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Abstract

Background: Free water (FW) in neuroimaging is non-flowing extracellular water

in the cranium and brain tissue, and includes both cerebral spinal fluid (CSF) and

fluid in intercellular space or edema. For a region such as a voxel (spatial unit of

measurement in neuroimaging), the FW fraction is defined as the volume fraction

of FW within that volume. Quantifying the FW fraction allows estimating

contamination by fluid of neuroimaging or magnetic resonance spectroscopy

measurements within a voxel.

New method: An upper limit to the fraction of FW within a voxel, based on any

diffusion tensor imaging (DTI) sequence including a standard single shell at one

b-value, can be derived from the standard diffusion tensor by scaling the third

eigenvalue of the diffusion tensor. Assuming a two-compartment model, the

diffusivity of a voxel is a combination of tissue and FW diffusivity. FW fraction

is FW volume divided by voxel volume. Assuming FW diffuses equally in all

directions, the diffusivity component is representable by a single, non-tensor

diffusivity value. Since the diffusivity of water is known for a given temperature,

and brain temperature is relatively constant, the FW diffusivity value can be

assumed constant. The third eigenvector of the voxel diffusion tensor is the

direction of least diffusivity and since the FW component of diffusivity is equal
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in all directions, we show that FW diffusivity cannot be lower than the third

eigenvalue. Assuming FW contributes proportionally to voxel diffusivity, we

show that the third eigenvalue divided by water diffusivity (as a constant based

on known water diffusivity at 36.7 �C) forms an upper limit on the FW-fraction

(fUL).

Results: We calculated fUL for 384 subjects from the IXI dataset. Values mostly

ranged from 0.1 to 0.6, and were closely related to radial diffusivity.

Comparison with Existing Methods: fUL is easily calculated from any DTI data,

but is not a true estimate of FW-fraction.

Conclusions: The fUL measure offers a starting point in calculating the true FW-

fraction of a voxel, or an easy-to-calculate voxel characteristic.

Keywords: Medical imaging, Neuroscience

1. Introduction

Free water in the context of neuroimaging refers to extracellular non-flowing water

in the cranium and brain tissue. Quantifying free water is of interest for estimating

cerebral spinal fluid (CSF) contamination and as an index measured within brain tis-

sue since it is sensitive to edema from pathologies. Free water is characterized by

uninhibited movement, and is present in CSF and vasogenic edema. A conceptual

approach to measuring free water is using diffusion tensor imaging (DTI) estimates

of water diffusivity to classify free water regions based on high diffusivity. If DTI

scans had sub-nanometer resolution, one could measure free water directly, since

most voxels could be categorized as being either water or tissue. However, at the cur-

rent practical voxel resolution of 1e3 mm in each dimension, a DTI voxel encom-

passes millions of cells and intercellular space, and will often include brain-CSF

boundaries. As a consequence, many voxels will present with partial volume effects,

and measures of diffusivity in a voxel reflect a contributions from tissue and free wa-

ter. The aim of DTI studies is usually to assess tissue structure, but contamination

from CSF and edema affect mean diffusivity and factional anisotropy values [1,

2]. Identifying and accounting for potential free-water contamination could lead to

better measures of tissue structure and higher fraction of intracellular water. An es-

timate of free water from DTI requires further calculations than standard processing

based on a voxel model comprising free water and tissue, termed a two-compartment

model [3]. Existing methods have been proposed to estimate the proportion of free

water within a voxel, termed the free water fraction f, based on the ratio of the vol-

ume of free water Vfw to the volume of the voxel Vvox (1):

f ¼ Vfw

Vvox
: ð1Þ
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However, these methods may not have single solutions [4, code no longer available],

leading to the need to solve an inverse problem with optimization, and approaches

may require the addition of non-standard DTI scans with specific parameters [5, 6,

7]. We therefore propose a method to provide an estimate related to free water con-

tent. Specifically, we present a calculation, based on any product DTI sequence,

which provides an upper bound to the free water fraction.

As background, the motivation to measure free water in the context of assessing CSF

contamination is present in several imaging modalities. For example, magnetic reso-

nance spectroscopy (MRS) involves large voxels (X/Y/Z dimensions of 5e15 mm)

with large partial volume effects, andMRSmeasures are highly influenced by the pro-

portions of tissue and free water in the voxel [8]. Neurochemical levels are usually

presented as a ratio of creatine, which is used as a marker of tissue cell content [9,

10], but the free water fraction would provide additional information, especially in

the context of diseases that alter creatine levels or chemicals in CSF. Theoretically,

free water fraction could help with interpretation of structural measures such as T2

relaxometry, voxel-based morphometry, cerebral blood flow with arterial spin label-

ling, and functional MRI. DTI itself involves measuring a tensor based on the direc-

tionality of water diffusion properties, and even at w1 mm resolution, DTI voxels

will have partial CSF components. Therefore, by extracting the free water fraction,

improved estimates of the tissue-specific tensor are possible [4]. A two-

compartment model was shown to allow for better estimation of tissue tensors [3].

