time.

The different therapeutic uses of Tat vaccination in HIV 
infection must be confirmed in dedicated trials to determine 
whether administration of Tat in patients receiving long-
term (late) cART can provide prolonged post-treatment 
control (extended drug-free periods with low or undetect-
able VL) in an analytic treatment interruption (ATI) trial, 
opening new perspectives for functional cure and eradica-
tion strategies. In this regard, the durability of the increase 
in CD4+ T cell count and the progressive decrease in HIV 
proviral DNA to undetectable levels observed in vaccinees 
over the 8-year follow-up [202] are promising, as a reduced 
proviral HIV-1 DNA load at study entry has been reported 
to be independently associated with a delayed and milder 
HIV-1 RNA rebound after ATI [204] and post-treatment 
control [205].

Moreover, in volunteers who were vaccinated with Tat 
toxoid and developed a high titer of Abs that neutralized Tat 
bioactivity, a prolonged off-therapy time was recorded in the 
2 years of follow-up [206]. Similarly, a delayed and weaker 
HIV RNA rebound was observed upon ATI in the volun-
teers immunized with Tat Oyi, who mounted strong immune 
responses against Tat [207]. Of note, the 33-μg dose was the 
most immunogenic and efficacious of the three doses tested 
(11, 33, and 99 µg) [207], which is in substantial agreement 
with our data from the ISS T-002 trial, in which the 30-μg 
dose of recombinant Tat protein gave the best results [78].

The Tat vaccine should also be evaluated in poor immu-
nological responders to determine whether it ameliorates 
the response to cART at the beginning of therapy, with the 
aim of reducing the time to a virological and immunologi-
cal response. It is also important to evaluate the Tat vaccine 
in HIV-infected cART-treated adolescents and children, as 
they face the longest time on antiretroviral treatment and 
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therefore are the ones most needing approaches ensuring 
virus control despite poor adherence, adoption of therapy 
simplification regimens, or prolonged time off-therapy. Fur-
thermore, Tat could be used as a co-treatment to improve 
the efficacy of pre-exposure prophylaxis. It will be very 
important to evaluate the effects of the Tat vaccine in these 
contexts on HIV DNA in lymphoid tissues and other com-
partments, as cART does not attack the latent HIV reservoir, 
to determine the impact of vaccination on solid-tissue HIV 
reservoirs and residual disease. If proven effective in phase 
III efficacy trials, cART intensification by the Tat vaccine 
will allow the public health system to better target resources 
towards more-advanced HIV care strategies. In fact, cART 
intensification by the Tat vaccine is expected to reduce the 
rate of treatment failure and the prevalence of AIDS and 
non-AIDS comorbidities and allow periodic drug-free time, 
particularly in infants, children, and adolescents facing life-
long cART and its severe side-effects, which can lead to 
low therapy adherence. Moreover, further depletion of the 
reservoirs of cART-resistant latent HIV resulting from Tat 
vaccination promises to blunt HIV rebound upon low adher-
ence, which is one of the main causes of the development of 
drug resistance and virus transmission. Notably, vaccination 
with Tat in “very early” treatment of acute infection could 
stall the expansion of HIV reservoirs, opening new perspec-
tives for a functional cure for HIV infection.

The generation of anti-Tat monoclonal Abs (mAbs) 
for immunotherapy should also be considered, as major 
advancements have been made in the generation and use of 
mAbs for immunotherapy [208]. In the few studies that have 
been conducted so far, mAbs generated in murine models 
and in humans upon vaccination with the Tat protein and 
directed against the amino terminus of Tat were effective 
at blocking Tat-induced transactivation and viral replica-
tion [209, 210], even across different Tat clades [211]. Thus, 
studies thoroughly addressing the protective effects of anti-
Tat mAbs, alone or in association with other therapeutic 
interventions (cART, broadly neutralizing Abs, latency-
reversing agents, etc.) in preclinical models and then in 
humans, are warranted.

Finally, the inherent Th-1- and CTL-promoting properties 
of Tat indicate the Tat may represent a new weapon that can 
be used as a vaccine against HIV/AIDS and as a potent Th-1 
regulatory protein for increasing the efficacy of vaccines 
against other intracellular pathogens, such as HSV and Mtb.
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