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Abstract

Background: New biomarkers of risk may improve breast cancer (BC) risk prediction. We developed a computational
pathology method to segment benign breast disease (BBD) whole slide images into epithelium, fibrous stroma, and fat. We
applied our method to the BBD BC nested case-control study within the Nurses’ Health Studies to assess whether computer-
derived tissue composition or a morphometric signature was associated with subsequent risk of BC. Methods: Tissue
segmentation and nuclei detection deep-learning networks were established and applied to 3795 whole slide images from
293 cases who developed BC and 1132 controls who did not. Percentages of each tissue region were calculated, and 615 mor-
phometric features were extracted. Elastic net regression was used to create a BC morphometric signature. Associations be-
tween BC risk factors and age-adjusted tissue composition among controls were assessed using analysis of covariance.
Unconditional logistic regression, adjusting for the matching factors, BBD histological subtypes, parity, menopausal status,
and body mass index evaluated the relationship between tissue composition and BC risk. All statistical tests were 2-sided.
Results: Among controls, direction of associations between BBD subtypes, parity, and number of births with breast
composition varied by tissue region; select regions were associated with childhood body size, body mass index, age of
menarche, and menopausal status (all P< .05). A higher proportion of epithelial tissue was associated with increased BC risk
(odds ratio¼1.39, 95% confidence interval ¼ 0.91 to 2.14, for highest vs lowest quartiles, Ptrend¼ .047). No morphometric
signature was associated with BC. Conclusions: The amount of epithelial tissue may be incorporated into risk assessment
models to improve BC risk prediction.

One in 8 women in the United States will develop breast cancer
(BC) in her lifetime (1). Although early detection is imperative,
identifying and lowering BC risk may help reduce BC morbidity
and mortality. BC risk factors may be nonmodifiable (eg, genet-
ics, dense breast tissue, and benign breast disease [BBD]) or
modifiable (eg, adiposity and alcohol consumption). Among
women diagnosed with BBD, the subsequent BC risk varies with
the subtype of BBD in this order: nonproliferative, proliferative

without atypia, and proliferative with atypia (2–4). Researchers
continue to identify new biomarkers of risk (2,3,5–8) as well as
update risk assessment models (9–13) to improve BC risk predic-
tion. For example, the well-validated Rosner–Colditz model
includes age at menarche, age at first birth, age at subsequent
births, age at menopause, family history of BC, body mass index
(BMI), alcohol intake, and postmenopausal hormone therapy
use (14). Recent studies demonstrated that the including of
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genetic risk variants, mammographic density, and endogenous
hormones improves the Rosner–Colditz model to predict BC risk
(11,12).

Technological advances have enabled the engineering of
deep-learning algorithms to analyze whole slide images (WSIs)
for disease detection and diagnosis (15-20), including discrimi-
nating between BC and benign breast tissue (21-23). For exam-
ple, terminal duct lobular unit (TDLU) involution assessed using
qualitative and semi-quantitative methods was suggested to be
linked to lower BC risk (24-27). We developed and applied an au-
tomated deep-learning method to capture quantitative meas-
ures of TDLU involution (28,29) in a large, nested case-control
study (30).

Here, we engineered another deep-learning method to seg-
ment BBD histopathological images into epithelial, fibrous
stroma, and fat regions; calculate the amount of each tissue re-
gion expressed as a percentage of total tissue; and extract mor-
phometric features from each region. We applied our method to
the BBD BC Nested Case-Control study within the Nurses’
Health Study (NHS) and NHSII to evaluate whether computer-
derived tissue composition or a morphometric signature in
women diagnosed with BBD was associated with subsequent
risk of BC.

Materials and Methods

Study Population

The NHS and NHSII participants completed questionnaires that
provided a medical history, diagnoses of BBD or BC, as well as
extensive information about demographic, lifestyle, reproduc-
tive, and dietary risk factors for BC (3,31-33). Details about the
study design methods for the NHS and NHSII have been pub-
lished previously (34). Eligible women with biopsy-confirmed
BBD were placed into 2 substudies—the BBD Incidence study
(35-38) and/or the BBD BC nested case-control study
(2,3,5,24,30,32,33,39-41). BC diagnosis was confirmed verbally by
the participant, via medical record review, or via the cancer reg-
istry. WSIs from women in the BBD Incidence study were used
in the development phase; the BBD BC nested case-control
study was used in the application phase. The study protocol
was approved by the institutional review boards of the Brigham
and Women’s Hospital and Harvard T.H. Chan School of Public
Health, and those of participating registries as required.

