

Received 19 January 2015 Accepted 9 February 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; zinc coordination complex; luminescent properties; $\pi - \pi$ interactions

CCDC reference: 1048515 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure and luminescent properties of $[1-(biphenyl-4-yl)-1H-imidazole-\kappa N^3]$ dichloridozinc

CrossMark

Xiao-Xiao Liu and Yuan Wang*

Changchun University of Science & Technology, School of Chemistry and Environmental Engineering, Changchun 130022, People's Republic of China. *Correspondence e-mail: ywt1982@163.com

The mononuclear title compound, $[ZnCl_2(C_{15}H_{12}N_2)_2]$, was synthesized by reaction of zinc chloride and 1-(biphenyl-4-yl)-1*H*-imidazole (bpi) under hydrothermal conditions. The Zn^{II} atom is tetrahedrally coordinated by the free imidazole N atoms of two bpi ligands and by two Cl atoms. The bpi ligands are not planar, with dihedral angles of 37.52 (14) and 42.45 (14)° between the phenyl rings and 37.13 (14) and 40.05 (14)° between the phenyl rings and the attached imidazole rings, respectively. Mutual π - π interactions, with a centroid-to-centroid distance of 3.751 (2) Å between the phenyl and imidazole rings of neighbouring ligands, are present, leading to dimers that are arranged in rows parallel to [$\overline{211}$].

1. Chemical context

Metal coordination polymers constructed from organic ligands and metal cations have received attention because of their structural diversity and interesting physical and chemical properties, including adsorption, molecular separation, heterogeneous catalysis and non-linear optics (Sumida et al., 2012; Colombo et al., 2012; Henke et al., 2012). The development of such materials for various applications is reliant on the functionalities and modulations of the inorganic central atoms and the organic linkers. Materials constructed from d^{10} metal ions can be promising photoactive candidates (Lan et al., 2009; Oin et al., 2014). For example, a series of zinc- and cadmium-based coordination polymers were reported to be luminescent sensors for the detection of small organic molecules (Yi et al., 2012; Wang et al., 2013). On the other hand, the choice of the organic ligands or linkers is important for the supramolecular arrangement.

OPEN d ACCESS

Among the various organic ligands used for the construction of coordination polymers, nitrogen-donor species are dominant due to their strong affinities for binding metal atoms (Yang *et al.*, 2013, 2014). In particular, imidazoles are of great

Figure 1

The molecular structure of compound (I). Displacement ellipsoids were drawn at the 30% probability level.

interest for the construction of zeolite imidazolate frameworks, which exhibit high stability and practical applications (Phan et al., 2010). By further modification of imidazole ligands, various compounds with different structural set-ups have been reported, including one-dimensional, two-dimensional and three-dimensional architectures (Kan et al., 2012). Recently, two one-dimensional imidazole-based zinc complexes were synthesized by using 1.4-di(1H-imidazol-1vl)benzene (dib), and 1,3,5-tri(1*H*-imidazol-1-yl)benzene (tib) as ligands (Wang et al., 2014). To obtain further effects on the final structure by modification of the substituent of the imidazoles, 1-(biphenyl-4-yl)-1H-imidazole (bpi) was chosen as ligand and reacted with Zn^{2+} ions in this work, yielding the title compound $ZnCl_2(C_{15}H_{12}N_2)_2$, (I). Apart from the structure determination, its photoluminescent property is also reported.

2. Structural commentary

As shown in Fig. 1, the asymmetric unit of (I) consists of one zinc(II) cation, two bpi ligands and two chlorine ligands. The

Figure 1 Selected bond lengths (Å)

Zn1-N1	2.021 (2)	Zn1-Cl1	2.2258 (7)	
Zn1-N3	2.028 (2)	Zn1-Cl2	2.2447 (8)	

cation has a distorted tetrahedral coordination sphere defined by the free imidazole N atoms and two Cl atoms. The Zn–N and Zn–Cl bond lengths (Table 1) are typical for tetrahedrally coordinated Zn^{II}. The dihedral angles between the two phenyl rings in the two bpi ligands are 37.52 (14) and 42.45 (14)°, respectively, while the dihedral angles between the phenyl rings and the attached imidazole rings are 37.13 (14) and 40.05 (14)°.

