
Frontiers in Immunology | www.frontiersin.

Edited by:
Massimo Collino,

University of Turin, Italy

Reviewed by:
Tsaffrir Zor,

Tel Aviv University, Israel
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*Correspondence:
Stanislas Goriely

stanislas.goriely@ulb.be

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 10 September 2020
Accepted: 10 December 2020
Published: 05 February 2021

Citation:
Le A, Azouz A, Thomas S, Istaces N,
Nguyen M and Goriely S (2021) JNK1

Signaling Downstream of the EGFR
Pathway Contributes to Aldara®-

Induced Skin Inflammation.
Front. Immunol. 11:604785.

doi: 10.3389/fimmu.2020.604785

ORIGINAL RESEARCH
published: 05 February 2021

doi: 10.3389/fimmu.2020.604785
JNK1 Signaling Downstream of the
EGFR Pathway Contributes to
Aldara®-Induced Skin Inflammation
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c-Jun N-terminal protein kinase 1 (JNK1) is involved in multiple biological processes but its
implication in inflammatory skin diseases is still poorly defined. Herein, we studied the role
of JNK1 in the context of Aldara®-induced skin inflammation. We observed that
constitutive ablation of JNK1 reduced Aldara®-induced acanthosis and expression of
inflammatory markers. Conditional deletion of JNK1 in myeloid cells led to reduced skin
inflammation, a finding that was associated with impaired Aldara®-induced inflammasome
activation in vitro. Next, we evaluated the specific role of JNK1 in epidermal cells. We
observed reduced Aldara®-induced acanthosis despite similar levels of inflammatory
markers. Transcriptomic and epigenomic analysis of keratinocytes revealed the potential
involvement of JNK1 in the EGFR signaling pathway. Finally, we show that inhibition of the
EGFR pathway reduced Aldara®-induced acanthosis. Taken together, these data indicate
that JNK1 plays a dual role in the context of psoriasis by regulating the production of
inflammatory cytokines by myeloid cells and the sensitivity of keratinocytes to EGFR
ligands. These results suggest that JNK1 could represent a valuable therapeutic target in
the context of psoriasis.
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INTRODUCTION

Psoriasis is a chronic disease of unsolved pathogenesis that affects skin and joints in 1–3% of the
general population. It arises in genetically susceptible hosts in response to ill-defined environmental
triggers and is characterized by inflamed and scaly skin lesions and can be complicated by arthritis
(1). The skin lesions show hyperproliferation and altered differentiation of epidermal keratinocytes,
marked infiltrates of T cells and neutrophils, and a distinct increase of skin capillaries (2). While
psoriasis is considered as an autoimmune disease, the current pathogenic model emphasizes the role
of various innate immune populations (e.g., dermal dendritic cells, neutrophils, or gd T cells) and
the IL-23/IL-17 axis. It is clear however that keratinocytes also contribute to the initiation of
inflammation. IL-17 stimulates keratinocytes and dermal fibroblasts leading to the expression of
multiple antimicrobial peptides and chemokines that recruit and activate inflammatory cells (3).
Both TNF and IL-23/IL-17 axes now represent major therapeutic targets that have dramatically
changed the management of psoriasis and psoriatic arthritis (2).
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c-Jun N-terminal protein kinase 1 (JNK1), encoded by
Mapk8, is a member of the mitogen-activated protein kinase
(MAPK) family and is involved in many processes such as
embryonic development, neuronal functions, cancer, metabolic
inflammation, antimicrobial defense or immune-related
signaling cascades (4). Its role in the control of skin
homeostasis has not been fully elucidated although it was
shown to contribute to epidermal development (5). Recently, a
heterozygous splice site mutation in MAPK8 in three affected
members from a multiplex family with autosomal dominant
chronic mucocutaneous candidiasis disease was reported. The
mutation results in aberrant splicing of MAPK8 mRNA and
reduced expression of JNK1 (6). As the same cytokine network is
involved in psoriasis and skin defense against fungal pathogens
such as C. albicans (7), we hypothesized that JNK1 could
participate in the pathogenesis of psoriasis. We therefore
evaluated the role of this kinase in the context of Aldara®-
induced skin inflammation, a widely used in vivo model of
psoriasis to study the interactions between immune cells and
keratinocytes (8). We demonstrate that in this context, JNK1
plays a dual role: On one hand, it acts in myeloid cells, leading to
inflammasome-related inflammation and on the other hand, it
contributes to keratinocyte proliferation downstream of the
EGFR pathway.
MATERIAL AND METHODS