Engineering the Networks

The tissue segmentation network was engineered using 48 he-
matoxylin and eosin WSIs from the BBD Incidence study and a
custom 21-layer fully convolutional network (42-47) to segment
WSIs into background, epithelium (normal TDLUs, TDLUs
exhibiting proliferative or metaplastic changes, and various
BBD lesions), fibrous stroma (inter- and intra-lobular), and fat
(42-47) (Supplementary Table 1, available online). The nuclei de-
tection network was created using a set of previously annotated
30 hematoxylin and eosin BC WSIs from The Cancer Genome
Atlas (48) and a fully convolutional U-Net architecture (43) with
the sliding window approach (44). An example of an original im-
age, ground truth, and automated segmentation for each net-
work is presented in Figure 1. The majority of the precision,
recall, and Dice similarity coefficient values of the tissue seg-
mentation network and nuclei detection were greater than 0.75
(Supplementary Table 2, available online).

BBD BC Nested Case-Control Study Participants

The BBD BC Nested Case-Control study consisted of 293 cases and
1132 controls (Supplementary Table 3, available online). Cases
were women who had previously reported a BBD diagnosis and
were diagnosed with BC a median of 7.67 years after BBD diagnoses
(interquartile range ¼ 4.33-11.75 years). Tumor estrogen receptor
(ER) status was obtained from centralized review of breast tissue
microarrays (49). Controls were women diagnosed with BBD who
did not develop BC. Cases and controls were matched 1:4 on year
of BBD diagnosis, age at BC diagnosis (index date for controls), and
years between BBD and BC diagnosis (or index date). A total of 3795
slides were digitized at 20� (n¼ 213) or 40� magnification
(n¼ 3582). Each woman contributed between 1 and 4 WSIs (median
WSIs n¼ 3).

Central pathology review classified BBD lesion as nonproli-
ferative, proliferative without atypia, or proliferative with aty-
pia. Participant BMI, age at menarche, parity, age at first birth,
breastfeeding history, and menopausal status were obtained
from questionnaires of the participants closest to but before
BBD biopsy. The average body sizes at ages 5 and 10 years were
reported by using a 9-level pictogram (level 1 as leanest) (40).
Birth index, a surrogate metric that reflects the timing and spac-
ing of births, was calculated (50). A higher birth index indicates
a higher number of births occurring at earlier ages.

Applying Our Networks to the BBD BC Nested Case-
Control Study

Figure 2 shows an overview of our image analysis pipeline.
Briefly, tissue-containing areas were located for each WSI
(Figure 2, B), the WSI was split into patches of 2048 � 2048 pix-
els, tissue segmentation and nuclei detection were performed
(Figure 2, C), and each patch resulted as a segmentation map
with every pixel classified as epithelium, stroma, fat, or back-
ground (see Supplementary Methods, available online).

Each tissue region was expressed as a percentage of the total
amount of tissue analyzed for each woman. Pixels classified as
epithelium, stroma, or fat were individually summed across
patches from a single WSI, combined across WSIs pertaining to
each woman, and divided by the total number of pixels detected
across all tissue regions.

Because fat regions were mostly empty white spaces, fat and
stroma regions were combined as stroma for feature extraction.
Morphology, texture, and graph-based spatial features (ie,
computer-derived morphometric features; n¼ 615) were extracted
using the WSIs in conjunction with the automated tissue segmen-
tation and nuclei detection results (Figure 2, D) (51-55). For women
with more than 1 WSI, the value for each feature was further sum-
marized using the median calculated across all her WSIs. A mor-
phometric signature associated with BC was constructed using a
training set of 855 women (60%) and elastic net regularized regres-
sion model (see Supplementary Methods, available online) (56). A
signature score for each woman in the test set was computed.