Zn^{II}-based compounds with metal-organic framework structures are well-known for their luminescence properties. The photoluminescence spectrum of compound (I) in the solid state is shown in Fig. 2. On excitation at 278 nm, the emission band is centred at 350 nm. Compared to the free bpi ligand, which exhibits one main fluorescent emission band around 400 nm when excited at 271 nm, the emission band of complex (I) is about 50 nm hypochromatically shifted. Considering metal atoms with a d^{10} electron configuration and the bonding interactions with the ligand, such broad emission bands may be assigned to a ligand-to-ligand charge transfer (LLCT), admixing with metal-to-ligand (MLCT) and ligand-to-metal (LMCT) charge transfers (Gong *et al.*, 2011).

3. Supramolecular features

As mentioned before, the imidazole-based ligands dib and tib, featuring two and three imidazole rings, respectively, can adopt different structural dimensionalities. The bpi ligand used in this study, however, has only one available N-donor, thus preventing the formation of a polymeric structure. Nevertheless, there are weak intermolecular π - π stacking interactions between single molecules in the crystal packing. The terminal phenyl ring and the imidazole ring of a neighbouring ligand are tilted to each other by 11.72 (17)°, with a centroid-to-centroid distance of 3.751 (2) Å (Fig. 3).

Figure 3 View of the crystal structure along [010] emphasizing π - π interactions (dotted lines and inset).

research communications

Table 2Experimental details.

