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OBJECTIVE

With rising global prevalence of diabetic retinopathy (DR), automated DR screen-
ing is needed for primary care settings. Two automated artificial intelligence
(AI)–based DR screening algorithms have U.S. Food and Drug Administration
(FDA) approval. Several others are under consideration while in clinical use in
other countries, but their real-world performance has not been evaluated sys-
tematically. We compared the performance of seven automated AI-based DR
screening algorithms (including one FDA-approved algorithm) against human
graders when analyzing real-world retinal imaging data.

RESEARCH DESIGN AND METHODS

This was a multicenter, noninterventional device validation study evaluating a to-
tal of 311,604 retinal images from 23,724 veterans who presented for teleretinal
DR screening at the Veterans Affairs (VA) Puget Sound Health Care System (HCS)
or Atlanta VA HCS from 2006 to 2018. Five companies provided seven algorithms,
including one with FDA approval, that independently analyzed all scans, regard-
less of image quality. The sensitivity/specificity of each algorithm when classifying
images as referable DR or not were compared with original VA teleretinal grades
and a regraded arbitrated data set. Value per encounter was estimated.

RESULTS

Although high negative predictive values (82.72–93.69%) were observed, sensitiv-
ities varied widely (50.98–85.90%). Most algorithms performed no better than
humans against the arbitrated data set, but two achieved higher sensitivities, and
one yielded comparable sensitivity (80.47%, P 5 0.441) and specificity (81.28%,
P 5 0.195). Notably, one had lower sensitivity (74.42%) for proliferative DR
(P 5 9.77 � 10�4) than the VA teleretinal graders. Value per encounter varied at
$15.14–$18.06 for ophthalmologists and $7.74–$9.24 for optometrists.

CONCLUSIONS

The DR screening algorithms showed significant performance differences. These
results argue for rigorous testing of all such algorithms on real-world data before
clinical implementation.
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A major microvascular complication of
diabetes mellitus (DM) is diabetic reti-
nopathy (DR), which is the leading cause
of preventable blindness in working-age
Americans (1,2). If detected and man-
aged at an early stage, irreversible blind-
ness can be avoided (3). Therefore, the
American Academy of Ophthalmology
Preferred Practice Pattern recommends
that patients with DM undergo an annu-
al dilated retinal fundus examination,
and the American Diabetes Association
recommends dilated examinations every
2 years for patients with type 2 DM
without retinopathy (4,5). The global
prevalence of DM has tripled over the
past 20 years, affecting 151 million in
2000, 463 million in 2019, and a pro-
jected 700 million by 2045 (6). At this
rate, eye care providers who deliver rou-
tine screening will become overwhelmed
(7). Despite the effectiveness of telereti-
nal screening programs, these programs
are also costly and labor intensive
(2,8,9). Therefore, an inexpensive, accu-
rate, and automated method to triage
DR screening fundus photographs in the
primary care clinic setting would greatly
benefit providers, health care systems,
and patients.
Artificial intelligence (AI)–based algo-

rithms may provide promising solutions
to alleviate the DR screening burden.
Tufail and colleagues (10,11) have
shown that when used in DR screening
programs, AI algorithms can detect re-
ferable DR with high sensitivity and are
cost-effective compared with manual
grading, the current gold standard.
However, these studies predated the
era of deep learning, a machine learning
technique that has revolutionized reti-
nal image analysis. Currently existing
deep learning algorithms have demon-
strated performance similar to, or even
better than, human experts at various
classification tasks in DR (12,13). With
significant advances in powerful deep
learning algorithms, multiple companies
have developed automated DR screen-
ing systems that have garnered the at-
tention of the U.S. Food and Drug
Administration (FDA), and to date, two
AI-based screening algorithms have al-
ready been approved for use. As the
FDA considers approval of additional au-
tomated machine learning algorithms,
understanding their performance in
real-world, intended-use settings is be-
coming increasingly important (14). In

