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Abstract: Sample entropy (SampEn) is widely used for electrocardiogram (ECG) signal analysis to
quantify the inherent complexity or regularity of RR interval time series (i.e., heart rate variability
(HRV)), with the hypothesis that RR interval time series in pathological conditions output lower
SampEn values. However, ectopic beats can significantly influence the entropy values, resulting in
difficulty in distinguishing the pathological situation from normal situations. Although a theoretical
operation is to exclude the ectopic intervals during HRV analysis, it is not easy to identify all of
them in practice, especially for the dynamic ECG signal. Thus, it is important to suppress the
influence of ectopic beats on entropy results, i.e., to improve the robustness and stability of entropy
measurement for ectopic beats-inserted RR interval time series. In this study, we introduced a physical
threshold-based SampEn method, and tested its ability to suppress the influence of ectopic beats for
HRV analysis. An experiment on the PhysioNet/MIT RR Interval Databases showed that the SampEn
use physical meaning threshold has better performance not only for different data types (normal sinus
rhythm (NSR) or congestive heart failure (CHF) recordings), but also for different types of ectopic
beat (atrial beats, ventricular beats or both), indicating that using a physical meaning threshold makes
SampEn become more consistent and stable.
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1. Introduction

Entropy is a valuable tool for quantifying the complexity or regularity of cardiovascular time series
and provides important insights for understanding the underlying mechanisms of the cardiovascular
system. Since the concept of ‘information entropy’ was first proposed by Shannon in 1948 [1], entropy
was used as a tool to quantify the quantity of information. Approximate entropy (ApEn) [2], proposed
by Pincus et al., is an entropy algorithm initially used in physiological signal analysis as it is adaptive in
short-term time series processing. However, ApEn introduces self-matching in calculations, resulting
in estimation bias and poor relative consistency [3]. To solve this problem, Richman and Moorman
developed an improved version of sample entropy (SampEn) [3], which is based on the calculation
of the conditional probability that any two segments of m beats that are similar remain similar
when their length increases by one beat. Compared with ApEn, SampEn has a lower estimate bias,
better relative consistency and less dependence on data length, which makes it more appropriate
in physiological signal processing. SampEn is now the most widely used entropy algorithm in
physiological signal analysis.

For entropy calculation, three intrinsic parameters, i.e., the embedding dimension m, the tolerance
threshold r and the time series length N need to be initialized. SampEn was reported to not be
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sensitive to the time series length N if N ≥ 200 ∼ 300 [4,5]. Parameter m is based on the length N
under the suggested relationship of N ≈ 10m

∼ 20m [6]. Among all three parameters, the tolerance
threshold r is the most difficult to be determined. Usually, the recommended r is between 0.10 and
0.25 times the standard deviation (SD) of the physiological data [3,7]. If the r value is too small, the
number of matched vectors will be small, and by contrast, if the r value is too big, detailed information
within time series will be ignored [8,9]. Moreover, in practice, RR interval time series in different
physiological/pathological groups usually have variable SD values, inducing that the comparison
between different groups uses different threshold criteria, and it is not easy to find an appropriate r
value to achieve an optimal result if simply using the suggested range of 0.10 to 0.25 times the SD.

Researchers have made several useful attempts to improve the performances of entropy measures.
One is multiscale analysis. Costa et al. developed a multiscale entropy (MSE) method [10,11], with the
hypothesis that MSE can better describe cardiovascular complexity. MSE is based on the evaluation
of SampEn in coarse-grained RR interval time series with a coarse-graining order from 1 to a preset
scale (such as 10) [12,13]. However, coarse-graining changes the SD of time series and thus changes the
corresponding r value [14], resulting in different opinions on the selection of r values, i.e., whether
using a fixed tolerance r or using a varying tolerance r adjusted at each scale as a fraction of the SD
of the coarse-grained time series is better [10]. Another attempt is the use of fuzzy theory-assisted
entropy methods, such as fuzzy entropy developed by Chen et al. [15] and fuzzy measure entropy
developed by Liu et al. [16,17], where fuzzy functions are employed to replace the traditional Heaviside
function used in SampEn, to improve the statistical stability of SampEn outputs. Herein, although the
determination rule for vector similarity is changed, the tolerance r still uses the fixed range of 0.10 to
0.25 times the SD. There are also entropy developments focusing on specific disease detection, such
as for the detection of atrial fibrillation (AF) [18–21], heart failure [22,23], diabetes [24], etc. Specially,
Lake and colleagues developed a new AF entropy detector, named the coefficient of sample entropy
(COSEn), for AF determination within an extremely short RR interval time series (only 12 RR intervals).
COSEn allowed flexibility in choosing the tolerance r and suggested an appropriate choice of a fixed r
value of 30 ms [25].

In a previous study, we found that SampEn reported higher values in the normal sinus rhythm
(NSR) group than the congestive heart failure (CHF) group when selecting a small threshold r value
(r = 0.10), but reported lower values when using large threshold r values (r = 0.20 or 0.25) [4]. The
opposite entropy change trend brings difficulty to defining a unified threshold r to distinguish CHF
patients from NSR subjects in heart rate variability (HRV) analysis. To solve this problem, we proposed
a physical threshold-based SampEn method to discriminate the opposite entropy change trend in
the task of classifying CHF and NSR subjects [26], where the physical threshold-based SampEn was
demonstrated to have a better stability than the traditional SampEn.