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal data	
$\begin{array}{lll} M_{\rm r} & 576.80 \\ {\rm Crystal system, space group} & {\rm Triclinic, $P{\rm I}$} \\ {\rm Temperature (K)} & 296 \\ a, b, c (Å) & 9.2410 (6), 9.2595 (5), 16.4106 (10) \\ \alpha, \beta, \gamma (^{\circ}) & 87.770 (1), 88.819 (1), 72.823 (1) \\ V (Å^3) & 1340.50 (14) \\ Z & 2 \\ {\rm Radiation type} & {\rm Mo} \ K\alpha \\ \mu \ ({\rm mm}^{-1}) & 1.14 \\ {\rm Crystal size (mm)} & 0.40 \times 0.30 \times 0.30 \\ \end{array}$	Chemical formula	$[ZnCl_2(C_{15}H_{12}N_2)_2]$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$M_{ m r}$	576.80
Temperature (K) 296 a, b, c (Å) 9.2410 (6), 9.2595 (5), 16.4106 (10) α, β, γ (°) 87.770 (1), 88.819 (1), 72.823 (1) V (Å ³) 1340.50 (14) Z 2 Radiation type Mo Kα μ (mm ⁻¹) 1.14 Crystal size (mm) 0.40 × 0.30 × 0.30 Data collection Bruker APEXII CCD area Diffractometer Bruker APEXII CCD area Absorption correction Multi-scan (SADABS; Bruker, 2008) T_{min}, T_{max} 0.658, 0.726 No. of measured, independent and observed [$I > 2\sigma(I)$] reflections 8564, 5308, 4067 $Rint$ 0.025 (sin $\theta/\lambda)_{max}$ (Å ⁻¹) 0.619 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00 No. of reflections 5308 No. of parameters 334 H-atom treatment H-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) 0.31, -0.35	Crystal system, space group	Triclinic, $P\overline{1}$
a, b, c (Å) 9.2410 (6), 9.2595 (5), 16.4106 (10) α, β, γ (°) 87.770 (1), 88.819 (1), 72.823 (1) V (Å ³) 1340.50 (14) Z 2 Radiation type Mo K α μ (mm ⁻¹) 1.14 Crystal size (mm) 0.40 × 0.30 × 0.30 Data collection Bruker APEXII CCD area Diffractometer Bruker APEXII CCD area Absorption correction Multi-scan (SADABS; Bruker, 2008) T_{min}, T_{max} 0.658, 0.726 No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 8564, 5308, 4067 $Rint$ 0.025 (sin $\theta/\lambda)_{max}$ (Å ⁻¹) 0.619 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00 No. of reflections 5308 No. of parameters 334 H-atom treatment H-atom parameters constrained $\Delta\rho_{max}, \Delta\rho_{min}$ (e Å ⁻³) 0.31, -0.35	Temperature (K)	296
α, β, γ (°) 87.770 (1), 88.819 (1), 72.823 (1) $V(Å^3)$ 1340.50 (14) Z 2 Radiation type Mo $K\alpha$ μ (mm ⁻¹) 1.14 Crystal size (mm) 0.40 × 0.30 × 0.30 Data collection Bruker APEXII CCD area detector Absorption correction Multi-scan ($SADABS$; Bruker, 2008) T_{min}, T_{max} 0.658, 0.726 No. of measured, independent and observed [$I > 2\sigma(I)$] reflections 0.025 R_{int} 0.025 $(sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.619 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00 No. of reflections 5308 No. of parameters 334 H-atom treatment H-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)	a, b, c (Å)	9.2410 (6), 9.2595 (5), 16.4106 (10)
$ \begin{array}{lll} V(\mathring{A}^3) & 1340.50 (14) \\ Z & 2 \\ \text{Radiation type} & \text{Mo } K\alpha \\ \mu (\text{mm}^{-1}) & 1.14 \\ \text{Crystal size (mm)} & 0.40 \times 0.30 \times 0.30 \\ \end{array} $ Data collection Diffractometer & Bruker APEXII CCD area detector \\ \text{Absorption correction} & \text{Multi-scan } (SADABS; Bruker, 2008) \\ T_{\text{min}}, T_{\text{max}} & 0.658, 0.726 \\ \text{No. of measured, independent and observed } [I > 2\sigma(I)] \text{ reflections} \\ R_{\text{int}} & 0.025 \\ (\sin \theta/\lambda)_{\text{max}} (\mathring{A}^{-1}) & 0.619 \\ \end{array} Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.037, 0.091, 1.00 \\ \text{No. of reflections} & 5308 \\ \text{No. of parameters} & 334 \\ \text{H-atom treatment} & \text{H-atom parameters constrained} \\ \Delta\rho_{\text{max}}, \Delta\rho_{\text{min}} (e \mathring{A}^{-3}) & 0.31, -0.35 \\ \end{array}$	α, β, γ (°)	87.770 (1), 88.819 (1), 72.823 (1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$V(Å^3)$	1340.50 (14)
Radiation typeMo Kα μ (mm ⁻¹)1.14Crystal size (mm)0.40 × 0.30 × 0.30Data collectionBruker APEXII CCD area detectorDiffractometerBruker APEXII CCD area detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2008) T_{min}, T_{max} 0.658, 0.726No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections R_{int} 0.025 0.619Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00 S308No. of parameters334H-atom treatment L -atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	Z	2
$\begin{array}{lll} \mu \ (\mathrm{mm}^{-1}) & 1.14 \\ \mathrm{Crystal size} \ (\mathrm{mm}) & 0.40 \times 0.30 \times 0.30 \\ \end{array}$ Data collection Diffractometer Absorption correction $\begin{array}{lll} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	Radiation type	Μο Κα
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mu (\mathrm{mm}^{-1})$	1.14
Data collectionBruker APEXII CCD area detectorDiffractometerBruker APEXII CCD area detectorAbsorption correctionMulti-scan (SADABS; Bruker, 2008) T_{min}, T_{max} 0.658, 0.726No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections8564, 5308, 4067 R_{int} 0.025 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.619Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	Crystal size (mm)	$0.40 \times 0.30 \times 0.30$
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Data collection	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Diffractometer	Bruker APEXII CCD area detector
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2008)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections8564, 5308, 4067 R_{int} 0.025 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.619Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.037, 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	Tmin Tmax	0.658, 0.726
observed $[I > 2\sigma(I)]$ reflections R_{int} 0.025 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.619Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.037 , 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	No. of measured, independent and	8564, 5308, 4067
R_{int} 0.025 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.619 Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.037 , 0.091 , 1.00 No. of reflections 5308 No. of parameters 334 H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³) 0.31 , -0.35	observed $[I > 2\sigma(I)]$ reflections	···· , ··· , ···
$\begin{aligned} & (\sin^{m} \theta / \lambda)_{max} (\text{\AA}^{-1}) & 0.619 \end{aligned}$ Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.037, 0.091, 1.00 \\ \text{No. of reflections} & 5308 \\ \text{No. of parameters} & 334 \\ \text{H-atom treatment} & \text{H-atom parameters constrained} \\ \Delta \rho_{max}, \Delta \rho_{min} (\text{e} \text{\AA}^{-3}) & 0.31, -0.35 \end{aligned}$	Rint	0.025
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.619
Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.037, 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35		
$R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.037, 0.091, 1.00No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	Refinement	
No. of reflections5308No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.091, 1.00
No. of parameters334H-atom treatmentH-atom parameters constrained $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.31, -0.35	No. of reflections	5308
H-atom treatment H-atom parameters constrained $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å ⁻³) 0.31, -0.35	No. of parameters	334
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3}) $ 0.31, -0.35	H-atom treatment	H-atom parameters constrained
	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.31, -0.35

Computer programs: *APEX2* and *SAINT* (Bruker, 2008), *SHELXS97* and *SHELXL97* (Sheldrick, 2008), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