Statistical Analysis

Preliminary assessments using Wilcoxon rank sum and
Kruskal-Wallis tests evaluated if there was any difference in tis-
sue composition between cases and controls and when strati-
fied by BBD histological subtypes. The associations between risk
factors and tissue composition (natural log-transformed)
among controls were assessed using analysis of covariance
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(ANCOVA) adjusting for age at BBD biopsy (emmeans R package
version 1.4.4) (57). Each tissue region was categorized into quar-
tiles as defined by the distribution among controls.
Unconditional logistic regression models accounting for the
matching factors to estimate odds ratios (ORs) and 95% confi-
dence intervals (CI) were used to determine the relationship be-
tween each tissue region (in quartiles) and BC risk (Figure 2, E).
Model 1 adjusted for matching factors (year of BBD biopsy, age
at index date, time between BBD biopsy and index date); model

2 adjusted for matching factors and BBD histological subtypes;
and model 3 adjusted for matching factors, BBD histological
subtypes, parity, menopausal status, and BMI. Analyses were
also conducted by stratifying the women according to BBD his-
tological subtype, parity, menopausal status, or BMI.
Polytomous logistic regression models assessed the association
between each tissue region and risk of BC defined by tumor ER
expression. The ratio of epithelium to fibrous stroma was calcu-
lated and log-transformed, and its association with BC risk was

Figure 1. An example of an original image, ground truth, and automated segmentation or detection for each deep-learning network. A) For tissue segmentation, white

represents background, green represents fibrous stroma, red is epithelium, and purple is fat. B) For cell nuclei detection, white represents background, red is nucleus,

and cyan is nuclei membrane border. The final output produces a binary mask that considers nucleus membrane pixels to be part of the background.

Figure 2. Overview of our benign breast disease image analysis pipeline. A) A whole slide image (WSI). B) Image processing to extract tissue-containing areas of the

WSI. C) Applying our tissue segmentation and nuclei detection networks created in the development phase to a WSI to obtain a segmentation map. D) From the seg-

mentation map, computer-derived morphometric features were extracted. Percentages of tissue regions were also computed from the map. Morphometric data were

summarized from all WSIs belonging to the same woman. E) Identifying if morphometric features are associated with breast cancer.
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evaluated using logistic regression models in all women and
women stratified by BBD histological subtype. The level of sta-
tistical significance used for all statistical tests was P less
than .05. All tests were 2-sided. All statistical analyses were per-
formed using R (see Supplementary Methods, available online).

Results

Preliminary Assessment of Breast Tissue Composition

Cases have statistically significantly more epithelium (P< .001;
Wilcoxon test) and suggestively more stroma (P¼ .07) than

controls; controls have statistically significantly more fat
(P< .001; Wilcoxon test) than cases (Figure 3, A). When stratified
by BBD histological subtypes, there were statistically significant
differences among cases and controls, or between cases and
controls for each tissue region (epithelium P< .001, stroma
P¼ .02, fat P< .001; Kruskal-Wallis tests; Figure 3, B-D).

Age-Adjusted Tissue Composition and Risk Factors
Among Controls

Table 1 displays the age-adjusted means (95% confidence inter-
vals) and the ANCOVA P values of the associations between risk

Figure 3. Boxplots display the amount of each tissue region (%) among cases and controls and when stratified by benign breast disease (BBD) histological subtypes. A) Cases

have more epithelium than controls (Wilcoxon test). Controls have statistically significantly more fat than cases (Wilcoxon test). When stratified by BBD histological sub-

types, there were statistically significant differences among cases or controls, or between cases and controls within epithelium P less than.001 (B), fibrous stroma P¼ .02 (C),

and fat P less than.001 (D) (Kruskal-Wallis tests). Statistically significant Kruskal-Wallis tests were further evaluated using Dunn’s post hoc tests with Benjamini-Hochberg

multiple testing method to obtain adjusted P values; only meaningful statistically significant comparisons within cases, controls, and between case and controls were indi-

cated in B, C, and D. Cases are represented by boxes with slanted lines. Controls are represented by clear boxes. Each box displays the median and the 25th and 75th percen-

tiles (upper and lower hinges). The lower whisker represents the smallest observation greater than or equal to the lower hinge: 1.5 * interquartile range (IQR); the upper

whisker represents the largest observation less than or equal to upper hingeþ 1.5 * IQR. The black dots represent outliers. All statistical tests were 2-sided.
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Table 1. Tissue composition and BC risk factors among 1132 controlsa