Mice
All experiments were performed on age-matched (from 8 to 12
weeks of age) female mice. Wild type C57Bl/6 mice were
purchased from Envigo. Mapk8fl/fl mice (C57BL/6 background)
were previously described (9) and kindly provided by Thomas
Wunderlich and Jens Brüning, Institute for Genetics, University
of Cologne. B6.C-Tg(Pgk1-cre)1Lni/CrsJ (stock 020811),
B6.129P2-Lyz2tm1(cre)Ifo/J (stock 004781), B6N.Cg-Tg
(KRT14-cre)1Amc/J (stock 018964) and B6.Cg-Tg(Itgax-cre)1-
1Reiz/J (stock 008068) mice were obtained from the Jackson Lab.
Littermates were used as controls in all experiments. All mice
were bred and maintained in a conventional animal facility.
Aldara®-Induced Dermatitis and
Recombinant Cytokine Injection
Eight- to 12-week-old female mice were shaved on the abdomen
with an electrical shaver and depilated with Veet hair remover
(10). Mice were topically treated with a 62.5 mg/day of cream
containing 5% imiquimod (Aldara cream®, 3M pharmaceuticals)
over eight consecutive days (11). Mice were sacrificed 4 h after the
last application, and skin samples were collected for histology,
gene expression or tissue processing. Carrier-free rmIL17A (R&D
Systems, #7956ML025/CF) 500 ng/ear/day were injected daily for
8 days, then mice were sacrificed and ears were sampled for
histology. Carrier-free rmIL23 (BioLegend, #589006) 1mg/ear/day
or carrier-free rmAREG (PeproTech, #31536) 1mg/ear/day were
injected daily for 4 days, then mice were sacrificed and ears were
Frontiers in Immunology | www.frontiersin.org 2
sampled for histology. When indicated, SP600125 30 mg/kg/d
(VWR), AG1478 15mg/kg/d (VWR) or DMSO was injected
intraperitoneally to mice, once per day for 9 days.

Cell Preparation for Keratinocyte Cell
Sorting
Skin samples were incubated with dispase II (Sigma-Aldrich, 2.4
mg/ml), collagenase IV (Worthington, 0.4 mg/ml) and DNase I
(Sigma-Aldrich, 100 mg/ml) for 2h at 37°C. Dead cells were stained
with LIVE/DEAD™ Fixable NearIR Stain Kit, for 633/635 nm
excitation (Life Technologies). Then, they were incubated with rat
anti-mouse CD16/CD32 (BD, 2.4G2, dilution 1:100, 553141), and
a surface staining antibody mix CD45-PE (BD, 30F11, dilution
1:100, 553081), CD31-PE (BD, MEC 13.3, dilution 1:100, 561073),
CD140a-PE (BD, APA5, dilution 1:100, 562776), EpCam-BV421
(BD, G8.8, dilution 1:100, 563214), and CD49f-PerCpCy5.5 (BD,
GoH3, dilution1:100, 562495). Cells were sorted on a BD
FACSAria™ III.