HRV analysis is based on the analysis of normal RR intervals from the beats generated by the
sinoatrial node. Unlike the normal beats generated by the sinoatrial node, ectopic beats are generated
by additional electrical impulses imposed by other latent pacemakers [27]. Ectopic beats may cause
bias in the reliable measurement of HRV in both the time and frequency domains [28,29], as well as in
entropy measurement [30]. Even the presence of only one ectopic beat can introduce an increase in the
high frequency power in HRV of around 10% [31]. Although many detection and editing methods
for ectopic beats have been proposed [32–34], there is no agreed conclusion on how to efficiently
remove them. More importantly, the efficiency of editing ectopic beats dramatically decreases when
dealing with the dynamic ECG signals due to signal noise. In dynamic ECGs, noises caused by the
body’s activities, motion artifacts, electrode interferences etc., are inevitable [35,36]. A recent study
demonstrated that even when using state-of-the-art QRS detectors, an 80% or higher accuracy of
QRS detection is not achieved. By contrast, these methods can easily obtain a 99% accuracy using
conventional ECG databases such as the PhysioNet/MIT Arrythmias database [37]. Potential detection
errors from the automatic analysis of dynamic ECGs also bring abnormal RR intervals, i.e., RR intervals
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lasting for too much or too little time. The existence of either the ectopic beats or the falsely detected
QRS locations can significantly contaminate the entropy outputs.

Thus, the effectiveness of entropy measures, typically SampEn, should be re-checked for analyzing
the dynamic ECG signals. A predictable situation is that SampEn may change a lot if moving the
analysis window from an ectopic-free RR interval time series to an entopic one. Thus, it is necessary to
further develop an entropy method, which can keep relatively stable when randomly dealing with the
ectopic or ectopic-free RR interval time series for a specific subject/patient. Due to the fact that it is
difficult to identify the abnormal RR intervals caused by noises or true ectopic beats in the automatic
analysis for dynamic ECGs, this necessity becomes urgent and practical for real signal processing.
In this study, we aimed to test the performance of a new physical threshold-based SampEn when
applied to RR interval time series with ectopic beats, to explore if it can efficiently suppress the sudden
change in entropy results due to the appearance of ectopic beats, i.e., to verify its ability to suppress
the influence of ectopic beats for HRV analysis.

2. Methods

2.1. Data

All data used were from the PhysioNet/MIT RR Interval Databases from http://www.physionet.
org [38], a free-access, online archive of physiological signals. The NSR RR Interval database includes
54 long-term RR interval recordings of subjects with normal sinus rhythms aged from 29 to 76. The
CHF RR Interval database includes 29 long-term RR interval recordings of subjects aged from 34 to
79, with CHF diagnoses (NYHA classes I, II and III). Each of the long-term RR interval recordings is
a 24-h recording, including both day-time and night-time. Both the NSR and CHF subjects took the
Holter ECG measurement under a similar level of physical activity. The original ECG signals were
digitized at 128 Hz, and the beat annotations were obtained by automated analysis with manual review
and correction.

A 5-min time window was used to segment the long-term RR interval records. The 5-min
RR segments with at least one ectopic beat were extracted as ectopic segments used in this study.
Information regarding ectopic beats was manually annotated by experts and was given in the database,
classifying them into two types: atrial (A) or ventricular (V) beats, depending on the localization of
the ectopic focus. In each 5-min RR segment, RR intervals greater than 2 s, but not ectopic intervals,
were removed, since they are all noisy intervals arising from artificial influences [4]. Figure 1 shows
examples of ectopic RR segments from an NSR subject and a CHF patient. Tables 1 and 2 summarize
the numbers of ectopic beats and ectopic 5-min segments in each of the 54 NSR and 29 CHF records.
For each recording (subject), we only chose the recordings with more than 10 ectopic segments, while
excluding the ectopic segments with more than 6 ectopic beats, since the majority of ectopic segments
have 1–5 ectopic beats.

http://www.physionet.org
http://www.physionet.org
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Figure 1. Examples of 5-min ectopic RR segments. (A) An ectopic segment with ventricular (V) ectopic 

beats from an normal sinus rhythm (NSR) subject. (B) An ectopic segment with atrial (A) ectopic beats 

from a congestive heart failure (CHF) patient. Please note there are other atrial ectopic beats in this 5-

min RR segment, where the RR interval values have sudden changes. 
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NSR001 81 58 NSR028 166 95 