fact, the Center for Devices and Radio-
logical Health (the FDA division respon-
sible for regulating devices) prioritized
the use of big data and real-world evi-
dence for regulatory decision making in
its 2019 regulatory science report, citing
the need for validated methods of pre-
dicting device performance using real-
world data (15). In line with this ap-
proach, we aimed to compare the
performance of existing (either FDA ap-
proved or already in clinical use outside
the U.S. and/or submitted for FDA ap-
proval) fully automated AI-based algo-
rithms when screening for referable DR
using real-world clinical data from two
U.S. Veterans Affairs (VA) hospitals in
geographically and demographically dis-
tinct cities. These algorithms were
trained on unique, potentially limited
data sets, and we hypothesized that
their performance might decrease when
tested with a large amount of real-
world patient data. To our knowledge,
this is the largest deep learning valida-
tion study to date.

RESEARCH DESIGN AND METHODS

Study Design
This was a multicenter, noninterventional
device validation study that used images
acquired from the VA Puget Sound
Health Care System (HCS) and the Atlan-
ta VA HCS. The institutional review board
at the VA Puget Sound HCS approved
the trial protocol. A waiver of informed
consent was obtained for patient data
used in the study. All participants had a
diagnosis of DM and were not undergo-
ing active eye care for any eye diseases
and so were referred to the VA telereti-
nal DR screening program from 2006 to
2018. The overall study design is summa-
rized in Supplementary Fig. 1.

Image Acquisition and Grading
Process at the VA
At the VA, clinical photographs are
stored in the Veterans Health Informa-
tion System Technology Architecture
(VISTA) Imaging system, and corre-
sponding clinical data are deposited in
the corporate data warehouse. At each
encounter, at least four nonmydriatic or
mydriatic color fundus photographs (at
least two 45� images, one fovea cen-
tered, and at least two peripheral im-
ages) as well as an external color
photograph for each eye were obtained

using a Topcon TRC-NW8 fundus camera
(Topcon Medical Systems, Tokyo, Japan).
On average, nine photographs were
available per encounter, including an av-
erage of 3.5 retinal images. All images
were stored in JPG format and encapsu-
lated using Digital Imaging and Commu-
nications in Medicine per standard VA
VISTA processing for routine clinical care,
with no perturbations or additional com-
pression. The resolution of the images
ranged from 4,000 � 3,000 to 4,288 �
2,848 pixels. The images were manually
graded by VA-employed optometrists
and ophthalmologists using the Interna-
tional Clinical Diabetic Retinopathy Se-
verity Scale (ICDR) as follows: 0 5 no
DR, 1 5 mild nonproliferative DR
(NPDR), 2 5 moderate NPDR, 3 5 se-
vere NPDR, 4 5 proliferative DR (PDR),
and 5 5 ungradable image quality (16).
At the VA, referable DR is defined as the
presence of any DR (ICDR 1–4). The only
difference in the imaging protocols be-
tween the two sites was the regular use
of pharmacological pupillary dilation in
all patients in Atlanta, which was not
routinely performed at the Seattle site.

In this study, all images in the full
data set were retrospectively acquired
from each VA hospital’s respective VISTA
Imaging system (with the same image
quality and format as available to telere-
tinal graders) and linked to clinical meta-
data from national and local VA
databases, which include the original VA
teleretinal grades for each image (17).
None of the images had been used
previously to train, validate, or test any
automated diagnosis system that partici-
pated in this study. Other than removing
all patient identifiers, no pre- or post-
processing was applied to any image be-
fore analysis by the AI algorithms. There
were no changes to the teleretinal DR
screening clinical pathway. All images
were available to the algorithms regard-
less of quality, including those that were
identified as ungradable by the VA tele-
retinal graders. The presence of any DR
was used as the threshold for referable
DR per VA standards (18).