RNA Purification and RNA Sequencing
Keratinocytes RNA from WT or Mapk8∂EP mice was extracted
with the RNeasy Minikit (Qiagen) and sent for RNA sequencing.
Libraries were prepared using Ovation SoLo RNA-Seq System

(NuGEN Technologies) and underwent paired-end sequencing
(25 Å~ 106 paired-end reads/sample, NovaSeq 6000 platform)
performed by BRIGHTcore ULB-VUB, Belgium (http://www.
brightcore.be). Adapters were removed with Trimmomatic-0.36
(with the following parameters: Truseq3-PE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
HEADCROP:4) Reads were then mapped to the reference genome
mm10 by using STAR_2.5.3 software with default parameters. We
then sorted the reads from the alignment according to chromosome
positions and indexed the resulting BAM files. Read counts in the
alignment BAM files that overlap with the gene features were
obtained using HTSeq-0.9.1 with “nonunique all” option (if the
read pair aligns to more than one location in the reference genome,
it is counted in all features to which it was assigned and scored
multiple times). Genes with no raw read count greater than or equal
to 20 in at least one sample were filtered out with an R script, raw
read counts were normalized, and a differential expression analysis
was performed with DESeq2 by applying an adjusted P < 0.05 and
an absolute log2 ratio larger than 1. Gene Set Enrichment Analysis
(GSEA) was performed on the keratinocytes dataset to examine the
enriched gene ontology terms. Resulted pathways were introduced
to Cytoscape to generate an enrichment map for functional
enrichment visualization.

ATAC Sequencing
After sorting, 20,000–50,000 keratinocytes were centrifuged,
washed once with icecold PBS and resuspended in 50 ml of
lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl2, and
0.1% IGEPAL). Cell suspension was directly centrifuged (500 g)
for 10 min at 4°C. Supernatant was discarded and nuclei were
resuspended in 50 ml of reaction buffer (2.5 ml of Tn5
transposase, 22.5 ml of TD buffer, and 25 ml of H2O, Nextera
DNA sample preparation kit, Illumina). The reaction was
performed for 30 min at 37°C. DNA was purified using the
February 2021 | Volume 11 | Article 604785
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MinElute PCR Purification Kit (QIAGEN), amplified, and
indexed by PCR using NEBNext High-Fidelity 2 Å~ PCR
Master Mix (New England Biolabs) with 10–12 cycles.
Amplified libraries were purified using MinElute PCR
Purification Kit (Qiagen) and quality controlled using a
Bioanalyzer High-Sensitivity DNA Analysis kit (Agilent).
Paired-end sequencing was performed on NovaSeq platforms
(Illumina). Paired-end reads were mapped to mouse genome
mm10 with Bowtie2 using default parameters. Reads that
mapped several regions, or with insufficient mapping quality,
were removed with samtools view. Peaks were called with
MACS249 using the following parameters: -f BAMPE -g mm
-q 0.05 –nomodel –call-summits -B –SPMR. We created an atlas
containing all obtained peaks for all the populations using
bedtools with a minimum overlapping of 1 bp. The obtained
atlas was subjected to differential analysis using DESeq2 (p-
adjusted cutoff of 0.05) provided by SeqMonk 1.43.0 (Mapped
Sequence Analysis Tool, Babraham Bioinformatics, http://www.
bioinformatics.babraham.ac.uk/projects/seqmonk/). Resulting
peaks were separated into two categories: peaks located in
promoters (located within 2 kb around the transcription start
site) and peaks located in enhancers (not located in the defined
promoter regions). For downstream visualization, a scaling
factor was calculated using deepTools package to normalize
peak intensity to fraction of reads in peaks (FrIP) and generate
bigWig files. Gene Ontology analysis was performed by
introducing BED files from differential ATAC-Seq peaks to
GREAT with default parameters. For motif analysis, CiiiDER
algorithm was used to perform motif enrichment in the
differentially accessible regions.
Gene Expression
Total skin RNA was extracted with the NucleoSpin RNA plus
(Filter service, catalog MN 740984.250) and was reverse-
transcribed with the RevertAid RT Reverse Transcription Kit
(Thermo Fisher Scientific, catalog K1691). cDNA was amplified
using TaqMan probes or SYBR green.

Relative mRNA levels were determined by comparing the
cycle thresholds for the gene of interest and a calibrator gene
Actb, then values for Aldara®-treated group were compared with
mock-treated group and finally all values were compared to the
median value of Mapk8fl/fl or Mapk8+/+ Aldara®-treated group
arbitrarily set at the value of 100. Primers and probes sequences
are available in Supplemental Material Table 1.