Risk factors No.
Epithelium, %

(95% CI)
Fibrous stroma, %

(95% CI)
Fat, %

(95% CI)

Mean age at BBD biopsy, y
<40 251 9.2 (8.5 to 10.0) 76.0 (74.3 to 77.7) 7.8 (6.9 to 8.8)
40-49 438 7.8 (7.3 to 8.3) 72.0 (70.8 to 73.2) 13.2 (12.0 to 14.4)
50-59 293 6.1 (5.7 to 6.6) 69.1 (67.7 to 70.5) 17.5 (15.6 to 19.6)
�60 150 5.0 (4.5 to 5.6) 63.5 (61.7 to 65.4) 23.9 (20.4 to 28.0)
P valueb <.001 <.001 <.001

BBD histological subtype
Nonproliferative 331 5.7 (5.3 to 6.1) 68.3 (67.0 to 69.7) 16.2 (14.6 to 18.0)
Proliferative without atypia 645 7.8 (7.5 to 8.2) 71.8 (70.9 to 72.8) 12.5 (11.6 to 13.5)
Atypical hyperplasia 156 8.0 (7.2 to 8.8) 72.8 (70.8 to 74.8) 13.3 (11.4 to 15.6)
P valueb <.001 <.001 <.001

Body size at age 5-10 y
Level 1 322 7.5 (7.0 to 8.0) 72.0 (70.6 to 73.4) 12.5 (11.2 to 14.0)
Level 1.5-2 290 7.1 (6.6 to 7.7) 71.8 (70.4 to 73.3) 12.8 (11.4 to 14.3)
Level �2.5 367 7.0 (6.5 to 7.5) 69.9 (68.6 to 71.2) 14.6 (13.2 to 16.2)
P valueb .42 .048 .09

BMI, kg/m2

<25 641 7.1 (6.8 to 7.5) 72.6 (71.6 to 73.6) 12.3 (11.4 to 13.3)
25 to <30 303 7.3 (6.7 to 7.8) 70.7 (69.3 to 72.1) 13.5 (12.1 to 15.0)
�30 173 7.2 (6.5 to 7.9) 65.5 (63.8 to 67.2) 19.8 (17.1 to 22.8)
P valueb .91 <.001 <.001

Mean age of menarche, y
�12 532 7.0 (6.6 to 7.4) 70.0 (68.9 to 71.0) 14.6 (13.5 to 15.9)
13 335 7.2 (6.7 to 7.7) 71.1 (69.7 to 72.5) 12.5 (11.3 to 13.9)
�14 260 7.4 (6.9 to 8.1) 72.8 (71.2 to 74.4) 13.0 (11.6 to 14.7)
P valueb .50 .01 .05

Parity
Nulliparous 107 5.2 (4.6 to 5.9) 73.8 (71.3 to 76.4) 9.7 (8.1 to 11.7)
Parous 1020 7.4 (7.1 to 7.7) 70.6 (69.8 to 71.4) 14.2 (13.3 to 15.0)
P valueb <.001 .02 <.001

No. of births
Nulliparous 107 5.8 (5.1 to 6.7) 75.8 (73.2 to 78.5) 8.1 (6.7 to 9.9)
Primiparous (1 birth) 97 7.0 (6.1 to 8.1) 73.4 (70.8 to 76.2) 12.6 (10.3 to 15.5)
Multiparous (�2 births) 923 7.3 (7.0 to 7.7) 70.1 (69.3 to 71.0) 14.6 (13.7 to 15.6)
P valueb .005 <.001 <.001

Time between last birth and BBD biopsy, y
0 (ie, nulliparous) 107 5.2 (4.6 to 5.9) 73.7 (71.2 to 76.3) 9.8 (8.1 to 11.8)
<20 (among parous women) 578 7.6 (7.1 to 8.0) 70.4 (69.2 to 71.5) 15.1 (13.8 to 16.5)
�20 (among parous women) 409 7.0 (6.5 to 7.5) 70.3 (68.8 to 71.8) 14.3 (12.8 to 16.1)
P valueb <.001 .04 <.001