NSR002 233 146 NSR029 24 18 

NSR003 50 37 NSR030 92 58 

NSR004 36 33 NSR031 630 191 

NSR005 611 198 NSR032 490 188 

NSR006 96 40 NSR033 15 14 

NSR007 113 81 NSR034 21 18 

NSR008 70 50 NSR035 43 29 

NSR009 30 25 NSR036 169 28 

NSR010 206 107 NSR037 31 29 

NSR011 152 92 NSR038 * 6 4 

NSR012 46 40 NSR039 131 87 

NSR013 38 32 NSR040 40 17 

NSR014 305 112 NSR041 32 29 

NSR015 36 24 NSR042 * 11 10 

NSR016 47 42 NSR043 241 123 

NSR017 958 265 NSR044 5,225 270 

NSR018 547 213 NSR045 233 149 

NSR019 42 33 NSR046 302 94 

NSR020 169 108 NSR047 22 22 

NSR021 12 12 NSR048 31 21 

NSR022 56 47 NSR049 * 3 3 

NSR023 53 34 NSR050 * 3 3 

NSR024 8,033 272 NSR051 * 6 6 

Figure 1. Examples of 5-min ectopic RR segments. (A) An ectopic segment with ventricular (V) ectopic
beats from an normal sinus rhythm (NSR) subject. (B) An ectopic segment with atrial (A) ectopic beats
from a congestive heart failure (CHF) patient. Please note there are other atrial ectopic beats in this
5-min RR segment, where the RR interval values have sudden changes.

Table 1. A summary of the ectopic beats and segments in the PhysioNet/MIT RR Interval Databases for
the NSR group.

Record # Ectopic Beats # Ectopic
Segments Record # Ectopic Beats # Ectopic

Segments

NSR001 81 58 NSR028 166 95
NSR002 233 146 NSR029 24 18
NSR003 50 37 NSR030 92 58
NSR004 36 33 NSR031 630 191
NSR005 611 198 NSR032 490 188
NSR006 96 40 NSR033 15 14
NSR007 113 81 NSR034 21 18
NSR008 70 50 NSR035 43 29
NSR009 30 25 NSR036 169 28
NSR010 206 107 NSR037 31 29
NSR011 152 92 NSR038 * 6 4
NSR012 46 40 NSR039 131 87
NSR013 38 32 NSR040 40 17
NSR014 305 112 NSR041 32 29
NSR015 36 24 NSR042 * 11 10
NSR016 47 42 NSR043 241 123
NSR017 958 265 NSR044 5225 270
NSR018 547 213 NSR045 233 149
NSR019 42 33 NSR046 302 94
NSR020 169 108 NSR047 22 22
NSR021 12 12 NSR048 31 21
NSR022 56 47 NSR049 * 3 3
NSR023 53 34 NSR050 * 3 3
NSR024 8033 272 NSR051 * 6 6
NSR025 492 120 NSR052 * 13 10
NSR026 92 44 NSR053 * 1 1

NSR027 * 5 5 NSR054 * 9 8

* indicates the recordings excluded for the analysis since there are no 10 or more ectopic 5-min RR segments
including 5 or fewer ectopic beats.



Entropy 2020, 22, 411 5 of 16

Table 2. A summary of the ectopic beats and segments in the PhysioNet/MIT RR Interval Databases for
the CHF group.

Record # Ectopic Beats # Ectopic
Segments Record # Ectopic Beats # Ectopic

Segments

CHF201 61 36 CHF216 18 14
CHF202 273 150 CHF217 779 228
CHF203 496 187 CHF218 2667 217
CHF204 2297 247 CHF219 37 28
CHF205 1356 245 CHF220 820 143
CHF206 11,112 240 CHF221 * 11,608 276

CHF207 * 15,189 249 CHF222 2792 274
CHF208 3073 257 CHF223 * 5410 274
CHF209 507 156 CHF224 356 150
CHF210 2122 258 CHF225 242 121
CHF211 14 11 CHF226 1638 257
CHF212 3483 205 CHF227 * 5649 275
CHF213 10,968 281 CHF228 1467 204

CHF214 * 21,160 204 CHF229 22 20
CHF215 5851 166

* indicates the recordings excluded for the analysis since there are no 10 or more ectopic 5-min RR segments
including 5 or fewer ectopic beats.

2.2. Physical Threshold-Based SampEn

The calculation process for the physical threshold-based SampEn is summarized as follows [26]:
For the RR segment x(i) (1 ≤ i ≤ N), given the parameters m and r, first formed is the vector

sequence Xm
i :

Xm
i =

{
x(i), x(i + 1), · · · , x(i + m− 1)

}
1 ≤ i ≤ N −m (1)

The vector Xm
i represents m consecutive x(i) values. Then, the distance between Xm

i and Xm
j based

on the maximum absolute difference is defined as:

dm
i, j = d

[
Xm

i , Xm
j

]
= max

0≤k≤m−1

∣∣∣x(i + k) − x( j + k)
∣∣∣ (2)

For each Xm
i , denote Bm

i (r) as (N −m)−1 times the number of Xm
j (1 ≤ j ≤ N −m) that meets dm

i, j ≤ r.

Similarly, set Am
i (r) is (N −m)−1 times the number of Xm+1

j that meets dm+1
i, j ≤ r for all 1 ≤ j ≤ N −m.

Instead of using the traditional threshold, which is between 0.10 and 0.25 times the SD of the data,
herein, a physical threshold r is used to form a unified comparison baseline for determining the vector
similarity. As the raw ECG signals were digitized at 128 Hz, which means that the difference between
any two vectors is approximately an integer multiple of 8 ms, here we used r = 12 ms as the physical
threshold according to the previous suggestion [10].