Histology
Mice skins were fixed in 4% paraformaldehyde. Samples were
directly paraffin embedded. Sections (4 mm) were stained with
May Grünwald Giemsa, hematoxylin eosin or Ki67. Epidermal
thickness was measured at 200-fold magnification; a mean of
three measures on three different slide fields was calculated for
each sample by two-blinded observers. Ki67 epidermal positive
cells were quantified manually at 400-fold magnification; a mean
of three counts on three different slide fields was calculated for
each sample by two-blinded observers.
Frontiers in Immunology | www.frontiersin.org 3
Cell Culture
Primary keratinocytes were isolated from newborn mice (24–72
hours after birth) (Li 2013). Cells were cultured in complete
Keratinocyte Growth Medium II (Promocell GmbH) at 7% CO2
and 36°C.

Bone marrow-derived macrophages (BMM) were generated
as previously described (12). BMM were stimulated with Aldara
cream® (250 mg of Aldara® cream diluted in 1.5ml of DMSO,
3M pharmaceuticals), R837 (Invivogen #tlrlimqs) or R848
(Invivogen, #tlrlr848) or primed for 3h by UltraPure
lipopolysaccharide (LPS from E. Coli 0111:B4, Invivogen
#tlrl3pelps). TNF, CXCL1, IL-12p40, and IL-1b were measured
in supernatant by ELISA (R&D Systems).

Bone-marrow derived dendritic cells (BMDC) were generated
as previously described (12).

EDU Staining
Cells were cultured in complete Keratinocyte Growth Medium II
(Promocell GmbH) at 7% CO2 and 36°C. 647 EdU Click
Proliferation Kit (BD, #565456) was used according to
datasheet and dead cells were stained with LIVE/DEAD™

Fixable NearIR Stain Kit, for 633/635 nm excitation (Life
Technologies). Data were acquired on a BD LSRII Fortessa and
analyzed with Flowjo software.

Western Blotting
Mouse skin and spleen samples were lysed in RIPA reagent and
treated like previously described (10). Mouse anti-GAPDH
(clone 6C5; Meridian Life Science) and mouse anti-JNK1 (F-3;
SC1648; Santa Cruz) were used as primary antibodies.

Statistical Analysis
Results are expressed as median ± interquartile range. Statistical
significance was assessed using Mann-Whitney test and results
were considered significant at p < 0.05. (GraphPad Prism 6.0).
RESULTS

JNK1 Contributes to Aldara®-Induced Skin
Inflammation
First, we evaluated the JNK1 level in Mapk8+/+ (WT) and
Mapk8-/- skin and spleen and attested the functional
invalidation of JNK1 in Mapk8-/- mice (Figure 1A). In order to
determine the role of JNK1 signaling pathway in skin
inflammation, we evaluated the sensitivity of Mapk8-/- mice to
repeated topical applications of Aldara®, a classical model that
shares many features with human psoriasis (Figure 1B). As
expected, after 8 days of treatment, WT mice developed clear
thickening of the epidermis associated with intense proliferation
of basal keratinocytes as revealed by Ki67 staining (Figures 1C–F).
We did not observe any difference between mock-treatedMapk8-/-

mice and their counterparts but both parameters were significantly
reduced after Aldara® treatment (Figures 1C, D). Next, we
evaluated the expression of psoriasis-associated inflammatory
February 2021 | Volume 11 | Article 604785
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mediators. Aldara® treatment strongly enhanced expression of
cytokines (such as Il17a, Il1f6, Il19, Il1b, and Il6), chemokines
(Cxcl1) and anti-microbial peptides (S100a9) in the skin of
Mapk8+/+ mice. Induction of these inflammatory genes was
strongly reduced in Aldara®-treated Mapk8-/- mice in
comparison to their WT counterpart (Figure 1G). These results
indicate that JNK1 represents an important signaling pathway
in the context of Aldara®-induced skin inflammation.