Mean age at first birth among parous women, y
<25 563 7.1 (6.8 to 7.5) 70.5 (69.4 to 71.5) 14.8 (13.8 to 15.8)
25-29 359 7.7 (7.2 to 8.2) 69.6 (68.3 to 70.9) 14.4 (13.2 to 15.7)
�30 101 7.1 (6.3 to 8.1) 72.8 (70.3 to 75.4) 12.8 (10.9 to 15.0)
P valueb .19 .08 .27

Birth index among parous women
�30 229 7.4 (6.8 to 8.1) 72.0 (70.3 to 73.8) 13.3 (11.9 to 14.9)
31-59 281 7.7 (7.2 to 8.3) 71.5 (70.0 to 72.9) 13.8 (12.6 to 15.2)
�60 231 7.8 (7.2 to 8.6) 70.9 (69.2 to 72.6) 13.5 (12.1 to 15.0)
P valueb .65 .67 .85

Breastfeeding among parous women
Never 409 7.1 (6.7 to 7.5) 70.2 (69.0 to 71.4) 15.3 (14.1 to 16.5)
<6 mo 209 7.3 (6.7 to 8.0) 70.9 (69.2 to 72.6) 15.4 (13.8 to 17.2)
�6 mo 305 7.5 (7.0 to 8.1) 70.4 (69.0 to 71.8) 13.5 (12.3 to 14.8)
P valueb .47 .79 .09

Menopausal status
Pre 679 7.8 (7.3 to 8.2) 72.4 (71.2 to 73.5) 13.2 (12.0 to 14.4)
Post 365 6.3 (5.7 to 6.9) 68.8 (67.2 to 70.6) 13.7 (11.9 to 15.7)
P valueb .001 .004 .71

aData presented for age are means (95% CI). Data for other variables are presented as age-adjusted means (95% CI); age was adjusted as a continuous variable. ANCOVA

¼ analysis of covariance; BBD ¼ benign breast disease; BC ¼ breast cancer; BMI ¼ body mass index; CI ¼ confidence interval.
bThe P values were using ANCOVA adjusting for age at BBD biopsy.
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factors and the tissue composition among the controls.
Controls with the nonproliferative subtype of BBD had lower
percentages of epithelium and stroma but higher percentages of
fat than those with proliferative subtypes (all P< .001;
ANCOVA). Women with a larger childhood body size (levels 1.5-
2 and �2.5) had less stroma (P¼ .048; ANCOVA) compared with
women with body sizes of 1 or 1.5-2 at ages 5-10 years. Breast
tissues of women with a BMI of 30 or more at the time of BBD bi-
opsy had a lower amount of stroma (P< .001; ANCOVA) but
higher amount of fat (P< .001) compared with women with
lower BMI.

Parous women had more epithelium and fat and less stroma
compared with nulliparous women (all P< .05; ANCOVA). When
parous women were further subdivided, women who had 2 and
more births (multiparous) had more epithelium and fat but less
stroma than women who had 1 birth (primiparous) or nullipa-
rous women (P< .05). Women who had their last birth within
20 years had more epithelium and fat compared with nullipa-
rous women and women who had their last birth 20 and more
years before BBD diagnosis (P< .05). Postmenopausal women
had less epithelium (P¼ .001; ANCOVA) and stroma (P¼ .004)
compared with premenopausal women. The age of menarche
positively correlated with the amount of stroma (P¼ .01;
ANCOVA). Age at first birth, birth index, and breastfeeding were
not associated with breast tissue composition.

Tissue Composition and BC Risk

Higher percentages of epithelium were statistically significantly
associated with subsequent BC risk when accounting for match-
ing factors (OR¼ 1.53, 95% CI ¼ 1.04 to 2.27 comparing highest
and lowest quartiles, Ptrend¼ .02). On additional adjustment for
BBD histological subtype, parity, menopausal status, and BMI,
the association modestly attenuated but remained statistically
significant (OR¼ 1.39, 95% CI ¼ 0.91 to 2.14 comparing highest

and lowest quartiles, Ptrend¼ .047; Table 2). Neither the amount
of stroma nor fat was associated with BC risk (all Ptrend> .05;
Table 2).