Another motivation to measure free water fraction is its sensitivity to changes in

intracellular water and space that occur in pathologies associated with edema, or

inflammation, as well as atrophy [11]. Initial studies have found changes in free wa-

ter associated with aging [12], and diseases such as schizophrenia [13], multiple-

sclerosis [11], and Alzheimer’s disease [5]. An estimate related to free water would

be another quantitative MRI measure with which to assess neural pathology, or pro-

vide a starting point for free water calculation by another method.
2. Theory

2.1. Two-compartment model

Considering the underlying structure of the brain, two-compartment models have

been proposed, whereby the characteristics of a voxel tensor reflect the combina-

tion of components from different types of material [3]. Fig. 1 illustrates this

model in a hypothetical voxel, illustrating a brain-CSF boundary in an animal

model (Fig. 1, left panel). A voxel may include CSF and brain tissue, and within

brain tissue there may be edema, in addition to neurons and glial cells, vessels,

and other intercellular material or ependymal cells (Fig. 1, middle panel). Free

water exists both in CSF and throughout the tissue, but for the purposes of the
on.2018.e00700
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Fig. 1. Two-compartment model based on tissue and fluid in brain. Left panel shows image from animal

brain of boundary between brain tissue and CSF. Middle panel illustrates various tissue and fluid com-

ponents, which are simplified into the two-compartment model in the right panel. Note that the free water

compartment includes CSF and water in the tissue.
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model, we assume one compartment is free water and the other brain tissue

(Fig. 1, right panel).

Standard DTI measures are interpreted assuming a single compartment model. The

conventional DTI-derived diffusion tensor D represents the directional diffusivity of

water within a voxel [14], and this tensor forms the basis of most DTI analyses,

including calculation of structural indices and fiber or probabilistic tracking. The

most common formulation is a 3�3 matrix that is assumed to be symmetric (2):

D¼
2
4Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

3
5 ð2Þ

For a two compartment model, the diffusivity of a voxel Dvox is the combination of

diffusivities from tissue (Dt) and free water (Dfw) compartments (3):

Dvox ¼ ð1� f ÞDt þ fDfw; ð3Þ

assuming the voxel diffusivity is a linear function of compartment diffusivities [15].

Assuming the free water diffusion is equal in all directions [4], the tensor Dfw water

simplifies to (4):

Dfw ¼
2
4DW 0 0

0 DW 0
0 0 DW

3
5 ð4Þ

where DW is the diffusivity of water.

While (2) can be solved using any DTI series with 6 or more directions, for Eq. (3),

even though only one additional variable is introduced, f does not have a single so-

lution and is complex to solve for. Here, we propose using a characteristic of the
on.2018.e00700
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diffusion tensor to obtain an estimate of an upper limit of the free water compartment

fraction.
2.2. Third eigenvalue of the diffusion tensor and free water
fraction

The tensorD can be decomposed into eigenvectors, with the first eigenvector v1 being

in the direction of greatest diffusivity. The second eigenvector v2 is the direction of

greatest diffusivity in a plane perpendicular to the first eigenvector, and the third v3
is in the orthogonal direction of least diffusivity. The three eigenvalues, l1, l2, l3, repre-

sent the magnitude of diffusivity along the three eigenvectors. The diffusion tensor can

be visualized by an ellipsoid, as in Fig. 2. In fluid such as CSF, water can diffuse un-

impeded by barriers equally in all directions, and so the mean and directional
Fig. 2. Illustration of different shapes of diffusion tensor and possible corresponding tissue types.

Considering the eigenvalues l1-3 of the tensor, the smallest eigenvalue relates to the others as follows:

A) l3 ¼ l2 ¼ l1; B) l3 ¼ l2 ¼ l1; C) l3 ¼ l2 < l1; and D) l3 < l2 < l1.
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diffusivities will be equivalent in magnitude, and approximately equal to the diffusivity

of water (Fig. 2A). In brain tissuewithminimal directionality in structure, such as some

graymatter regions, the diffusion eigenvectors will be of similar magnitude in all direc-

tions but the eigenvalues will be much lower than those in CSF [Fig. 2B; 14]. In tissue

that is highly directional, such as largewhite matter tracks like the corpus callosum, one

directionwill dominate, and the eigenvalue l1 in that directionwill bemoderate to large

combined with much smaller values for l2 and l3 (Fig. 2C). Another scenario is tissue

where water can move easily on one direction, and within a plane perpendicular to the

first direction, with minimal diffusivity perpendicular to the plane, as illustrated in

Fig. 2D. In this scenario, l2 and l3 are similar and l3 is smaller.