Arbitration Data Set Sampling and
Grading
A subset of images was regraded using
double-masked arbitration by clinical ex-
perts. Two random subsets of the full
data set were created for regrading.
First, a consecutive sampling of images
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was used, and second, a balanced set that
included 50 images from each retinopathy
level and ungradable class by the original
VA teleretinal grade (obtained from the
Seattle and Atlanta data sets evenly) was
sampled. These two data sets were com-
bined (to provide enough data to power
the sensitivity analysis for the different dis-
ease thresholds described below) and pre-
sented to a board-certified comprehensive
ophthalmologist and two fellowship-
trained retina specialists who were
masked to the original grades as well
as to one another’s classifications
and who then graded the encounters
independently. Differences in opinion
were arbitrated by a retina specialist
who had the two differing grades but
did not know the identities of the
graders to avoid confirmation bias. At
no point during the arbitration pro-
cess did any grader have access to
the original VA teleretinal grades. The
graders read the images on 22-in.
1080p monitors using the same view-
ing system as the VA teleretinal
graders (certified Picture Archive and
Communication System for the stor-
age, viewing, and grading of medical
images). The graders were allowed to
manipulate the images, including
changing the brightness, contrast,
and zoom and generating a red-free
version. This final arbitrated set of
encounters was then used as the ref-
erence standard when comparing the
performance of the algorithms to the
VA teleretinal graders in screening for
referable DR.

AI Algorithms
We invited 23 companies with automat-
ed AI-based DR screening systems to
participate in this study: OphtAI, AEye,
AirDoc, Cognizant, D-EYE, Diagnos,
DreamUp Vision, Eyenuk, Google, IDX,
Intelligent Retinal Imaging Systems, Me-
dios Technologies, Microsoft Corpora-
tion, Remidio, Retina-AI Health, RetinAI
Medical, RetinaLyze System, Retmarker,
Singapore Eye Research Institute, SigTu-
ple Technologies, Spect, VisionQuest Bio-
medical, and Xtend.AI. The details of the
study were provided in a letter sent to
each company, including the threshold
for referable disease. Of the companies
approached, five completed the study:
OphtAI, AirDoc, Eyenuk, Retina-AI
Health, and Retmarker. A total of seven

algorithms were submitted for evalua-
tion in this study. Each company sent its
locked software preloaded on a worksta-
tion. Each system was masked to the
original VA teleretinal grades and inde-
pendently screened each image for refer-
able DR defined as any degree of DR
(ICDR grades 1–4) or unreadable encoun-
ters, without Internet connection. At the
end of the study, each workstation was
securely erased. As agreed upon before
study initiation, the identity of each com-
pany was masked along with its submit-
ted algorithms (labeled algorithms A–G).
The study methods were provided to the
participating companies upon request to
give them the opportunity to adjust their
software for the VA image acquisition
protocol. These details included but
were not limited to the camera system,
image format, image resolution, aspect
ratio, and number of photos per encoun-
ter. Each algorithm provided a binary
classification output of each encounter
as follows: 0 5 does not need to be re-
ferred or 1 5 should be referred for an
in-person eye examination because of
ungradable image quality or presence of
any DR. In addition, all algorithms in the
study either already had regulatory ap-
proval and/or were in active use in clini-
cal settings around the world.

Statistical Analysis
To evaluate the algorithms, the screen-
ing performance of each was calculated
using the original VA teleretinal grades
from Seattle and Atlanta (combined and
independently) as reference values. The
screening performance measures includ-
ed sensitivity, specificity, negative
predictive value (NPV), and positive pre-
dictive value (PPV). Then, a separate
analysis was performed using the arbi-
trated set of encounters as the refer-
ence standard. The sensitivity and
specificity of the original VA teleretinal
grades and those of each algorithm
were compared with the arbitrated data
set to evaluate their relative perfor-
mance using a paired exact binomial
test (19). In addition, to measure the
sensitivities of the algorithms for differ-
ent levels of disease severity, their per-
formance was compared with the VA
teleretinal graders at different disease
thresholds identified in the arbitrated
data set, including moderate NPDR or
worse, severe NPDR or worse, and PDR.