JNK1 Is Necessary for IL-1b Production
Induced by Aldara®

Langerhans cells, dermal dendritic cells (DCs) and recruited
inflammatory monocytes have been reported to be key
contributors to psoriatic plaque formation as sources of IL-23
or IL-1b (13–15). We therefore hypothesized that the production
of these Aldara®-induced inflammatory cytokines might be
dependent on JNK1 expression in myeloid cells. Therefore, we
Frontiers in Immunology | www.frontiersin.org 4
used mice with Mapk8 floxed gene that express normal level of
JNK1 as WT mice and we generated mice lacking JNK1 in the
whole myeloid compartment (LysMCre Mapk8fl/fl mice,
targeting monocytes, macrophages and neutrophils: Mapk8∂M)
or in CD11c+ cells (Figure 2A) (ItgaxCre Mapk8fl/fl, targeting
DCs and Langerhans cells: Mapk8∂DC). Deletion of JNK1 in
either compartment had no effect on epidermal thickening
induced by Aldara® treatment (Figures 2B–E). Nevertheless,
we observed a strong reduction in the expression of many
mediators and markers of inflammation in Aldara®-treated
skins of Mapk8∂M and Mapk8∂DC mice compared to Mapk8fl/fl

mice (Figures 2F, G).
Next, we evaluated the direct role of JNK1 downstream of the

signaling pathway triggered by Aldara® in myeloid cells. For this
purpose, we evaluated the in vitro cytokine or chemokine
production by bone marrow-derived macrophages (BMM) in
response to imiquimod (R837, a TLR7 ligand) but also by
A B

D

E F

G

C

FIGURE 1 | JNK1 contributes to Aldara®-induced skin inflammation. (A) JNK1 level in skins and spleens of Mapk8+/+ and Mapk8-/- mice (B) Mapk8+/+ and
Mapk8-/- mice were shaved and then treated daily with a topical dose of Aldara® cream (62.5 mg/d) for eight consecutive days. Mice were sacrificed 4h after the last
application. (C) Epidermis thickness (mm) was measured on May Grünwald Giemsa (MGG)-stained sections. Results were collected from two independent
experiments (treated, n = 10; untreated, n = 6). (D) Representative MGG-stained slides from each experimental group. (scale bar = 50 mm, 200X magnification).
(E) Quantification of Ki-67+ cells/field. (F) Representative Ki67 immunohistochemistry staining from each experimental group. (scale bar = 50 mm, 200X
magnification). (G) Expression of inflammatory markers in whole skin samples was quantified by RTqPCR. Results were pooled from two independent experiments
(treated mice n = 5 and untreated n = 3 per experiment). Results are expressed as median and interquartile range and each dot represents an individual mouse.
Statistical analysis was performed using Mann-Whitney test, *p < 0.05, **p < 0.01, ***p < 0.001.
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resiquimod (R848, a TLR7/8 ligand) and Aldara® cream
dissolved in DMSO. Levels of TNF, CXCL1 or IL12p40 were
similar in BMMs from Mapk8∂M and Mapk8fl/fl mice, indicating
that JNK1 is not critically involved in TLR7-mediated cytokine
production in these cells (Figures 2H–J). We also evaluated IL-
Frontiers in Immunology | www.frontiersin.org 5
23 production by bone marrow derived dendritic cells (BMDC)
and reached similar conclusions (Figure 2K). Previous reports
indicated that the effect of Aldara® is partially mediated
through activation of the inflammasome pathway by isostearic
acid, a major component of the vehicle cream (16). We therefore
A B