For the purposes of assessing free water, direction is not required, and we can there-

fore perform calculations on a rotated coordinate system. If we choose the eigenvec-

tors (v1, v2, v3) as the coordinate system (Fig. 3), the rotated voxel diffusion matrix

Lvox is comprised of the eigenvalues along the diagonal (5):

Lvox ¼
2
4l1 0 0
0 l2 0
0 0 l3

3
5 ð5Þ

The two-compartment model in (3) can be formulated in the rotated space, where

Lt is the rotated tissue diffusion tensor, as (6):

Lvox ¼ ð1� f ÞLt þ fLfw: ð6Þ
Fig. 3. Ellipsoid in rotated Eigenvector coordinate system.
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Since free water is assumed to diffuse without directionality, Lfw ¼ Dfw, leading

to (7):

Lvox ¼
2
4l1 0 0
0 l2 0
0 0 l3

3
5¼ ð1� f ÞLt þ f

2
4DW 0 0

0 DW 0
0 0 DW

3
5: ð7Þ

Considering the components of Lvox, we have three linear equations that include

f (8):

2
64
l1 0 0

0 l2 0

0 0 l3

3
75¼ ð1� f Þ

2
64
L11 L12 L13

L21 L22 L23

L31 L32 L33

3
75þ f

2
64
DW 0 0

0 DW 0

0 0 DW

3
75

0l1 ¼ ð1� f ÞL11 þ fDW

l2 ¼ ð1� f ÞL22 þ fDW

l3 ¼ ð1� f ÞL33 þ fDW: ð8Þ

Solving for f, we get (9):

ð1� fÞL11 þ fDW ¼ l1

0L11 � fL11 þ fDW ¼ l1

fðDW � L11Þ ¼ l1 � L11

0f ¼ l1 � L11

DW � L11
; ð9Þ

and by extension (10):

f ¼ l2 �L22

DW �L22
and f ¼ l3 �L33

DW �L33
: ð10Þ

The fraction f must be 1 or a proper fraction, and therefore subtracting an equal

number from denominator and numerator will decrease the value of the fraction.1

Thus (11),

l1

DW
� l1 � L11

DW � L11
; ð11Þ

and we have the following upper bounds on f (12):

l1

DW
� f ;

l2

DW
� f ;

l3

DW
� f : ð12Þ
1 Proof: consider a fraction f formedwith two positive numbersn andd (f¼ n/d), and a second fractiong based
on subtracting a positive number p from numerator and denominator of f (g¼ (n� p)/(d� p)). Solving for n
in both fractions leads to d(f� g)¼ p(1� g). The sign must be the same on both sides, so if g> 1 the right
side is negative and f � g < 0; similarly, if g ¼ 1 then f ¼ g, and (in our case) if g < 1 then f � g > 0.

on.2018.e00700
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Since by definition l1 � l2 � l3, the lowest upper bound on f, termed fUL, is (13):

fUL ¼ l3

DW
: ð13Þ

Considering the physical interpretation of fUL, a characteristic of l3 is that because

the free water component of diffusivity must be equal in all directions, the free water

diffusivity cannot be lower than the 3rd eigenvalue. The 3rd eigenvalue l3 therefore

forms an upper limit on the diffusivity due to free water. Assuming that free water

contributes proportionally to the measured diffusion tensor, l3 can be divided by

the known diffusivity of water to give an upper limit on the fraction of free water

in the voxel.
2.3. Water diffusivity as a constant

Water diffusivity is constant for a given pressure and temperature. The body

maintains a temperature at approximately 36.7� [16], with small differences be-

tween brain and body temperatures under healthy conditions [17]. The brain

will be at a similar temperature to the body under normal conditions, with brain

trauma or fever leading to variations over a range of up to 1e2�, in the extreme

[18].

Intracranial pressure is normally within 7e15 mmHg [19], or w1000e2000 Pa.

While this variation is high, and may not reflect water pressure in brain tissue, the

pressure levels will have very little influence on the water diffusivity, and so the

lowest reported values of 1000 Pa were assumed.