4. Synthesis and crystallization

All chemicals were purchased commercially and used without further purification. A mixture of $ZnCl_2$ (81.6 mg, 5 mmol), bpi (130 mg, 0.6 mmol), and de-ionized water (9 ml) was loaded into a 20 ml Teflon-lined stainless steel autoclave. The autoclave was sealed and heated at 423 K for 5 d, and then cooled to room temperature by switching off the furnace. Colourless block-shaped crystals were isolated, which were filtered off and washed with de-ionized water. The final product was dried at ambient temperature (yield 75% based on zinc). Analysis calculated (wt%) for $ZnCl_2(C_{15}H_{12}N_2)_2$: C, 62.47; H, 4.19; N, 9.71. Found: C, 62.45; H, 4.15; N, 9.79.

Elemental analyses of C, H, and N were conducted on a Perkin–Elmer 2400 elemental analyser. The photoluminescence (PL) excitation and emission spectra were recorded with an F-7000 luminescence spectrometer equipped with a xenon lamp of 450 W as an excitation light source. The photomultiplier tube voltage was 400 V, the scan speed was 1200 nm min^{-1} , both the excitation and the emission slit widths were 5.0 nm.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were positioned geometrically with C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{ea}(C)$.

References

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., Barea, E. & Navarro, J. A. R. (2012). J. Am. Chem. Soc. 134, 12830–12843.
- Gong, Y., Li, J., Qin, J.-B., Wu, T., Cao, R. & Li, J.-H. (2011). Cryst. Growth Des. 11, 1662–1674.
- Henke, S., Schneemann, A., Wütscher, A. & Fischer, R. A. (2012). J. Am. Chem. Soc. 134, 9464–9474.
- Kan, W. Q., Yang, J., Liu, Y. Y. & Ma, J. F. (2012). CrystEngComm, 14, 6934–6945.
- Lan, A., Li, K., Wu, H., Olson, D. H., Emge, T. J., Ki, W., Hong, M. & Li, J. (2009). Angew. Chem. Int. Ed. 48, 2334–2338.
- Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M. & Yaghi, O. M. (2010). Acc. Chem. Res. 43, 58–67.
- Qin, J. S., Zhang, S. R., Du, D. Y., Shen, P., Bao, S. J., Lan, Y. Q. & Su, Z. M. (2014). *Chem. Eur. J.* 20, 5625–5630.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). *Chem. Rev.* 112, 724–781.
- Wang, H., Yang, X. Y., Ma, Y. Q., Cui, W. B., Li, Y. H., Tian, W. G., Yao, S., Gao, Y., Dang, S. & Zhu, W. (2014). *Inorg. Chim. Acta*, 416, 63–68.
- Wang, H., Yang, W. T. & Sun, Z. M. (2013). *Chem. Asian J.* **8**, 982–989. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.
- Yang, W. T., Yi, F. Y., Li, X. D., Wang, L., Dang, S. & Sun, Z. M.
- (2013). *RSC Adv.* **3**, 25065–25070.
- Yang, W., Yi, F. Y., Tian, T., Tian, W. G. & Sun, Z. M. (2014). Cryst. Growth Des. 14, 1366–1374.
- Yi, F. Y., Yang, W. T. & Sun, Z. M. (2012). J. Mater. Chem. 22, 23201– 23209.

supporting information

Acta Cryst. (2015). E71, 272-274 [doi:10.1107/S2056989015002807]

Crystal structure and luminescent properties of [1-(biphenyl-4-yl)-1*H*imidazole- κN^3]dichloridozinc

Xiao-Xiao Liu and Yuan Wang

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

[1-(Biphenyl-4-yl)-1*H*-imidazole-κN³]dichloridozinc

Crystal data [ZnCl₂(C₁₅H₁₂N₂)₂] $M_r = 576.80$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.2410 (6) Å b = 9.2595 (5) Å c = 16.4106 (10) Å a = 87.770 (1)° $\beta = 88.819$ (1)° $\gamma = 72.823$ (1)° V = 1340.50 (14) Å³ Z = 2F(000) = 592

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.658, T_{\max} = 0.726$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.091$ S = 1.005308 reflections #Added by publCIF __symmetry_space_group_name_hall '-P 1' #Added by publCIF __audit_update_record $D_x = 1.429 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2594 reflections $\theta = 2.3-24.3^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.40 \times 0.30 \times 0.30 \text{ mm}$

8564 measured reflections 5308 independent reflections 4067 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -20 \rightarrow 17$