Within the proliferative without atypia subtype of BBD,
women with percentage of epithelium in the fourth quartile
had a higher BC risk compared with women in the first quartile
(adjusted OR¼ 1.92, 95% CI ¼ 1.11 to 3.40, Ptrend¼ .01;
Supplementary Table 4, available online). In general, the associ-
ation between tissue regions and BC risk defined by tumor ER
expression demonstrated no heterogeneity. Fat was associated
with lower BC risk among ER-positive women in the crude
model 1 (second vs first tertile: OR¼ 0.62, 95% CI ¼ 0.42 to 0.92;
third vs first tertile: OR¼ 0.62, 95% CI ¼ 0.41–0.95, Ptrend¼ .04;
Supplementary Table 5, available online).

Further analyses were conducted to understand the substi-
tution effects by using each tissue region as a continuous vari-
able per 10% change and with 2 of the 3 tissue regions in the
model. The association between per 10% change of epithelium
and BC risk remained the strongest in fully adjusted models, ir-
respective of whether it was substituted for stroma (adjusted
OR¼ 1.30, 95% CI ¼ 1.05 to 1.61) or fat tissue (adjusted OR¼ 1.26,
95% CI ¼ 1.03 to 1.54; Supplementary Table 6, available online).
The ratio of epithelium to fibrous stroma was statistically sig-
nificantly associated with BC risk in the fully adjusted model
(OR¼ 1.29, 95% CI ¼ 1.05 to 1.59). When stratified by BBD histo-
logical subtype, the association of this ratio and BC risk only
remained statistically significant among women with nonproli-
ferative subtype of BBD (matching factor adjusted model 1
OR¼ 1.42, 95% CI ¼ 1.02 to 1.99; fully adjusted model 3 OR¼ 1.44,
95% CI ¼ 1.00 to 2.06; Supplementary Table 7, available online).

Morphometric Signature

The morphometric signature built using training data consisted
of 4 features in the epithelium (area under the receiver operator

Table 2. The association between tissue composition and BC risk was evaluated using unconditional logistic regression models to estimate
odds ratios and 95% confidence intervalsa

Tissue region Quartile 1 Quartile 2 Quartile 3 Quartile 4 Ptrend
b

Epithelium
Cases/controls, No. 56/283 65/283 68/283 104/283
Quartile cutoff, % <4.8 �4.8 to <7.5 �7.5 to <11.2 �11.2
Model 1, OR (95% CI) Ref 1.12 (0.76 to 1.67) 1.12 (0.75 to 1.67) 1.53 (1.04 to 2.27) .02
Model 2, OR (95% CI) Ref 0.95 (0.63 to 1.43) 0.92 (0.61 to 1.39) 1.36 (0.91 to 2.03) .06
Model 3, OR (95% CI) Ref 0.95 (0.61 to 1.49) 0.95 (0.61 to 1.49) 1.39 (0.91 to 2.14) .047

Fibrous stroma
Cases/controls, No. 62/283 67/283 78/283 86/283
Quartile cutoff, % <64.5 �64.5 to <73.5 �73.5 to <81.3 �81.3
Model 1, OR (95% CI) Ref 0.98 (0.66 to 1.45) 1.07 (0.73 to 1.57) 1.20 (0.81 to 1.76) .33
Model 2, OR (95% CI) Ref 0.87 (0.58 to 1.30) 0.96 (0.65 to 1.42) 1.07 (0.72 to 1.59) .65
Model 3, OR (95% CI) Ref 0.78 (0.51 to 1.20) 0.86 (0.56 to 1.31) 0.93 (0.61 to 1.41) .85