Then, SampEn is defined by:

SampEn(m, r, N) = − ln

N−m∑
i=1

Am
i (r)/

N−m∑
i=1

Bm
i (r)

 (3)

In addition, previous studies suggested that using an embedding dimension of m = 1 or 2 can
obtain better results for classifying NSR and CHF groups when setting the RR time series length as
N = 300 [4]. In this study, we kept this suggestion of m = 1 and 2.

To test the performance of physical threshold-based SampEn, traditional SampEn was used as the
comparative method. Entropy values were first calculated from the raw ectopic 5-min RR segments.
Then, the ectopic RR intervals in these ectopic RR segments were removed to form the ectopic-free RR
segments. Finally, entropy values were re-calculated from these constructed ectopic-free RR segments.
Entropy variances before and after ectopic beat removal were calculated, and the variation could be
regarded as an index for evaluating the performance of entropy measures’ abilities to suppress the
influence of ectopic beats.
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3. Results

3.1. Demonstration of the Influence of Ectopic Beats on Entropy Values

Figure 2 shows the entropy results from an NSR subject (NSR002). As shown in Table 1, NSR002
has a total of 146 5-min ectopic RR segments. The left panels in Figure 2 show the entropy values for
these 146 ectopic RR segments before ectopic RR interval removal (red dotted line) and after ectopic
RR interval removal (blue line). The traditional SampEn has a large variation before and after ectopic
RR interval removal, while the new physical threshold-based SampEn has very small changes when
analyzing ectopic free segments. The right panels show the corresponding variance ratios, i.e., the
entropy value of the ectopic free segment minus the entropy value of ectopic segment, divided by the
entropy value of the ectopic segment. The entropy variance ratios in SampEn varied from −65.24% to
2.25%, with an average of −16.32% and an SD of 21.93%. The corresponding variance ratios for the
physical threshold-based SampEn varied from 0% to 3.34% (m = 1, r = 12 ms), with an average of
0.81% and an SD of 0.66%; and from −0.51% to 3.21% (m = 2, r = 12 ms), with an average of 0.57% and
an SD of 0.72%. Compared with the traditional SampEn, the physical threshold-based SampEn showed
significantly lower variance ratios, demonstrating the better robustness of the new SampEn method.Entropy 2020, 21, x 7 of 17 
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Figure 2. An example of the influence of ectopic beats. Entropy values and their variance ratios for
subject NSR002 before and after the ectopic beat removal: (A1) entropy results and (A2) their variance
ratios for the traditional SampEn (m = 2, r = 0.2), (B1) entropy results and (B2) their variance ratios
for the physical threshold-based SampEn (m = 1, r = 12 ms), and (C1) entropy results and (C2) their
variance ratios for the physical threshold-based SampEn (m = 2, r = 12 ms).

By contrast, Figure 3 shows similar results from a CHF patient (CHF202), which has a total of 150
ectopic RR segments, as shown in Table 2. The entropy variance ratios in SampEn varied from −62.50%
to 3.53%, with an average of −3.18% and an SD of 11.36%. The corresponding variance ratios for
physical threshold-based SampEn varied from −0.35% to 2.01% (m = 1, r = 12 ms), with an average of
0.55% and an SD of 0.49%; and from −0.98% to 1.39% (m = 2, r = 12 ms), with an average of 0.20% and
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an SD of 0.42%. Compared with the traditional SampEn, the physical threshold-based SampEn also
showed significantly lower variance ratios in the demonstrated CHF patient.
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Figure 3. An example of the influence of ectopic beats. Entropy values and their variance ratios for
subject CHF202 before and after the ectopic beat removal: (A1) entropy results and (A2) their variance
ratios for the traditional SampEn (m = 2, r = 0.2), (B1) entropy results and (B2) their variance ratios
for the physical threshold-based SampEn (m = 1, r = 12 ms), and (C1) entropy results and (C2) their
variance ratios for the physical threshold-based SampEn (m = 2, r = 12 ms).

3.2. Demonstration of the Influence of Atrial Beats on Entropy Values

There are two types of ectopic beat in the used PhysioNet/MIT RR Interval Databases, atrial
and ventricular beats (shown in Figure 1). To further test the robustness of physical threshold-based
SampEn method, we analyzed the ectopic segments only containing atrial or ventricular beats. For
NSR002, there are 17 segments containing atrial beats and 137 segments containing ventricular beats
among all 146 ectopic RR segments. For CHF202, there are 41 segments containing atrial beats and 123
segments containing ventricular beats among all 150 ectopic RR segments.
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Figure 4 shows the results of 17 atrial ectopic RR segments from NSR002. Entropy variance ratios
in SampEn varied from −53.40% to 1.77%, with an average of −8.48% and an SD of 19.54%. The
corresponding variance ratios for physical threshold-based SampEn varied from 0% to 1.38% (m = 1,
r = 12 ms), with an average of 0.42% and an SD of 0.45%; and from −0.51% to 1.77% (m = 2, r = 12 ms),
with an average of 0.32% and an SD of 0.56%. Compared with the traditional SampEn, the physical
threshold-based SampEn showed significantly lower variance ratios for the analysis of atrial ectopic
RR segments. Figure 5 shows the similar results from CHF202, which includes 41 atrial ectopic RR
segments. The entropy variance ratios in the SampEn varied from −43.10% to 3.53%, with an average
of −2.34% and an SD of 8.51%. The corresponding variance ratios for physical threshold-based SampEn
varied from −0.19% to 0.97% (m = 1, r = 12 ms), with an average of 0.24% and an SD of 0.33%; and
from −0.39% to 1.09% (m = 2, r = 12 ms), with an average of 0.10% and an SD of 0.30%. The results for
CHF also support that the physical threshold-based SampEn had significantly lower variance ratios in
the analysis of atrial ectopic RR segments.