Since each of the algorithms provided the
binary output of no DR versus any DR,
we calculated the sensitivity of the image
subset for each disease severity without
including the ungradable images.

Value-per-Encounter Analysis
Using the arbitrated data set, algorithms
that performed no worse than the VA
teleretinal graders in detecting referable
DR in images marked as moderate
NPDR or worse were selected to under-
go a value-per-encounter analysis (20).
The value per encounter for each indi-
vidual algorithm was defined as the es-
timated pricing of each algorithm to
make a normal profit (i.e., revenue and
costs 5 0) if deployed at the VA. This
calculation was based on a two-stage
scenario in which an AI algorithm would
be used initially and then the images
that screened negative would not need
additional review by an optometrist or
ophthalmologist. An average of 10 min
per encounter was estimated as the
amount of time needed to open, re-
view, and write a report of the findings.
The National Plan and Provider Enumer-
ation System National Provider Identifi-
er database and the FedsDataCenter
database for fiscal year 2015 were used
to determine the mean salary of pro-
viders (ophthalmologists or optomet-
rists) per minute. The value per
encounter was calculated as follows:
value per encounter 5 [(10 min per en-
counter) � (mean salary of provider per
min) � (encounter not referred)] / (to-
tal encounters). The primary outcome
of our study was to evaluate the sen-
sitivity and specificity of each algo-
rithm compared with a human grader
when determining whether the pa-
tient should be referred for an in-per-
son ophthalmic examination on the
basis of the DR screening images tak-
en. Secondary end points included
measuring the sensitivity of each al-
gorithm against two random subsets
of independently regraded images to
permit estimation of the value per
encounter that was due to lower reli-
ance on expert human graders.

RESULTS

Patient Demographics and Image
Characteristics
Patient demographic information and
classification grades are summarized
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in Table 1. A total of 311,604 retinal
images were acquired from 23,724 ra-
cially diverse patients. In the Seattle
group, there was a higher prevalence of
mild NPDR compared with severe NPDR.
In contrast, a relatively higher number of
patients presented to Atlanta with ad-
vanced stages of DR, including severe
NPDR (1.17%) and PDR (1.47%), com-
pared with Seattle (0.50% and 0.10%, re-
spectively). More images from Seattle
(16.23%) were of ungradable image
quality compared with Atlanta (2.47%).

Automated DR Screening Performance
The sensitivity, specificity, NPV, and PPV
for each AI screening system were

calculated (using the original VA telere-
tinal grades as the reference standard)
and are summarized in Fig. 1. In the full
data set (Fig. 1A), sensitivity ranged
from 50.98 to 85.90%, specificity from
60.42 to 83.69%, NPV from 82.72 to
93.69%, and PPV from 36.46 to 50.80%.
Overall, the algorithms achieved higher
NPVs using the Atlanta data set (range
90.71–98.05%) (Fig. 1B) compared with
the Seattle data set (77.57–90.66%)
(Fig. 1C). In contrast, PPV ranged from
24.80 to 39.07% in the Atlanta data set,
which was lower than the Seattle data
set (42.04–62.92%).