Fat
Cases/controls, No. 102/283 80/283 49/283 62/283
Quartile cutoff, % <8.7 �8.7 to <16.7 �16.7 to <27.0 �27.0
Model 1, OR (95% CI) Ref 0.81 (0.57 to 1.15) 0.55 (0.36 to 0.81) 0.75 (0.50 to 1.12) .11
Model 2, OR (95% CI) Ref 0.81 (0.56 to 1.15) 0.55 (0.36 to 0.82) 0.83 (0.55 to 1.25) .27
Model 3, OR (95% CI) Ref 0.83 (0.58 to 1.21) 0.56 (0.36 to 0.85) 0.93 (0.59 to 1.45) .52

aEach tissue region was categorized into quartiles as defined by the distribution among the controls. Model 1 adjusted for matching factors. Model 2 adjusted for

matching factors and BBD histological subtypes. Model 3 adjusted for matching factors, BBD histological subtypes, parity, menopausal status, and BMI. BC ¼ breast can-

cer; BBD ¼ benign breast disease; BMI ¼ body mass index; CI ¼ confidence interval; OR ¼ odds ratio.
bThe median value for each quartile was included as a continuous variable in the unconditional logistic regression for models 1, 2, and 3 to obtain the Ptrend value

(Wald test).
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curve [AUC ROC] ¼ 0.61, optimal k ¼ 0.08). When evaluated on
the test set of 570 women, the AUC ROC was 0.51. Due to the
poor AUC ROC of the test set, the association of the signature
score with BC was not further evaluated.

Discussion

The identification of new biomarkers may improve BC risk pre-
diction. We developed a deep-learning–based computational
pathology method to segment BBD histopathological images
into epithelial, fibrous stroma, and fat regions. Among women
who did not develop BC, BBD histological subtypes, parity, and
number of births were statistically significantly associated with
breast tissue composition; the direction of association varied by
tissue region. Select regions were associated with body size,
BMI, age of menarche, and menopausal status. Women whose
breast tissues had higher percentages of epithelium had a sta-
tistically significantly increased risk of BC compared with
women with lower percentages, especially among women with
proliferative without atypia subtype of BBD. The ratio of epithe-
lium to stroma was also statistically significantly associated
with BC risk, particularly among women with nonproliferative
subtype of BBD. We were unable to construct a BC morphomet-
ric signature. Our study showed that the percentage of epithe-
lium may be used as a potential biomarker of BC risk.

BBD and BC originate from TDLUs. The epithelium captured
by our computational method was all-encompassing. This
study was the first, to our knowledge, to demonstrate a direct
quantitative relationship between the percentage of epithelium
and BC risk in women diagnosed with BBD, supporting the long-
held hypothesis that elevated cellular mass increases cancer
risk (58). Some lesion types within the proliferative without aty-
pia subtype such as adenosis and radical scar are highly cellu-
lar, thus explaining why when stratified by BBD histological
subtype, the association of the percentage of epithelium and BC
risk remained statistically significant among those women. Our
study also demonstrated that the ratio of epithelium to fibrous
stroma may be an important measure to further refine the BC
risk among women with the nonproliferative subtype of BBD.

The associations of age-adjusted breast tissue composition
and BC risk factors among controls provided histopathological
evidence to support epidemiological studies, mainly by demon-
strating the link between breast tissue cellularity and cancer
risk (58). Our work suggests that risk factors have different influ-
ences on epithelium and stroma. Gertig et al. (59) evaluated the
proportion of epithelium and stroma in 300 BBD women who
did not develop BC. Our findings support Gertig et al. (59) by also
demonstrating that breast tissues associated with the nonproli-
ferative subtype of BBD were less cellular (ie, lower epithelium
and stroma but higher fat percentages) than proliferative sub-
types, thus partly explaining why women with the nonprolifer-
ative subtype have lower BC risk (4,39,60-62).

Adiposity during childhood or in young adults is inversely
associated with BC risk (63-65). Body adiposity is correlated with
the amount of breast fat when evaluated using percentage
mammographic density (ie, proportion of dense [epithelium
and stroma] to nondense tissues [fat]) (66,67). In 153 normal
breast tissue samples, Gabrielson et al. (68) observed statisti-
cally significant inverse associations of BMI with percentages of
epithelium and stroma. Our study and the study by Gertig et al.
(59), conducted using more participants, observed a statistically
significant inverse association only between BMI and propor-
tion of stroma. Nevertheless, all 3 studies provided histological

evidence to partially explain the differential BC risk by adipos-
ity; breast tissues of women with a larger childhood body size or
younger women with a BMI of 30 or more have lower overall cel-
lularity and thus are less dense compared with women with a
leaner childhood body size or women with lower BMI,
respectively.