Entropy 2020, 21, x 8 of 17 

 

for the physical threshold-based SampEn (𝑚 = 1, 𝑟 = 12 ms), and (C1) entropy results and (C2) their 

variance ratios for the physical threshold-based SampEn (𝑚 = 2, 𝑟 = 12 ms). 

3.2. Demonstration of the Influence of Atrial Beats on Entropy Values 

There are two types of ectopic beat in the used PhysioNet/MIT RR Interval Databases, atrial and 

ventricular beats (shown in Figure 1). To further test the robustness of physical threshold-based 

SampEn method, we analyzed the ectopic segments only containing atrial or ventricular beats. For 

NSR002, there are 17 segments containing atrial beats and 137 segments containing ventricular beats 

among all 146 ectopic RR segments. For CHF202, there are 41 segments containing atrial beats and 

123 segments containing ventricular beats among all 150 ectopic RR segments. 

Figure 4 shows the results of 17 atrial ectopic RR segments from NSR002. Entropy variance ratios 

in SampEn varied from −53.40% to 1.77%, with an average of −8.48% and an SD of 19.54%. The 

corresponding variance ratios for physical threshold-based SampEn varied from 0% to 1.38% (𝑚 = 1, 

𝑟 = 12 ms), with an average of 0.42% and an SD of 0.45%; and from −0.51% to 1.77% (𝑚 = 2, 𝑟 =

12 ms), with an average of 0.32% and an SD of 0.56%. Compared with the traditional SampEn, the 

physical threshold-based SampEn showed significantly lower variance ratios for the analysis of atrial 

ectopic RR segments. Figure 5 shows the similar results from CHF202, which includes 41 atrial ectopic 

RR segments. The entropy variance ratios in the SampEn varied from −43.10% to 3.53%, with an 

average of −2.34% and an SD of 8.51%. The corresponding variance ratios for physical threshold-

based SampEn varied from −0.19% to 0.97% (𝑚 = 1, 𝑟 = 12 ms), with an average of 0.24% and an SD 

of 0.33%; and from −0.39% to 1.09% (𝑚 = 2, 𝑟 = 12 ms), with an average of 0.10% and an SD of 0.30%. 

The results for CHF also support that the physical threshold-based SampEn had significantly lower 

variance ratios in the analysis of atrial ectopic RR segments. 

 

Figure 4. An example of the influence of atrial ectopic beats. Entropy values and their variance ratios 

for subject NSR002 (only 17 atrial ectopic RR segments) before and after the ectopic beat removal: (A1) 

entropy results and (A2) their variance ratios for the traditional SampEn (𝑚 = 2, 𝑟 = 0.2), (B1) 
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Figure 4. An example of the influence of atrial ectopic beats. Entropy values and their variance ratios
for subject NSR002 (only 17 atrial ectopic RR segments) before and after the ectopic beat removal: (A1)
entropy results and (A2) their variance ratios for the traditional SampEn (m = 2, r = 0.2), (B1) entropy
results and (B2) their variance ratios for the physical threshold-based SampEn (m = 1, r = 12 ms), and
(C1) entropy results and (C2) their variance ratios for the physical threshold-based SampEn (m = 2,
r = 12 ms).
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Figure 5. An example of the influence of atrial ectopic beats. Entropy values and their variance ratios
on subject CHF202 (only 41 atrial ectopic RR segments) before and after the ectopic beat removal: (A1)
entropy results and (A2) their variance ratios for the traditional SampEn (m = 2, r = 0.2), (B1) entropy
results and (B2) their variance ratios for the physical threshold-based SampEn (m = 1, r = 12 ms), and
(C1) entropy results and (C2) their variance ratios for the physical threshold-based SampEn (m = 2,
r = 12 ms).