A subset of 7,379 images from 735
encounters was regraded for the

arbitrated data set. Using the arbitrated
grades as the new reference standard,
the VA teleretinal graders achieved an
overall sensitivity and specificity of
82.22% (95% CI 80.80%, 83.63%) and
84.36% (83.02%, 85.70%), respectively
(Fig. 2A). When the algorithms were
evaluated in this subset, algorithm G
was the only one that did not perform
significantly worse in terms of both sen-
sitivity (80.47% [79.00%, 81.93%], P 5
0.441) and specificity (81.28% [79.84%,
82.72%], P 5 0.195) compared with the
VA teleretinal graders. Algorithms E and
F achieved higher sensitivities than the
VA teleretinal graders (92.71% [91.75%,
93.67%], P 5 1.25 � 10�6, and 92.71%
[91.75%, 93.67%], P 5 7.29 � 10�7, re-
spectively) but were less specific. Algo-
rithm A was the only one that achieved
higher specificity (90.00% [88.89%,
91.11%], P 5 2.14 � 10�2) than the VA
teleretinal graders. In moderate and se-
vere NPDR and PDR, the VA teleretinal
graders achieved a sensitivity of 100%
in gradable images. In moderate NPDR
or worse (Fig. 2B), algorithms E, F, and
G performed similarly to the VA telereti-
nal grader (P 5 0.500, 0.500, and
1.000, respectively), whereas algorithms
A–C had significantly lower sensitivities
(P < 0.03). In severe NPDR or worse
(Fig. 2C), only algorithms A and B per-
formed worse than the VA teleretinal
graders. With PDR, only algorithm A dif-
fered significantly from the VA telereti-
nal grader (P 5 9.77 � 10�4) (Fig. 2D).

Value per Encounter
Only algorithms E, F, and G achieved
comparable sensitivity to humans in de-
tecting referable disease in encounters
with moderate NPDR or worse; we re-
port the value-per-encounter analysis of

Table 1—Demographic factors and baseline clinical characteristics of the study
population

Seattle Atlanta Total

Patients, n 13,439 10,285 23,724

Age (years)
Mean (SD) 62.20 (10.91) 63.46 (10.14) 62.75 (10.60)
Range 21–97 24–98 21–98

Male sex 12,724 (94.68) 9,795 (95.24) 22,519 (94.92)

Race
White 9,482 (70.56) 4,678 (45.48) 14,160 (59.69)
African American 1,642 (12.22) 5,085 (49.44) 6,727 (28.35)
Asian 383 (2.85) 34 (0.33) 417 (1.76)
Other 605 (4.50) 90 (0.88) 695 (2.93)
Unknown 1,327 (9.87) 398 (3.87) 1,725 (7.27)

Encounters, n 21,797 13,104 34,901

Retinopathy grade
No DR 15,270 (70.05) 11,166 (85.21) 26,436 (75.75)
Mild NPDR 2,364 (10.85) 957 (7.31) 3,321 (9.51)
Moderate NPDR 494 (2.27) 311 (2.37) 805 (2.31)
Severe NPDR 110 (0.50) 153 (1.17) 263 (0.75)
PDR 22 (0.10) 193 (1.47) 215 (0.62)
Ungradable 3,537 (16.23) 324 (2.47) 3,861 (11.06)

Images, n 199,142 112,462 311,604

Data are n (%) unless otherwise indicated.

Figure 1—The relative screening performance of AI algorithms. Using the full-image data set (A), the sensitivity, specificity, NPV, and PPV of each al-
gorithm are shown using the original teleretinal grader as the reference standard. These analyses were repeated separately using color fundus pho-
tographs obtained from Atlanta (B) and Seattle (C).
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these algorithms only (Fig. 3). The value
per encounter of each algorithm was
similar regardless of location for both
ophthalmologists and optometrists. In
the combined Atlanta and Seattle data
set, the estimated value per encounter
for ophthalmologists was $15.14 (95%
CI $12.33, $17.95), $15.35 ($12.50,
$18.20), and $18.06 ($14.71, $21.41)
for algorithms E, F, and G, respectively.
For optometrists, the approximate value
of each respective algorithm on the
combined data set was $7.74 ($6.43,
$9.05), $7.85 ($6.52, $9.18), and $9.24
($7.67, $10.80).