334 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 0.3283P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.014$
-	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.49124 (3)	1.09677 (3)	0.333749 (18)	0.04334 (11)
N3	0.5776 (2)	0.8683 (2)	0.33926 (13)	0.0451 (5)
N1	0.2746 (2)	1.1586 (2)	0.37469 (13)	0.0472 (5)
N2	0.0780 (2)	1.2196 (2)	0.45740 (13)	0.0452 (5)
N4	0.6993 (2)	0.6477 (2)	0.28944 (12)	0.0418 (5)
C28	0.6686 (3)	0.7984 (3)	0.28125 (16)	0.0466 (6)
H28A	0.7072	0.8475	0.2395	0.056*
C25	0.7889 (3)	0.5422 (3)	0.23310 (15)	0.0414 (6)
C10	-0.0104 (3)	1.2386 (3)	0.53170 (16)	0.0456 (6)
C7	-0.1776 (3)	1.2747 (3)	0.67615 (16)	0.0452 (6)
C22	0.9495 (3)	0.3553 (3)	0.11331 (15)	0.0420 (6)
C30	0.6209 (3)	0.6192 (3)	0.35697 (16)	0.0475 (6)
H30A	0.6190	0.5249	0.3778	0.057*
C26	0.7462 (3)	0.4182 (3)	0.21310 (17)	0.0476 (6)
H26A	0.6641	0.3970	0.2391	0.057*
C12	-0.0612 (3)	1.1433 (3)	0.66213 (17)	0.0506 (7)
H12A	-0.0385	1.0662	0.7021	0.061*
C27	0.8274 (3)	0.3254 (3)	0.15356 (17)	0.0487 (7)
H27A	0.7994	0.2407	0.1401	0.058*
C16	1.0323 (3)	0.2598 (3)	0.04652 (16)	0.0453 (6)
C24	0.9140 (3)	0.5714 (3)	0.19650 (16)	0.0483 (7)
H24A	0.9449	0.6530	0.2122	0.058*
C23	0.9918 (3)	0.4791 (3)	0.13708 (17)	0.0477 (6)
H23A	1.0750	0.4999	0.1120	0.057*
C6	-0.3160 (3)	1.4297 (3)	0.79101 (18)	0.0519 (7)
H6A	-0.2935	1.5135	0.7674	0.062*
C29	0.5470 (3)	0.7554 (3)	0.38738 (16)	0.0492 (6)
H29A	0.4851	0.7704	0.4336	0.059*
C11	0.0216 (3)	1.1242 (3)	0.59019 (17)	0.0523 (7)
H11A	0.0983	1.0349	0.5816	0.063*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C1	-0.2672(3)	1 2018 (3)	0 75330 (16)	0 0447 (6)
C14	0.2072(3) 0.1475(3)	1 2263 (3)	0.33028 (18)	0.0447(0) 0.0524(7)
H144	0.1475 (3)	1.2205 (5)	0.2740	0.0524 (7)
C8	-0.2076(3)	1.2454	0.2740	0.003
	-0.2861	1.3875 (3)	0.61320 (17)	0.0517 (7)
CO	-0.1236(2)	1.4737 1 2712 (2)	0.0220 0.54385 (17)	0.002°
	-0.1230(3) -0.1432	1.3/13(3)	0.54565 (17)	0.0509 (7)
C2	-0.1432	1.4495	0.3044 0.78062 (17)	0.001°
	-0.3043(3)	1.1702 (3)	0.78962 (17)	0.0549 (7)
H2A	-0.2/25	1.0/6/	0.7655	0.066*
	0.9543 (4)	0.2104 (3)	-0.01281 (18)	0.0578(7)
HI7A	0.8490	0.2377	-0.0108	0.069*
C15	0.2278 (3)	1.1556 (3)	0.45106 (17)	0.0511 (7)
H15A	0.2907	1.1144	0.4948	0.061*
C5	-0.3974 (3)	1.4436 (3)	0.86282 (19)	0.0605 (8)
H5A	-0.4282	1.5365	0.8876	0.073*
C4	-0.4337 (4)	1.3225 (4)	0.89823 (19)	0.0631 (8)
H4A	-0.4887	1.3327	0.9468	0.076*
C21	1.1894 (3)	0.2188 (3)	0.0417 (2)	0.0629 (8)
H21A	1.2441	0.2516	0.0802	0.075*
C13	0.0260 (3)	1.2647 (3)	0.38006 (17)	0.0550 (7)
H13A	-0.0737	1.3123	0.3650	0.066*
C3	-0.3876 (4)	1.1852 (3)	0.86102 (19)	0.0648 (8)
H3A	-0.4127	1.1025	0.8842	0.078*
C19	1.1853 (5)	0.0807 (4)	-0.0781(2)	0.0785 (11)
H19A	1.2369	0.0203	-0.1197	0.094*
C18	1.0313 (5)	0.1212 (4)	-0.07452 (19)	0.0727 (10)
H18A	0.9780	0.0887	-0.1138	0.087*
C20	1.2645 (4)	0.1285 (4)	-0.0208(2)	0.0775 (11)
H20A	1.3697	0.1002	-0.0237	0.093*
Cl2	0.62413 (8)	1.20582 (8)	0.41117 (4)	0.05347 (18)
Cl1	0.49053 (9)	1.16111 (8)	0.20162 (4)	0.05715 (19)
			0.20102(1)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04203 (18)	0.03878 (17)	0.04857 (19)	-0.01084 (13)	0.00502 (13)	-0.00512 (13)
N3	0.0478 (13)	0.0386 (11)	0.0492 (13)	-0.0136 (10)	0.0045 (10)	-0.0034 (10)
N1	0.0405 (12)	0.0491 (13)	0.0514 (14)	-0.0122 (10)	0.0002 (10)	-0.0024 (10)
N2	0.0361 (12)	0.0470 (12)	0.0510 (13)	-0.0098 (10)	0.0007 (10)	-0.0006 (10)
N4	0.0441 (12)	0.0333 (11)	0.0476 (12)	-0.0112 (9)	0.0013 (10)	0.0004 (9)
C28	0.0508 (16)	0.0366 (13)	0.0524 (16)	-0.0137 (12)	0.0069 (13)	0.0018 (12)
C25	0.0402 (14)	0.0333 (13)	0.0488 (15)	-0.0083 (11)	-0.0012 (11)	0.0006 (11)
C10	0.0345 (14)	0.0473 (15)	0.0549 (16)	-0.0118 (12)	0.0042 (12)	-0.0041 (12)
C7	0.0384 (14)	0.0457 (15)	0.0540 (16)	-0.0163 (12)	0.0006 (12)	-0.0039 (12)
C22	0.0388 (14)	0.0367 (13)	0.0499 (15)	-0.0105 (11)	-0.0033 (12)	0.0017 (11)
C30	0.0550 (16)	0.0392 (14)	0.0508 (16)	-0.0186 (13)	0.0026 (13)	0.0049 (12)
C26	0.0426 (15)	0.0400 (14)	0.0636 (18)	-0.0178 (12)	0.0088 (13)	-0.0035 (12)
C12	0.0483 (16)	0.0429 (15)	0.0568 (17)	-0.0083 (13)	0.0007 (13)	0.0026 (12)