3.3. Demonstration of the Influence of Ventricular Beats on Entropy Values

Figure 6 shows the results of 137 ventricular ectopic RR segments from NSR002. Entropy variance
ratios in SampEn varied from −65.24% to 2.46%, with an average of −16.15% and an SD of 21.57%.
The corresponding variance ratios for physical threshold-based SampEn varied from 0% to 3.34%
(m = 1, r = 12 ms), with an average of 0.82% and an SD of 0.66%; and from −0.89% to 3.22% (m = 2,
r = 12 ms), with an average of 0.57% and an SD of 0.73%. Compared with the traditional SampEn,
the physical threshold-based SampEn also showed significantly lower variance ratios in the analysis
of ventricular ectopic RR segments. Figure 7 shows the similar results from CHF202, which includes
123 ventricular ectopic RR segments. The entropy variance ratios in SampEn varied from −48.55%
to 1.56%, with an average of −2.97% and an SD of 10.89%. The corresponding variance ratios for the
physical threshold-based SampEn varied from −0.35% to 2.01% (m = 1, r = 12 ms), with an average of
0.59% and an SD of 0.49%; and varied from −0.98% to 1.63% (m = 2, r = 12 ms), with an average of
0.22% and an SD of 0.43%. The results for CHF also support the idea that the physical threshold-based
SampEn had lower variance ratios in the analysis of ventricular ectopic RR segments.
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Figure 6. An example of the influence of ventricular ectopic beats. Entropy values and their variance
ratios for subject NSR002 (only 137 ventricular ectopic RR segments) before and after the ectopic beat
removal: (A1) entropy results and (A2) their variance ratios for the traditional SampEn (m = 2, r = 0.2),
(B1) entropy results and (B2) their variance ratios for the physical threshold-based SampEn (m = 1,
r = 12 ms), and (C1) entropy results and (C2) their variance ratios for the physical threshold-based
SampEn (m = 2, r = 12 ms).
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Figure 7. An example of the influence of ventricular ectopic beats. Entropy values and their variance
ratios for subject CHF202 (only 123 ventricular ectopic RR segments) before and after the ectopic beat
removal: (A1) entropy results and (A2) their variance ratios for the traditional SampEn (m = 2, r = 0.2),
(B1) entropy results and (B2) their variance ratios for the physical threshold-based SampEn (m = 1,
r = 12 ms), and (C1) entropy results and (C2) their variance ratios for the physical threshold-based
SampEn (m = 2, r = 12 ms).
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3.4. Total Results

Table 3 and Figure 8 show the entropy variance ratios and standard deviations for each subject in
the NSR group (in total, 45 recordings with the required numbers of ectopic segments, as indicated in
Table 1) when comparing the entropy values from both before and after ectopic beat removal. The absolute
variance ratio and standard deviation of SampEn for each subject were obviously larger than those from
the two physical threshold-based SampEn methods, and the mean variance ratios were −6.91%, 0.63% and
0.43% for SampEn and the two physical threshold-based SampEn methods (m = 1 and m = 2 respectively,
and, for both, r = 12 ms). In addition, SampEn showed significantly larger standard deviations of entropy
variance ratios within subjects than the two physical threshold-based SampEn methods. The average
standard deviations were 13.93%, 0.62% and 0.68% for SampEn and the two physical threshold-based
SampEn methods (m = 1 and m = 2 respectively, and, for both, r = 12 ms).

Table 3. Entropy variance ratios and standard deviations for each subject in the NSR group.

Record
Variance Ratios (%) Standard Deviation (%)

m = 2,
r = 0.2

m = 1,
r = 12 ms

m = 2,
r = 12 ms

m = 2,
r = 0.2

m = 1,
r = 12 ms

m = 2,
r = 12 ms

NSR001 −5.62 0.64 0.41 14.43 0.74 0.69
NSR002 −16.32 0.81 0.57 21.93 0.66 0.72
NSR003 −10.60 0.45 0.30 16.37 0.49 0.64
NSR004 −10.41 0.32 0.18 18.24 0.35 0.33
NSR005 −4.91 0.79 0.55 12.72 0.86 0.83
NSR006 −10.24 0.35 0.26 18.68 0.33 0.44
NSR007 −2.81 0.67 0.53 10.74 0.46 0.64
NSR008 −6.07 0.42 0.37 14.75 0.42 0.66
NSR009 −0.17 0.29 0.21 2.27 0.36 0.42
NSR010 −8.40 0.46 0.38 13.15 0.48 0.60
NSR011 −6.05 0.50 0.43 14.07 0.45 0.57
NSR012 −3.70 0.41 0.24 10.15 0.52 0.58
NSR013 −3.13 0.67 0.51 12.16 0.62 0.62
NSR014 −2.55 0.40 0.09 8.06 0.55 0.93
NSR015 −1.66 0.63 0.49 9.53 0.61 0.64
NSR016 −5.86 0.48 0.32 16.40 0.53 0.60
NSR017 −6.81 0.83 0.42 13.86 0.74 0.84
NSR018 −14.06 0.77 0.62 19.45 0.70 0.85
NSR019 −0.31 0.60 0.64 3.52 0.55 0.75
NSR020 −5.11 0.58 0.52 12.63 0.51 0.68
NSR021 −4.51 0.35 0.00 12.49 0.42 0.28
NSR022 −7.99 0.44 0.20 14.61 0.46 0.59
NSR023 −4.27 0.52 0.24 13.01 0.50 0.48
NSR024 −2.79 1.00 0.34 8.37 0.79 0.44
NSR025 −2.64 0.57 0.28 8.69 0.55 0.60
NSR026 −3.59 0.96 0.77 11.62 1.42 1.25
NSR028 −13.87 0.76 0.66 22.18 0.79 0.85
NSR029 −5.62 0.69 0.35 14.90 0.62 0.55
NSR030 −6.30 0.60 0.29 15.06 0.65 0.57
NSR031 −5.44 1.40 0.88 14.75 1.30 1.10
NSR032 −18.85 1.73 1.61 25.99 1.92 2.43
NSR033 −2.27 0.41 0.14 6.77 0.42 0.64
NSR034 −2.58 0.52 0.22 11.91 0.49 0.30
NSR035 −8.24 0.66 0.45 17.83 0.55 0.69
NSR036 −13.94 0.25 0.10 20.16 0.36 0.31
NSR037 −3.47 0.46 0.37 12.94 0.57 0.75
NSR039 −12.35 0.78 0.64 20.96 0.67 0.77
NSR040 −4.44 0.85 0.71 13.05 0.49 0.78
NSR041 −2.20 0.36 0.30 9.36 0.43 0.52
NSR043 −16.28 0.97 0.74 23.58 0.82 0.82
NSR044 −20.46 1.04 0.92 22.74 0.93 1.09
NSR045 −13.36 0.53 0.39 18.43 0.52 0.67
NSR046 −8.72 0.60 0.33 17.58 0.58 0.69
NSR047 0.18 0.37 0.13 0.35 0.23 0.30
NSR048 −2.10 0.46 0.05 6.53 0.54 0.19