CONCLUSIONS

In this independent, external, head-to-
head automated DR screening algorithm
validation study, we found that the
screening performance of state-of-the-
art algorithms varied considerably, with
substantial differences in overall perfor-
mance, even though all the tested algo-
rithms are currently being used clinically
around the world and one has FDA ap-
proval. Using the arbitrated data set as
the ground truth, the performance of
the VA teleretinal graders was excellent,
and no case of referable DR in images
of moderate NPDR or worse was

missed. In contrast, most of the algo-
rithms performed worse, with only
three of seven (42.86%) and one of sev-
en (14.29%) of them having comparable
sensitivity and specificity to the VA tele-
retinal graders, respectively. Only one
algorithm (G) had similar performance
to that of VA graders.

Overall, the algorithms had low PPVs
compared with the human teleretinal
grades, especially in the Atlanta data
set. Both NPV and PPV should be con-
sidered when evaluating the perfor-
mance of algorithms. For the purpose
of screening, high NPV has foremost

Figure 2—Relative performance of human grader compared with AI algorithms. The relative performance of the VA teleretinal grader (Human) and
algorithms A–G in screening for referable DR using the arbitrated data set at different thresholds of DR. A: Sensitivity and specificity of each algo-
rithm compared with a human grader with 95% CI bars against a subset of double-masked arbitrated grades in screening for referable DR in images
with mild NPDR or worse and ungradable image quality. B–D: Only gradable images were used. The VA teleretinal grader is compared with the AI
sensitivities, with 95% CIs, at different thresholds of disease, including moderate NPDR or worse (B), severe NDPR or worse (C), and PDR (D). *P #
0.05, **P# 0.001, ***P# 0.0001.
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importance to ensure that negative
cases indeed do not have DR, while
there should be a low threshold for in-
person evaluation for unclear cases,
possibly leading to low PPV. The differ-
ent predictive value results in the two
populations may also reflect differences
in disease prevalence: 14.79% of the At-
lanta population had DR compared with
29.95% of the Seattle population. The
lower DR prevalence in Atlanta likely in-
fluenced the lower PPV on the basis of
Bayes theorem, even though Atlanta
had a higher rate of more severe DR.
The algorithms performed better over-

all on the Atlanta data set compared with
Seattle, with fewer ungradable images,
which is likely associated with the use of
pharmacologic pupillary dilation (21). All
patients were routinely dilated before
screening in Atlanta (2.47% ungradable)
but not in Seattle (16.23% ungradable).
The majority of the participating algo-
rithms are designed for nonmydriatic reti-
nal imaging, but dilation requirements
may vary between screening centers, and
algorithms must be able to generalize.

The difference in the number of ungrad-
able images (fewer in the Atlanta data
set) may also be due to the Atlanta VA’s
imaging protocol, which involves exten-
sive technician training and retaking of
poor-quality images. In addition, while
the Seattle VA population was predomi-
nantly White (70.56%), nearly 50% of the
Atlanta patients were African American.
Different ethnic backgrounds may have
affected the quality of fundus photos be-
cause the background retinal and choroi-
dal pigmentation can vary substantially
(22). The performance difference be-
tween Atlanta and Seattle is significant
and highlights the potential lack of gener-
alizability of some algorithms.

Several reasons may explain the dis-
crepancy between our study results and
previously reported findings (13,23–28).
If studies use training data that are lim-
ited to a certain geographic and/or eth-
nic group, performance can decrease
when the algorithm is tested in a differ-
ent population (26). In addition, many
studies process or remove lower-
quality images from their analysis

(13,23–25,28). Studies that exclude un-
gradable images and/or patients with
comorbid eye disease (glaucoma, etc.)
do not reflect the real-world data set
where all images from all patients are
analyzed, which can lower the perfor-
mance of an algorithm (13,27). We
made all images available to the algo-
rithms, although some may analyze
more images per encounter than
others. Details of how most of these al-
gorithms are trained and developed are
not publicly available except for the two
FDA-approved algorithms, which require
two fundus images per eye.