C27	0.0476 (16)	0.0387 (14)	0.0646 (18)	-0.0195 (12)	0.0011 (13)	-0.0077 (12)
C16	0.0488 (16)	0.0374 (13)	0.0482 (15)	-0.0112 (12)	0.0033 (12)	0.0020 (11)
C24	0.0478 (16)	0.0431 (14)	0.0598 (17)	-0.0223 (13)	-0.0003 (13)	-0.0035 (13)
C23	0.0400 (14)	0.0460 (15)	0.0603 (17)	-0.0182 (12)	0.0048 (13)	-0.0004 (13)
C6	0.0478 (16)	0.0455 (15)	0.0633 (18)	-0.0151 (13)	0.0034 (14)	-0.0039 (13)
C29	0.0498 (16)	0.0513 (16)	0.0484 (16)	-0.0184 (13)	0.0058 (12)	-0.0016 (12)
C11	0.0436 (16)	0.0441 (15)	0.0628 (18)	-0.0031 (13)	0.0034 (13)	-0.0052 (13)
C1	0.0380 (14)	0.0466 (15)	0.0510 (16)	-0.0146 (12)	-0.0003 (12)	-0.0032 (12)
C14	0.0519 (17)	0.0507 (16)	0.0526 (16)	-0.0129 (14)	-0.0004 (14)	0.0039 (13)
C8	0.0433 (15)	0.0426 (15)	0.0662 (18)	-0.0085 (12)	0.0074 (14)	-0.0018 (13)
C9	0.0437 (15)	0.0459 (15)	0.0603 (18)	-0.0102 (13)	0.0029 (13)	0.0061 (13)
C2	0.0579 (18)	0.0512 (16)	0.0600 (18)	-0.0225 (14)	0.0058 (14)	-0.0088 (14)
C17	0.0657 (19)	0.0519 (17)	0.0575 (18)	-0.0206 (15)	-0.0001 (15)	0.0018 (14)
C15	0.0357 (14)	0.0621 (17)	0.0521 (17)	-0.0091 (13)	-0.0019 (12)	-0.0029 (13)
C5	0.0566 (18)	0.0575 (18)	0.067 (2)	-0.0145 (15)	0.0041 (15)	-0.0157 (15)
C4	0.065 (2)	0.072 (2)	0.0553 (18)	-0.0240 (17)	0.0111 (15)	-0.0064 (16)
C21	0.0498 (18)	0.0642 (19)	0.070 (2)	-0.0103 (15)	0.0076 (15)	0.0011 (16)
C13	0.0379 (15)	0.0604 (18)	0.0594 (18)	-0.0042 (13)	-0.0067 (13)	0.0069 (14)
C3	0.072 (2)	0.0609 (19)	0.066 (2)	-0.0288 (17)	0.0101 (17)	0.0021 (15)
C19	0.116 (3)	0.0500 (19)	0.064 (2)	-0.019 (2)	0.038 (2)	-0.0033 (16)
C18	0.112 (3)	0.0595 (19)	0.0515 (19)	-0.033 (2)	0.0074 (19)	-0.0057 (15)
C20	0.066 (2)	0.061 (2)	0.092 (3)	-0.0024 (18)	0.033 (2)	0.0075 (19)
Cl2	0.0559 (4)	0.0533 (4)	0.0553 (4)	-0.0217 (3)	-0.0010 (3)	-0.0073 (3)
Cl1	0.0716 (5)	0.0505 (4)	0.0496 (4)	-0.0188 (4)	0.0034 (3)	0.0002 (3)