Average −6.91 0.63 0.43 13.93 0.62 0.68
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Figure 8. Box plots of the entropy variance ratios and standard deviations for each subject in the NSR group. 

(A) Traditional SampEn (𝑚 = 2, 𝑟 = 0.2), (B) physical threshold-based SampEn (𝑚 = 1, 𝑟 = 12 ms) and (C) 

physical threshold-based SampEn (𝑚 = 2, 𝑟 = 12 ms). 

Table 4. Entropy variance ratios and standard deviations for each subject in the CHF group 
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Figure 8. Box plots of the entropy variance ratios and standard deviations for each subject in the
NSR group. (A) Traditional SampEn (m = 2, r = 0.2), (B) physical threshold-based SampEn (m = 1,
r = 12 ms) and (C) physical threshold-based SampEn (m = 2, r = 12 ms).

Similarly, Table 4 and Figure 9 show the entropy variance ratios and standard deviations for
each patient in the CHF group (24 recordings). The absolute variance ratio and standard deviation
for each subject of SampEn were obviously larger than those from the two physical threshold-based
SampEn methods, and the mean variance ratios were −5.01%, 1.54% and 1.41% for SampEn and the two
physical threshold-based SampEn methods (m = 1 and m = 2 respectively, and, for both, r = 12 ms).
Meanwhile, SampEn showed significantly larger standard deviations of entropy variance ratios within
patients than the two physical threshold-based SampEn methods. The average standard deviations
were 11.69%, 1.28% and 1.46% for SampEn and the two physical threshold-based SampEn methods
(m = 1 and m = 2 respectively, and, for both, r = 12 ms). These results further confirmed the better
stability of SampEn using the physical threshold.
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Figure 9. Box plots of the entropy variance ratios and standard deviations for each subject in the
CHF group. (A) Traditional SampEn (m = 2, r = 0.2), (B) physical threshold-based SampEn (m = 1,
r = 12 ms) and (C) physical threshold-based SampEn (m = 2, r = 12 ms).
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Table 4. Entropy variance ratios and standard deviations for each subject in the CHF group

Record
Variance Ratios (%) Standard Deviation (%)

m = 2, r = 0.2 m = 1,
r = 12 ms

m = 2,
r = 12 ms

m = 2,
r = 0.2

m = 1,
r = 12 ms m = 2, r = 12 ms

CHF201 −3.48 0.44 0.22 10.98 0.44 0.33
CHF202 −3.18 0.55 0.20 11.36 0.49 0.42
CHF203 −7.00 2.19 2.43 18.09 1.82 2.24
CHF204 −15.87 2.06 0.73 24.74 1.25 0.94
CHF205 −2.81 1.88 1.64 13.97 1.09 1.36
CHF206 0.09 3.82 4.14 8.16 3.17 3.53
CHF208 −1.49 2.27 2.45 13.20 1.70 2.21
CHF209 0.45 2.26 2.59 0.61 2.16 2.70
CHF210 −0.85 2.28 2.01 8.64 1.45 1.35
CHF211 −1.74 0.35 0.11 6.69 0.51 0.36
CHF212 6.02 1.76 2.10 12.43 2.11 2.41
CHF213 −40.79 0.66 0.19 19.12 0.54 0.49
CHF215 0.20 0.96 0.95 0.28 1.21 1.44
CHF216 −2.91 0.68 0.63 7.90 0.43 0.84
CHF217 −8.92 1.15 0.66 15.62 0.91 0.79
CHF218 −9.88 1.21 1.00 21.18 0.95 1.10
CHF219 −2.05 0.50 0.38 5.81 0.57 0.63
CHF220 −2.24 1.30 1.13 10.77 1.30 1.46
CHF222 −15.62 2.87 2.41 25.51 1.64 1.76
CHF224 −1.79 1.12 0.72 7.89 1.06 1.13
CHF225 −3.22 1.19 1.26 15.88 1.03 1.38
CHF226 −2.36 3.85 4.56 13.11 3.43 4.44
CHF228
CHF201 −1.06 1.48 1.44 7.95 1.24 1.47

CHF229 0.24 0.17 −0.01 0.70 0.21 0.24

Average −5.01 1.54 1.41 11.69 1.28 1.46

When comparing the group differences of variance ratios between the NSR and CHF groups,
the traditional SampEn showed no significant difference (P = 0.3) while the physical threshold-based
SampEn showed significant differences (both P < 0.01 for two parameter m settings), with P = 4 × 10−7

for m = 1 and P = 2 × 10−6 for m = 2 respectively.