Based on a temperature of 310 K, we linearly interpolated between the reported

values of 2.30 at 298.15 K and 3.55 at 318.15 K to estimate water diffusivity as

3.04 *10�9 m2/s (14):

DWðbrainÞ ¼ DWð298:15KÞ þ ð310� 298:15Þ � �
DWð318:15KÞ �DWð298:15KÞ

�
¼ 2:30� 10�9 þ ð310� 298:15Þ � �

3:55� 10�9 � 2:30� 10�9
�

¼ 3:04� 10�9 ð14Þ

Higher true diffusivity due to higher brain temperature would lead to an overestimate

of fUL, whereas lower true diffusivity due to cooler brain temperature would lead to

an underestimate of fUL. Considering possible extreme conditions over a 2 �C range,

diffusivity could vary from 2.92 to 3.17 � 10�9 m2/s. A more realistic 0.5 �C range,

which should easily encompass healthy variation, would lead to a diffusivity range

of 3.01e3.07 � 10�9 m2/s. Since fUL is an indirect upper limit on the true free water

fraction, the errors due to assuming a constant diffusivity of water in the brain should

be minimal, even under pathological conditions.
on.2018.e00700
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2.4. Assumptions

Assumptions include the consistent diffusivity of water, which relates to brain tem-

perature being within a w2� range, and that free water contributes proportionally to

the diffusivity within a region (voxel). The two-compartment model assumes two in-

dependent components that are additive in nature [15], but there are arguments for

other models [20]. A further assumption underlying the interpretation of this mea-

sure is that the contribution of non-free water compartment is modest. The most

likely condition which would challenge this assumption is in dense tissue, with

low free water. Thus, lower values of fUL are at risk of being more divergent from

f than high values. At the maximal f of 1, which will occur in CSF, the estimated

fraction fUL should have good accuracy. Further assumptions relate to the DTI mea-

sures, the core of which is that voxel diffusivity is accurately represented by a sym-

metric tensor calculated from standard single b-value protocol. There is extensive

literature addressing alternative representations of diffusivity, for example account-

ing for non-symmetric diffusivity, non-linear diffusivity across b values, non-

Gaussian distribution of water movement, and signal-to-noise and scanning artifacts.

Furthermore, several techniques involving customized DTI protocols have been pro-

posed specifically for the calculation of free water [5, 21, 22]. However, for the pre-

sent method, accounting for such effects was not considered likely to make a

substantial difference in fUL calculation, as the free water measure is intended only

as an upper limit to a true measure of f.
3. Methods

3.1. Subjects: IXI dataset

We used the publicly available IXI dataset (http://brain-development.org/ixi-dataset/).

This dataset consists of over 500 sets of MRI scans collected from three locations in

London (Hammersmith Hospital using a Philips 3T system, Guy’s Hospital using a

Philips 1.5T system, and Institute of Psychiatry using a GE 1.5T system); full

details are provided on the website. We included subjects with T1 and DTI scans,

which did not include any from the GE 1.5T, and performed quality checking of the

data. The list of included IXI subjects is in Supplementary File 1 (“Supplementary

File 1 - IXI subjects.xlsx”). A total of 387 IXI subjects include DTI scans. Referring

to the IXI subject numbers, the following were excluded: 555 (inconsistent slice-file

sizes); 237, 419, 498, 550 (failure of registration to T1); 324 (partially cut off); and

411, 534, 535, 593, 630, 648, 651 (DTI quality or file corruption issues reflected as

incorrect FA/RGB direction color-maps). There were 374 subjects included, as shown

in Table 1.

The full scanning protocols are included at the IXI website (see links at http://brain-

development.org/ixi-dataset/). In brief, the T1 images were 0.93 � 0.93 � 1.2 mm
on.2018.e00700
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Table 1. Subject characteristics; see Supplementary File 1 for subject numbers,

and http://brain-development.org/ixi-dataset for individual demographic

information.

All
N [ 374

Female
N [ 206

Male
N [ 168

Age mean � std
[range]

52.1 � 15.8 [20.1e86.2] 52.1 � 15.8 [20.1e86.2] 50.0 � 16.6 [20.2e86.2]

N per scanner
(Philips 3T at
Hammersmith
Hospital or Philips
1.5T at Guy’s
Hospital)

177 on 3T, 197 on 1.5T 91 on 3T, 115 on 1.5T 86 on 3T, 82 on 1.5T
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resolution with 2 averages, and the DTI images had 15 directions with a b-value of

1000, and resolution of 1.75� 1.75� 2.35 mm with 56 slices (3T) or 1.75� 1.75�
2.0 mm with 64 slices (1.5T), and 3 averages.
3.2. Calculation of fUL

Calculating fUL is trivial once the eigenvectors of the diffusion tensor have been

calculated, as in (15):

fUL ¼ l3

DWð318KÞ
¼ l3

3:04*10�9
ð15Þ

However, since DTI data are often noisy, we set a maximum fraction of 1, and the

calculation is Eq. (16):

fUL ¼ min
�
1;

l3

3:04*10�9

�
ð16Þ

This calculation can be performed in most neuroimaging software packages; we used

SPM12.
3.3. Analysis

We used SPM12 software to analyze the data (http://www.fil.ion.ucl.ac.uk/spm/).