Parity had the strongest influence on breast tissue composi-
tion among the reproductive risk factors investigated in our
study. Gertig et al. (59) and Gabrielson et al. (68) observed more
epithelium and less stroma in parous women compared with
nulliparous women. Our findings in multiparous women who
had a live birth within the last 20 years were similar to other
studies that observed less TDLU involution in parous vs nullipa-
rous women (30,69); supported epidemiological reports of in-
creased BC risk in parous women who had a live birth within
the last 5 to 24 years compared with nulliparous women (70);
and highlighted the extensive stroma remodeling in mammary
glands during pregnancy to accommodate expanding epithe-
lium (71). The correlation between age of menarche and propor-
tion of stroma reported by us and others (59,68) is in line with a
higher percent breast density in young women who had later
ages of menarche (72).

The null associations between age of first birth and length of
breastfeeding with breast tissue composition agreed with Gertig
et al. (59), whereas Gabrielson et al. (68) found an association be-
tween percentage of epithelium and length of breastfeeding,
but not percentage of stroma. Using our other method that
measures normal TDLUs, we also did not find an association be-
tween length of breastfeeding and TDLU involution (30). Older
women have less dense breasts than younger women, with the
greatest change in density occurring during the menopause
years (73). Indeed, we and Gertig et al. (59) reported that post-
menopausal women had less epithelium and stroma compared
with premenopausal women. However, this was not observed
by Gabrielson et al. (68), possibly due to low power.

Computer-derived morphometric signatures have shown
potential as prognostic or diagnostic biomarkers (17,18,74). We
did not identify a BC morphometric signature in women with
BBD. Morphometric feature data are typically noisy. In an effort
to reduce signal noise, we attempted unsuccessfully to create a
BC signature within each BBD histopathological subtype due to
low power. Extracting and combining morphometric features
from different types of epithelium may have diluted meaningful
signals. Using the median metric, a common method of aggre-
gating morphometric features (17), may not be optimal for this
dataset. There is no gold standard method for feature aggrega-
tion, and this remains an active area of research. Future work
can include improving methods for morphometric feature ag-
gregation or create specific BC morphometric signatures for
each type of BBD lesion.

The strengths of our study include the application of a com-
puter pathology method to assess breast tissue composition in
a large study with rich data on risk factors (2,3,24,32,33,40), BBD
samples underwent centralized pathology review, and BC cases
were confirmed through review of medical records. Some limi-
tations of our study include being underpowered to evaluate
the association of breast composition and ER-negative BC, BC
molecular subtypes (75,76), or mammographic density (77,78)
because mammogram data were available for only 105 women
(7.8%) in this study. Our findings were limited to White women,
the predominant race of the NHS and NHSII participants.
Dysfunctional epithelial-stroma interactions in the breast have
been implicated in breast carcinogenesis (79); however, our
study was not designed to investigate epithelium-stroma
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interactions. Lastly, the majority of our BBD biopsies were surgi-
cal biopsies, and the sampling of breast tissue may not be ran-
dom in nature—pathologists tend to oversample nonfatty
tissue for histological processing because firm and fibrous
regions are more likely to represent cancer. Although such se-
lection bias may result in misclassification or measurement er-
ror, this would have been conducted at the time of BBD biopsy
and is unlikely to be different between those who later devel-
oped BC and those who did not.

In conclusion, we found that BBD histopathological subtypes
and anthropometric and selective reproductive risk factors
were associated with breast tissue composition. Higher percen-
tages of epithelium were associated with increased risk of BC,
specifically among women with the proliferative without atypia
subtype of BBD. No morphometric signature was associated
with subsequent BC. Future work can include incorporation of
the percentage of epithelium into risk assessment models as
well as explore end-to-end deep-learning BC prediction models.
We can also conduct studies to understand how modifiable BC
risk factors modulate breast tissue composition.
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