4. Discussion and Conclusions

In all of the three intrinsic parameters of SampEn, the parameter r is the most difficult to be
determined. Different opinions regarding the selection of threshold r would lead to different entropy
outputs. In a previous study, researchers developed different methods for the selection of the threshold
r [8,39], and tried to make the selection method more rigorous and standardized [4,40]. However, there
is no unified standard for r value selection now. Special selection methods only perform well under
specific circumstances, and the influencial factors may include data type, data length, disease type, etc.
Therefore, the argument has always been whether to use a fixed tolerance r or a varying tolerance r.
Researchers first explored this issue in the MSE method, which performed SampEn analysis on several
different scales and thus induced the question of whether using a fixed or a varying tolerance r at
different scales was better. Angelini et al. reported that using a fixed and a varying tolerance r in MSE
generated similar changes in CHF analysis [41]. Silva et al. also confirmed this finding in a rat model
of hypertension and CHF [42], suggesting that the selection of the tolerance r in the MSE method is
not relevant. However, the fixed tolerance r at different scales only stays the same for special subjects.
For different subjects, there is also an inter-variability of the tolerance r, since different subjects have
different signal variabilities of time series.

In a previous study, we found that SampEn reported lower values in CHF patients when using a
small threshold r value (r = 0.10), but higher values when using large threshold r values (r = 0.20
or 0.25). The opposite entropy change trend brings difficulty to the clinical explanation. To solve
this problem, we proposed a physical threshold-based SampEn method to discriminate the opposite
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entropy change trend in classifying CHF and NSR subjects. This previous study was performed
only on RR segments without any ectopic beats. The raw ECG signal had a sample rate of 128 Hz,
generating differences of roughly 8 ms and its multiples for RR intervals. Thus, we tested the effects of
different r values of r = 12 ms, r = 20 ms, r = 28 ms etc., and found that r = 12 ms provided the best
discrimination between the CHF and NSR groups. In this study, we used the previously proposed
fixed tolerance r method with r = 12 ms [26] with physical meaning to analyze the RR interval time
series with ectopic beats, to explore if the new r method has better performance for ectopic time series.
Forty-five NSR and 24 CHF recordings were enrolled in this study, all of which had an appreciable
number of ectopic beats, including atrial and ventricular beats. SampEn entropy results from both the
traditional varying threshold (a fraction of the SD of time series) and the new fixed physical meaning
threshold were compared before and after ectopic beat removal. For both the NSR and CHF groups,
the entropy variance of SampEn with the traditional threshold is obviously larger than that when using
the physical meaning threshold, which verifies the better consistency of the new physical meaning
threshold method.

Ectopic beats are routinely removed or edited from the RR interval time series prior to HRV
analysis. Salo et al. found that both time- and frequency-domain indices were sensitive to the editing
of RR intervals [28]. This finding was consistent with our current study, where we showed that the
SampEn calculated by the traditional method was sensitive to the removal of ectopic beats (one to
five beats). The reason is that the ectopic beats usually result in sudden changes in the RR interval
time series. This effect is significant on the transient change of HRV reflected by both the time- and
frequency-domain indices, as well as nonlinear indices like SampEn [29,43]. However, for each subject,
after ectopic beats were removed, the entropy value only changed significantly in specific segments.
The entropy value variance for all segments in subject NSR002 was between −65.24% and 2.25% for the
traditional threshold; and between 0% and 3.34% (m = 1), and −0.51% and 3.21% (m = 2) for the two
physical meaning thresholds. The results in subject CHF202 were similar, i.e., between −62.50% and
3.53% for the traditional threshold; and −0.35% and 2.01% (m = 1), and −0.98% and 1.39% (m = 2) for
the two physical meaning thresholds. The absolute change in SampEn with the traditional threshold
was much more significant than that in SampEn with the physical meaning threshold.

In addition, we also analyzed the effect of different ectopic beats (atrial or ventricular) on the
tested SampEn output. Results from the segments only containing atrial or ventricular beats showed
that SampEn using the physical meaning threshold still performed better than SampEn using the
traditional threshold. When atrial beats or ventricular beats were removed, the absolute entropy value
variation in the former SampEn was significantly smaller than that in the latter.

In conclusion, SampEn using the physical meaning threshold has better performance, not only for
different data types (NSR or CHF recordings), but also for different types of ectopic beat (atrial beats,
ventricular beats, or both), and using the physical meaning threshold makes SampEn become more
consistent and stable.
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