The T1-weighted scans were rigid-body coregistered with the MNI template, and

manual adjustments were made to correct rotations and shifts. Rotations in particular

can interfere with later processing steps. The T1 images were resliced to a common

space, and we applied the SPM “Unified segmentation” procedure to bias correct and

segment the images [23]. This step creates maps with probabilities of gray matter,
on.2018.e00700
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white matter and CSF. We passed the segmentation maps to the DARTEL procedure

to calculate spatial normalization parameters from native to template space [24]. We

used the VBM8 template that is available with SPM, and is coregistered with MNI

space (http://www.neuro.uni-jena.de/vbm/).

We used the SPM Diffusion II toolbox for processing the DTI data (https://

sourceforge.net/projects/spmtools/). Each series were used to calculate the

diffusion tensor D. The three eigenvalues of the tensor were calculated with Eigen

decomposition, and fUL was calculated according to (16). We included an SPM12

batch file (Supplementary File 2: “Supplementary File 2 - spmjob_fwcalc.txt”)

implementing this calculation using the “im_calc” tool, which takes as input the

third eigenvalue image. We used the b0 images for a two-step process to accurately

register the DTI scans into a common space [see Appendix A in 25]. For each sub-

ject, the b0 image was coregistered to the preprocessed T1 in native space using a

warping procedure to allow for distortions inherent in the DTI scans. In brief, this

step involves using the segmented tissue types from the T1 unified segmentation

as priors in the DTI unified segmentation [25]. The result is a mapping from DTI

to T1 space, which is applied to the calculated indices including fUL. The second

step is to apply the T1 DARTEL normalization parameters to the indices, resulting

in spatially normalized maps that can be combined or compared across subjects on a

voxel-by-voxel basis.

Values from regions of interest from the atlas provided with SPM12 were extracted

with the SPM Volumes utility. The tissue labels were derived from the “MICCAI

2012 Grand Challenge and Workshop on Multi-Atlas Labeling” (https://masi.

vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details), based MRI

scans from the OASIS project (http://www.oasis-brains.org/), and the labeled data

were provided by Neuromorphometrics, Inc. under academic subscription (http://

neuromorphometrics.com/). We also extracted values from the entire intracranial

space by using the TIV, defined as regions where the sum of CSF, gray and white

matter probabilities was greater than 0.5. Values of fUL and other DTI indices,

including mean diffusivity (MD), axial diffusivity and radial diffusivity were

extracted from each voxel in each region in each subject. Similarly, values of the

probabilities of CSF, gray and white matter were extract from the fUL voxels,

using linear interpolation to sample the T1-derived values from voxels DTI space

(since T1 images were in a different space and with different voxel sizes than the

DTI images). Descriptive statistics and distributions of each measure were

calculated and displayed using MATLAB functions. Correlations between fUL and

other measures were performed with MATLAB. Scatterplots of measures versus

fUL were created with MATLAB, with transparent markers due to the large

number of points (95% transparency). TIV values were subsampled such that a

subset of fewer than 1,000,000 points were included in any one scatterplot.
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4. Results

We select the subject closest to the mean age of our sample, a male age 42.6 years,

BMI 29.4 kg/m2, and right handed. The maps of the tensor D components are shown

in Fig. 4. Other DTI images and indices are shown in Fig. 5, including the standard

FA and diffusivities (mean, axial and radial), and FW.

Fig. 6 illustrates the average normalized fULmaps over the 374 subjects. The average

T1 anatomical is included for reference on the right of Fig. 6.

The mean and standard deviation of fUL, T1-derived tissue probability maps, and

other DTI indices are shown in Table 2 for 14 selected bilateral VOIs and three tissue

compartments. The values for the full set of 136 VOIs are in Supplementary File 3

(“Supplementary File 3 - Correlations with FW by modality.xlsx”). As expected, the

highest fUL values were in regions with high probabilities of CSF. Values in gray

matter compartment were slightly higher than the white matter compartment, but

the lowest values were in the pallidum, which contains mixed gray and white tissue.
Fig. 4. Example of diffusion tensor diffusivity terms for a single subject. Diagonal and non-diagonal

terms are shown on different scales to best illustrate structure.
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Fig. 5. Example of DTI-based anatomy and indices for a single subject. T1: T1-weighted anatomical

reference; all DTI-based images are in T1 space. fUL: free water fraction upper limit. b0: b0 image.

FA: fractional anisotropy. RGB: color-coded directional anatomy, as per scale. MD: mean diffusivity.

Axial: axial diffusivity. Radial: radial diffusivity. Scales for indices are at bottom.

Fig. 6. Average fUL free water fraction upper limit and corresponding anatomical T1-weighted scans for

375 IXI subjects. Locations of sagittal slices are in x-values in MNI space.
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Table 2. Values by region of tissue probability (gray and white matter and CSF) and DTI-derived indices; mean � std over 374 subjects. Number of

voxels of region are based on a voxel size of 1.5 mm3.