Geometric parameters (Å, °)

Zn1—N1	2.021 (2)	C16—C17	1.391 (4)
Zn1—N3	2.028 (2)	C24—C23	1.368 (3)
Zn1—Cl1	2.2258 (7)	C24—H24A	0.9300
Zn1—Cl2	2.2447 (8)	C23—H23A	0.9300
N3—C28	1.314 (3)	C6—C5	1.374 (4)
N3—C29	1.377 (3)	C6—C1	1.388 (4)
N1-C15	1.319 (3)	C6—H6A	0.9300
N1-C14	1.367 (3)	C29—H29A	0.9300
N2-C15	1.339 (3)	C11—H11A	0.9300
N2—C13	1.372 (3)	C1—C2	1.381 (4)
N2-C10	1.441 (3)	C14—C13	1.343 (4)
N4C28	1.341 (3)	C14—H14A	0.9300
N4—C30	1.371 (3)	C8—C9	1.380 (4)
N4—C25	1.434 (3)	C8—H8A	0.9300
C28—H28A	0.9300	С9—Н9А	0.9300
C25—C26	1.373 (3)	C2—C3	1.377 (4)
C25—C24	1.384 (3)	C2—H2A	0.9300
C10-C11	1.370 (4)	C17—C18	1.379 (4)
С10—С9	1.376 (3)	C17—H17A	0.9300
C7—C12	1.389 (3)	C15—H15A	0.9300
С7—С8	1.388 (4)	C5—C4	1.367 (4)