The limited performance of most of
the algorithms in our study emphasizes
the need for external validation of
screening algorithms before their clinical
application. One of the seven algo-
rithms in our study has FDA approval,
four are in clinical use outside the U.S.
and have been submitted to the FDA
for approval, and several have a CE
marking. Nevertheless, most algorithms
performed similarly or even worse than
the VA teleretinal graders. The two algo-
rithms (E and F) that achieved superior
sensitivities than the VA teleretinal
graders had worse specificity for mild
DR or worse and ungradable image
quality. Additionally, none were better
than the human graders in identifying
referable disease when analyzed by DR
severity. In fact, the performance of al-
gorithm A was significantly worse than
that of the VA teleretinal graders at all
levels of DR severity. In this group of pa-
tients, algorithm A would miss 25.58%
of advanced retinopathy cases, an error
that can potentially result in severe vi-
sion loss. Because most of these algo-
rithms are already in clinical use, these
results are concerning. Implementation
of such algorithms in a real-world clini-
cal setting would pose a serious patient
safety hazard (28).

An important question regarding the
clinical implementation of these algo-
rithms is estimating their economic val-
ue (29). As an initial screening tool, the
appropriately selected algorithm could
reduce the burden on human graders
by eliminating images without retinopa-
thy; fewer images/encounters requiring
evaluation reduces costs. We only per-
formed an economic analysis of the al-
gorithms that did not perform worse
than the human VA teleretinal grader
(algorithms E, F, and G, which had

Figure 3—Value per encounter of AI algorithms meeting the sensitivity threshold. The value
per encounter with 95% CI bars of algorithms E, F, and G. Only algorithms that achieved equiv-
alent sensitivity to the VA teleretinal graders in screening for referable DR in images regraded
as moderate NPDR or worse in the arbitrated data set were carried forward. The value per en-
counter of each algorithm if optometrists (Optom) or ophthalmologists (Ophth) were to imple-
ment this system into their clinical practice to make a normal profit on the basis of
geographical location or the combined data set is shown. ATL, Atlanta; SEA, Seattle; TOT, total
(Atlanta and Seattle).

care.diabetesjournals.org Lee and Associates 1173



higher or equivalent sensitivities com-
pared with the teleretinal graders) in
screening for referable DR in images re-
graded as moderate NPDR or worse be-
cause the performance of these three
algorithms was closest to the current
standard of care. In addition, although
these models must achieve a level of
sensitivity that is safe for clinical use, a
model with high specificity translates to
additional labor savings that could be
interpreted as higher value per encoun-
ter. On the basis of the performance of
the three best algorithms and the mean
salary of eye care providers, we approxi-
mated the value of each DR screening
encounter to range from $15.14 to
$18.06 for a system with ophthalmolo-
gists as human graders and from $7.74
to $9.24 when optometrists are the
graders. Thus, if there are 100,000 an-
nual cases to be screened for DR, using
an acceptable automated algorithm as
the first step and relying on ophthalmol-
ogists to review only the ungradable
and abnormal cases detected by the al-
gorithm, the resulting annual labor sav-
ings would be $1,500,000–$1,800,000.
Interestingly, we found that the value
per encounter did not differ significantly
between Seattle and Atlanta, despite
the difference in PDR prevalence.

Several limitations exist in our study.
First, although the patients were from
geographically different sites and had
varying ethnic backgrounds, they were
predominantly older male (94.68%) veter-
ans, and almost all of them had type 2
DM. These factors may have affected the
performance of the algorithms, and addi-
tional validation in different populations
will be important. Second, it is possible
that in clinical practice, images may be
graded by both an algorithm and a hu-
man grader in a semiautomated fashion.
While this setup may improve sensitivity
and specificity, the semiautomated sys-
tem relies on the algorithm to first identi-
fy patients who require further screening
by the physician; hence, it is important to
evaluate its performance independently.
Furthermore, each tested algorithm was
designed to be fully automated, so we
used an all-AI scenario to evaluate the
performance and value of each algorithm.
Third, the threshold for referable DR in
the VA system does not distinguish be-
tween mild versus higher levels of DR,
while the referral threshold in many
health care systems is moderate DR or