N voxels Gray Matter White Matter CSF MD axial FA FW radial

CSF 117049 0.1321 � 0.2485 0.0044 � 0.0423 0.7580 � 0.2926 0.0018 � 0.0009 0.0022 � 0.0011 0.2046 � 0.1257 0.4511 � 0.2221 0.0015 � 0.0008

Gray matter 256549 0.7724 � 0.2988 0.1024 � 0.2260 0.1206 � 0.2451 0.0009 � 0.0004 0.0011 � 0.0004 0.2208 � 0.1053 0.2302 � 0.1050 0.0008 � 0.0003

White matter 162773 0.1119 � 0.2301 0.8808 � 0.2417 0.0055 � 0.0483 0.0007 � 0.0002 0.0010 � 0.0003 0.4226 � 0.1441 0.1397 � 0.0519 0.0005 � 0.0002

Left Hippocampus 1359 0.8438 � 0.2672 0.0368 � 0.1349 0.1176 � 0.2425 0.0011 � 0.0004 0.0013 � 0.0005 0.2265 � 0.0919 0.2734 � 0.1055 0.0009 � 0.0003

Right Hippocampus 1457 0.8541 � 0.2610 0.0287 � 0.1135 0.1153 � 0.2435 0.0011 � 0.0004 0.0013 � 0.0005 0.2248 � 0.0895 0.2734 � 0.1079 0.0009 � 0.0004

Left MOG middle occipital gyrus 2659 0.6734 � 0.3550 0.1602 � 0.2997 0.1601 � 0.2873 0.0010 � 0.0004 0.0012 � 0.0005 0.2101 � 0.1020 0.2562 � 0.1217 0.0009 � 0.0004

Right MOG middle occipital gyrus 2263 0.6738 � 0.3535 0.1454 � 0.2868 0.1650 � 0.2829 0.0010 � 0.0004 0.0012 � 0.0005 0.2145 � 0.0964 0.2514 � 0.1085 0.0009 � 0.0003

Left PCgG posterior cingulate gyrus 1877 0.6969 � 0.3493 0.0877 � 0.2133 0.2120 � 0.3323 0.0009 � 0.0004 0.0011 � 0.0004 0.2052 � 0.0952 0.2551 � 0.1095 0.0009 � 0.0003

Right PCgG posterior cingulate gyrus 1648 0.7383 � 0.3210 0.1020 � 0.2264 0.1571 � 0.2851 0.0009 � 0.0003 0.0011 � 0.0004 0.2109 � 0.0925 0.2411 � 0.1024 0.0008 � 0.0003

Left Cerebellum White Matter 4948 0.1392 � 0.2664 0.8237 � 0.3130 0.0351 � 0.1613 0.0007 � 0.0004 0.0011 � 0.0005 0.4411 � 0.1507 0.1454 � 0.1007 0.0006 � 0.0003

Right Cerebellum White Matter 4847 0.1114 � 0.2261 0.8635 � 0.2663 0.0232 � 0.1201 0.0007 � 0.0003 0.0011 � 0.0004 0.4468 � 0.1464 0.1409 � 0.0853 0.0005 � 0.0003

Left SPL superior parietal lobule 5225 0.4955 � 0.3931 0.1335 � 0.2805 0.3621 � 0.4095 0.0012 � 0.0006 0.0014 � 0.0006 0.1998 � 0.1109 0.3220 � 0.1774 0.0011 � 0.0006

Right SPL superior parietal lobule 5249 0.4720 � 0.3950 0.1138 � 0.2588 0.4024 � 0.4178 0.0012 � 0.0006 0.0014 � 0.0006 0.1946 � 0.1034 0.3375 � 0.1779 0.0011 � 0.0006

Left Pallidum 559 0.0347 � 0.0905 0.9609 � 0.0963 0.0012 � 0.0059 0.0007 � 0.0001 0.0010 � 0.0001 0.4009 � 0.1427 0.1375 � 0.0397 0.0005 � 0.0001

Right Pallidum 564 0.0253 � 0.0744 0.9700 � 0.0816 0.0014 � 0.0064 0.0007 � 0.0001 0.0010 � 0.0001 0.4259 � 0.1499 0.1334 � 0.0401 0.0005 � 0.0001

Left PP planum polare 893 0.6095 � 0.3765 0.0095 � 0.0515 0.3775 � 0.3801 0.0012 � 0.0005 0.0014 � 0.0006 0.1715 � 0.0639 0.3357 � 0.1390 0.0011 � 0.0005

Right PP planum polare 783 0.5859 � 0.3846 0.0048 � 0.0288 0.4054 � 0.3861 0.0013 � 0.0006 0.0015 � 0.0007 0.1688 � 0.0584 0.3628 � 0.1516 0.0012 � 0.0005
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Table 3. Correlations with fUL of tissue probability and DTI-derived indices in regions. The percentages of the voxels in the VOI that were included for
the calculation are shown (number of voxels shown in Table 2). Significant correlations (P < 0.05) indicated by a “*”.