C7—C1	1.486 (3)	С5—Н5А	0.9300
C22—C27	1.388 (3)	C4—C3	1.379 (4)
C22—C23	1.388 (3)	C4—H4A	0.9300
C22—C16	1.486 (3)	C21—C20	1.388 (4)
C30—C29	1.353 (4)	C21—H21A	0.9300
C30—H30A	0.9300	C13—H13A	0.9300
C26—C27	1.382 (3)	С3—НЗА	0.9300
C26—H26A	0.9300	C19—C18	1.361 (5)
C12—C11	1 382 (4)	C_{19} $-C_{20}$	1 366 (5)
C12—H12A	0.9300	C19—H19A	0.9300
C_{27} H27A	0.9300	C18—H18A	0.9300
C16-C21	1.390(4)	C_{20} H_{20A}	0.9300
010-021	1.590 (4)	C20—1120A	0.9500
N1—Zn1—N3	110.09 (9)	C5—C6—C1	120.7 (3)
N1—Zn1—Cl1	108.12 (7)	С5—С6—Н6А	119.7
N3—Zn1—Cl1	105.05 (6)	C1—C6—H6A	119.7
N1— $Zn1$ — $Cl2$	107.94 (7)	C30—C29—N3	109.4 (2)
N3—Zn1—Cl2	111.23 (7)	С30—С29—Н29А	125.3
Cl1— $Zn1$ — $Cl2$	114.33 (3)	N3—C29—H29A	125.3
$C_{28} N_{3} C_{29}$	1054(2)	C_{10} $-C_{11}$ $-C_{12}$	1192(2)
C_{28} N3 Z_{n1}	120.15(17)	C10-C11-H11A	120.4
C_{29} N3 Z_{n1}	13374(17)	C12— $C11$ — $H11A$	120.4
C15 N1 $-C14$	105.6(2)	C_{2}^{2} C_{1}^{2} C_{6}^{2}	1180(2)
C15 N1— $Zn1$	105.0(2) 127.00(18)	C_{2}^{-} C_{1}^{-} C_{7}^{-}	120.7(2)
C14 N1 $Zn1$	127.06 (19)	$C_{6} - C_{1} - C_{7}$	120.7(2) 121.3(2)
C15 N2 C13	106.9(2)	C13 - C14 - N1	121.3(2) 109.8(2)
$C_{15} = N_2 - C_{10}$	100.9(2) 126.2(2)	C_{13} C_{14} H_{14A}	105.8 (2)
$C_{13} = N_2 = C_{10}$	126.2(2) 126.9(2)	N1 C14 H14A	125.1
$C_{13} = N_2 = C_{10}$	120.9(2) 106.8(2)	C_{0} C_{8} C_{7}	123.1 121.5(2)
$C_{28} = N_{4} = C_{30}$	100.8(2) 124.6(2)	$C_{2} = C_{2} = C_{1}$	121.3(2)
$C_{20} = N_{4} = C_{25}$	124.0(2)	C_{7} C_{8} H_{8A}	119.5
C_{30} N_{4} C_{23} N_{4}	126.4(2)	$C_{1} = C_{0} = C_{0}$	119.5 110.2(2)
$N_{2} = C_{2} \otimes M_{2} \otimes A$	111.9 (2)	C10 = C9 = C8	119.5 (5)
N3-C20-H20A	124.0	C10-C9-H9A	120.3
N4—C28—H28A	124.0	C_{3} C_{2} C_{1}	120.3
$C_{20} = C_{23} = C_{24}$	120.8(2)	$C_3 = C_2 = C_1$	121.1(3)
$C_{20} = C_{25} = N_4$	120.1(2)	$C_3 - C_2 - H_2 A$	119.5
C24—C25—N4	119.0 (2)	CI - C2 - H2A	119.5
	120.8 (2)		120.7 (3)
C11 - C10 - N2	119.1 (2)		119.6
C9—C10—N2	120.0 (2)	С16—С17—Н17А	119.6
C12—C7—C8	117.5 (2)	NI	111.3 (2)
C12—C7—C1	120.8 (2)	NI-C15-H15A	124.4
C8—C7—C1	121.7 (2)	N2—C15—H15A	124.4
C27—C22—C23	117.6 (2)	C4—C5—C6	120.8 (3)
C27—C22—C16	121.7 (2)	C4—C5—H5A	119.6
C23—C22—C16	120.6 (2)	C6—C5—H5A	119.6
C29—C30—N4	106.4 (2)	C5—C4—C3	119.2 (3)
С29—С30—Н30А	126.8	C5—C4—H4A	120.4

N4—C30—H30A	126.8	С3—С4—Н4А	120.4
C25—C26—C27	118.8 (2)	C16—C21—C20	119.7 (3)
C25—C26—H26A	120.6	C16—C21—H21A	120.2
С27—С26—Н26А	120.6	C20—C21—H21A	120.2
C11—C12—C7	121.6 (3)	C14—C13—N2	106.4 (2)
C11—C12—H12A	119.2	C14—C13—H13A	126.8
C7—C12—H12A	119.2	N2—C13—H13A	126.8
C26—C27—C22	121.7 (2)	C2—C3—C4	120.2 (3)
С26—С27—Н27А	119.1	С2—С3—НЗА	119.9
С22—С27—Н27А	119.1	С4—С3—Н3А	119.9
C21—C16—C17	118.5 (3)	C18—C19—C20	120.3 (3)
C21—C16—C22	120.6 (3)	C18—C19—H19A	119.9
C17—C16—C22	120.8 (2)	С20—С19—Н19А	119.9
C23—C24—C25	119.4 (2)	C19—C18—C17	120.1 (3)
C23—C24—H24A	120.3	C19—C18—H18A	119.9
C25—C24—H24A	120.3	C17—C18—H18A	119.9
C24—C23—C22	121.5 (2)	C19—C20—C21	120.7 (3)
С24—С23—Н23А	119.2	С19—С20—Н20А	119.7
С22—С23—Н23А	119.2	C21—C20—H20A	119.7