worse. The results of the sensitivity analy-
sis for different thresholds of disease, in
which several algorithms were equivalent
to the human teleretinal graders, indicate
that these algorithms would be applicable
for health care settings that do not refer
for mild DR. In addition, the presence of
macular edema is a positive indicator of
diabetic disease, but unlike human read-
ers, the tested algorithms do not provide
an output for the presence/absence of
macular edema. Fourth, the results sug-
gest that the human graders may have
had lower sensitivity for mild NPDR com-
pared with the algorithms given that a
single microaneurysm or dot-and-blot
hemorrhage would cross the threshold
into mild NPDR. The use of double-
masked, arbitrated expert human grades
as the benchmark when comparing the
algorithms’ performance to the teleretinal
graders may be considered as a limita-
tion. However, current accepted reference
standards by regulatory bodies, such as
the FDA and AI literature, use expert hu-
man grading. We used double-masked,
arbitrated regrading by experts as our ref-
erence standard, and our experts had no
access to previous teleretinal grades, the
same as with the AI algorithms.

Another limitation of our study was
the relatively small number of companies
that participated. We agreed to mask the
identity of the algorithms to encourage
participation, but of the 23 companies
we approached, only 5 (21.74%) agreed
to participate (providing seven algo-
rithms for evaluation). Studies like ours
that validate algorithms using real-world
data sets will ultimately accelerate their
subsequent performance but will need
buy-in from all companies. New report-
ing guidelines recommend increasing
transparency about how AI devices are
trained and evaluated, including plans
for anticipating and mitigating risks upon
implementation (14,30,31). With greater
openness and participation, progress in
AI efficacy, safety, and science will ad-
vance the field, inspire innovation, and
benefit the global population.

The value-per-encounter analysis in
our study did not factor in fringe benefits
and indirect costs for optometrists and
ophthalmologists, and costs of graphics
processing unit servers were not includ-
ed. Additionally, the estimated value per
encounter is specific to the VA. Although
these automated systems are intended
for use with the teleretinal screening

system, we did not estimate the cost of
adding automated grading to the existing
VA teleretinal system, which would in-
clude the costs associated with integra-
tion and any additional computing
hardware needs. Many of the AI compa-
nies offer a cloud-based solution so that
the latter is less of a concern.

To our knowledge, this is the largest
AI-based DR screening algorithm valida-
tion study to date, modeling real-world
conditions by analyzing 311,604 color fun-
dus photographs from two geographically
diverse populations regardless of quality
and without any preprocessing or filter-
ing. Our study was powered to evaluate
the presence of referable disease in im-
ages with undiagnosed PDR. Unlike other
studies in which too few severe cases can
lead to oversampling of mild disease, our
large database did not require balancing
since it covers >10 years of clinical data
(16). Thus, unlike many studies reported
previously (12,13,32), we were able to as-
sess both PPV and NPV and acquire in-
sights into the relative performance of
the algorithms in regions with different
prevalence rates.

Although some algorithms in our
study performed well from a screening
perspective, others would pose safety
concerns if implemented within the VA.
These results demonstrate that automat-
ed devices should undergo prospective,
interventional trials to evaluate their effi-
cacy as they are integrated into clinical
practice, even after FDA approval. Ideal-
ly, validation data sets should include
real-world data sets representative of
where the algorithms will be deployed
so that they function well regardless of
variables such as race, image quality, di-
lation practices, and coexisting disease.
Automated screening systems are not
limited to DR and may be applicable for
other conditions, such as age-related
macular degeneration and glaucoma,
where earlier detection would likely im-
prove clinical outcome. Rigorous pre-
and postapproval testing of all such algo-
rithms is needed to sufficiently identify
and understand the algorithms’ charac-
teristics to determine suitability for clini-
cal implementation.
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