Gray Matter White Matter CSF MD axial FA radial

Corr (r) N (%) Corr (r) N (%) Corr (r) N (%) Corr (r) N (%) Corr (r) N (%) Corr (r) N (%) Corr (r) N (%)

CSF �0.32 92% �0.11 68% *0.42 100% *0.94 100% *0.82 100% �0.25 100% *0.98 100%

Gray matter �0.23 100% �0.23 99% *0.49 100% *0.94 100% *0.79 100% *�0.54 100% *0.98 100%

White matter 0.24 100% �0.28 100% 0.22 91% 0*.80 100% *0.37 100% *�0.69 100% *0.92 100%

Left Hippocampus �0.35 100% �0.06 99% *0.41 100% *0.94 100% *0.80 100% *�0.41 100% *0.98 100%

Right Hippocampus �0.37 100% �0.04 100% *0.42 100% *0.93 100% *0.80 100% *�0.41 100% *0.98 100%

Left MOG middle occipital gyrus *�0.26 100% *�0.37 100% *0.70 100% *0.96 100% *0.83 100% �*0.60 100% *0.99 100%

Right MOG middle occipital gyrus �0.28 100% �0.33 99% *0.69 100% *0.93 100% *0.77 100% *�0.61 100% *0.98 100%

Left PCgG posterior cingulate gyrus *�0.27 100% �0.21 87% *0.47 100% *0.93 100% *0.77 100% *�0.58 100% *0.98 100%

Right PCgG posterior cingulate gyrus *�0.24 100% �0.22 95% *0.48 100% *0.93 100% *0.76 100% *�0.61 100% *0.98 100%

Left Cerebellum White Matter 0.05 100% �0.07 100% 0.05 84% *0.82 100% *0.51 100% *�0.54 100% *0.9249 100%

Right Cerebellum White Matter 0.05 100% �0.07 100% 0.05 82% *0.81 100% *0.49 100% *�0.55 100% *0.92 100%

Left SPL superior parietal lobule *�0.43 100% *�0.37 100% *0.75 100% *0.98 100% *0.90 100% *�0.64 100% *0.9940 100%

Right SPL superior parietal lobule *�0.47 100% *�0.36 100% *0.76 100% *0.97 100% *0.89 100% *�0.64 100% *0.9930 100%

Left Pallidum 0.19 100% �0.19 100% 0.11 89% *0.79 100% 0.28 100% *�0.78 100% *0.9349 100%

Right Pallidum 0.17 100% �0.17 100% 0.07 99% *0.78 100% 0.21 100% *�0.80 100% *0.9270 100%

Left PP planum polare *�0.46 100% �0.04 95% *0.49 100% *0.96 100% *0.87 100% �0.25 100% *0.9819 100%

Right PP planum polare *�0.49 100% �0.02 98% *0.50 100% *0.95 100% *0.87 100% �0.22 100% *0.9802 100%
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Correlations between fUL and tissue probabilities, and with other DTI indices for

each VOI are shown in Table 3. The radial diffusivity was most strongly correlated

with fUL, with average coefficients ranging from over 0.99 to 0.92. FA showed

mostly significant negative correlations. Only moderate correlations with CSF likely

relate to the lack of variation in CSF probability or fUL for voxels encompassing

CSF. The full correlation table for 136 VOIs is in Supplementary File 4 (“Supple-

mentary File 4 - Description by modality.xlsx”).

In addition to a range of fUL values between brain regions and between overall tissue

types, there was also variation in fUL values within a particular VOI. For example, the

distribution of fUL values in the hippocampus is shown in Fig. 7, derived from the

entire hippocampi in 374 subjects. The majority of the values lie between 0.1 and

0.6. This structure is a combination of gray and white matter, and in some subjects

with atrophy CSF is also present in the hippocampal region.

The final analyses were performed using all voxels within the entire intracranial vol-

ume (TIV). The values from 511,190 TIV voxels in each of the 374 subjects were

extracted. Table 4 presents the mean and standard deviation for tissue probabilities

and DTI-based indices, as well as the correlation statistics with respect to fUL. fUL
correlated significantly with radial and mean diffusivity, and to a less significant

extent with axial diffusivity. CSF probability showed only a non-significant trend to-

wards a correlation. FA showed a significant albeit not strong negative relationship
Fig. 7. Distribution of fUL values in hippocampus of 374 IXI subjects. Insert illustrates location of hip-

pocampus VOI in template space.
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Table 4. Descriptive and correlation relative to fUL statistics of indices for 374

IXI subjects in entire TIV space (511,190 voxels). For T1-based tissue proba-

bilities, some voxels in some subjects were excluded if the T1-based value was

outside the brain; the N column reflects the percent voxels included.

Descriptive Pearson’s correlation
with fUL

P N (%)

mean std r

fUL 0.251 �0.173 - - -

Gray matter probability 0.431 �0.421 �0.10 0.085 98%

White matter probability 0.314 �0.425 �0.23 0.13 93%

CSF probability 0.227 �0.364 0.40 0.067 97%

FA 0.278 �0.156 �0.52 0.018 100%

MD 0.001014 �0.000621 mm/s2 0.90 <0.001 100%

Axial 0.001300 �0.000762 mm/s2 0.67 0.013 100%

Radial 0.000871 �0.000571 mm/s2 0.96 <0.001 100%
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with fUL. The distribution of fUL across TIV in Fig. 8 illustrates a slightly wider range

of values than just in the hippocampus (Fig. 7). For comparison, the distributions of

other DTI indices and tissue probabilities are also shown. Note that the probabilities

of gray and white matter and CSF probabilities are distributed closely to either 0 or 1,

whereas the DTI-based indices show a wider spread.

The relationships between fUL and other measures are shown in scatter plots in Fig. 9.

Each DTI index and tissue probability is plotted against fUL for TIV voxels across the

374 subjects. Because of the large number of points (w200 million), only every

200th point was plotted, such that each graph contains approximately 1 million

values. Diffusivity indices showed positive relationships with fUL, with radial being

most closely correlated. FA showed an inverse hyperbolic relationship with fUL. The

gray and white matter tissue probabilities showed little relationship with fUL, and

CSF probability exhibited a modest positive relationship.
5. Discussion

The measure of an upper limit to the fraction of free water fUL is a DTI-based index

indirectly related to voxel free water content. The measure provides an upper limit on

the free water fraction f in the context of a two-compartment model consisting of tis-

sue and free water. In the intracranial space, the measure is distribution across the

range from 0 to 1, with most voxels falling in the 0.1 to 0.6 fraction. The measure

is most closely related to radial diffusivity, followed by axial and MD, and nega-

tively related to FA.

The fULmeasure is more closely related to other DTI indices than tissue probabilities.

Although fUL is related to the probability of a voxel containing CSF, the correlation
on.2018.e00700
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Fig. 9. Scatterplots of indices with respect to fUL for all voxels in intracranial space (TIV) in 374 IXI

subjects. Each plot was subsampled from the original 200 million points to w1 million; each point is

95% translucent, effectively resulting in a density plot. fUL: free water fraction upper limit; FA: fractional

anisotropy; MD: mean diffusivity; Axial: axial diffusivity; Radial: radial diffusivity. Tissue probabilities

are based on SPM12 tissue segmentation. The distributions of each measure are shown above and right of

the scatter plot.

Fig. 8. Distributions of indices for all voxels in intracranial space (TIV) in 374 IXI subjects. fUL: free

water fraction upper limit; FA: fractional anisotropy; MD: mean diffusivity; Axial: axial diffusivity;

Radial: radial diffusivity. Tissue probabilities are based on SPM12 tissue segmentation. Y-axes are un-

scaled, and represent raw counts.
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is weak, suggesting fUL is measuring a characteristic of mixed “tissue,” as expected,

as opposed to a marker of CSF-containing voxels. There is little relationship between

fUL and probabilities of gray or white matter, which likely is due to the close to cat-

egorical nature of those probabilities.

The assumptions underlying the interpretation of the measure include accurate calcu-

lation of the diffusion tensor and little variation in water diffusivity due to tempera-

ture changes. Furthermore, the two compartment model assumes “fluid” and tissue

components of a particular voxel, with “fluid” behaving like water. These assump-

tions are all likely violated to some degree. Based on the calculations with Eq. (3),

temperature is unlikely to cause substantial error. However, noise and distortion in

the DTI data is likely contributing both random and systematic error to the tensor

calculation [26, 27, 28, 29]. A reflection of such error could be the occasional occur-

rence of voxels with fUL greater than 1, which is theoretically impossible were the

assumptions correct. The impact of variations in the nature of intercellular fluid is

unknown, but such influences may affect the measure.

In conclusion, we presented the theory and implementation of a measure of an upper

limit to the fraction of free water fUL within a voxel, based on scaling the third eigen-

value from the DTI-derived diffusion tensor. The measure is calculated from a single

tensor model, which can be derived from a single shell at one b-value. The values of

fUL are closely related but not identical to radial diffusivity. The measure may be use-

ful as a starting point in calculating the true free water fraction f of a voxel, or as an

easy-to-calculate tissue characteristic indirectly related to f.
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