D E

F

G
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K L

C

FIGURE 2 | JNK1 is necessary for inflammasome activation by Aldara® cream but not upon TLR7 or TLR7/8 stimulation. (A) JNK1 expression in Mapk8fl/fl,
CD11cCre+ Mapk8fl/fl BMDCs and LysMcre+ Mapk8fl/f l BMMs. (B) Mapk8fl/fl, Mapk8∂M and Mapk8∂DC mice were shaved and then treated daily with a topical dose
of Aldara® cream (62.5 mg/d) for eight consecutive days. Mice were sacrificed 4h after the last application. (C, D) Epidermis thickness (mm) was measured on MGG-
stained sections. Results were pooled and collected from two independent experiments (treated mice n = 7 or 8 or 10 or 11 according to mice groups and
untreated n = 5). (E) Representative MGG-stained slides from each experimental group. (scale bar = 50 mm, 200X magnification). (F, G) Expression of inflammatory
markers in whole skin samples was quantified by RTqPCR. Results were pooled from two independent experiments (treated mice n = 5 or 6 or 9 according to mice
groups and untreated n = 6). Results are expressed as median and interquartile range and each dot represents an individual mouse. Statistical analysis was
performed using Mann-Whitney test, ns, non significant, * p < 0.05, **p < 0.01, ***p < 0.001. (H) TNF, (I) CXCL1and (J) IL12p40 production by BMMs and
(K) IL-23 production by BMDCs stimulated overnight by Aldara cream (1/2500 dilution in DMSO), R837 (8mg/ml) or R848 (5mg/ml) were quantified by ELISA. (L) IL-
1b production by BMMs primed for 3h with LPS (100 ng/ml) and then stimulated by Aldara cream (1/100 dilution in DMSO), R837 (8mg/ml) or R848 (10mg/ml) were
quantified by ELISA. Results are from one experiment representative of two independent experiments. Results are expressed as median and interquartile range and
each dot represents an experimental replicate. Statistical analysis was performed using Mann-Whitney test, **p < 0.01.
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primed BMMs by short-time incubation with LPS (to trigger
pro-IL-1b expression) followed by R837, R848, or Aldara®

stimulation and measured IL-1b production in the
supernatants. We observed robust production of IL-1b upon
treatment by Aldara® but not upon R837 or R848 stimulation
(Figure 2L). In these experimental conditions, JNK1-deficient
BMMs produced significantly reduced levels of IL-1b in
comparison to WT cells. Taken together, these results indicate
that JNK1 expression in the myeloid compartment contributes to
Aldara®-induced skin inflammation through the IL-1b
production system rather than by acting downstream of the
TLR7 pathway.

JNK1 Is Necessary for Acanthosis Induced
by Aldara®

Deletion of JNK1 in myeloid or DC compartment led to
dampened expression of inflammatory markers but did not
influence Aldara®-induced epidermal thickening, suggesting
that these two pathological phenomena could be dissociated.
We therefore evaluated the role of JNK1 in keratinocytes by
generating K14Cre Mapk8fl/fl (Mapk8∂Ep) mice (Figure 3A).
Frontiers in Immunology | www.frontiersin.org 6
Histological sections indicated that Aldara®-induced
acanthosis was somewhat reduced of 36% in Mapk8∂Ep mice in
comparison to Mapk8fl/fl mice (Figures 3B, C). This acanthosis
decrease is similar to the one observed between theMapk8-/- and
Mapk8+/+ mice (28%). This was associated with reduced
proliferation of basal keratinocytes as revealed by Ki67 staining
(Figures 3D, E). In sharp contrast, expression of inflammatory
genes was found to be comparable in both groups excepted for
Il19, Cxcl1 and S100a9 (Figure 3F). These results indicate that
JNK1 in epidermal cells contributes to Aldara®-induced
acanthosis and has a limited involvement in the induction of
inflammatory markers.

Acanthosis Induced by IL-23/IL-17A is
Independent of JNK1
IL-17 signaling in keratinocytes contributes to psoriatic
inflammation (17). We hypothesized that the dominant effect
of JNK1 on Aldara®-induced acanthosis could be related to its
role downstream of the IL-17R in epidermal cells, as suggested in
patients harboring theMAPK8 variant (6). We first evaluated the
contribution of JNK1 upon repeated intradermal injection of
A

B

D E

F

C

FIGURE 3 | JNK1 is necessary for acanthosis induced by Aldara®. (A) Mapk8fl/fl and Mapk8∂Ep mice were shaved and then treated daily with a topical dose of
Aldara® cream (62.5 mg/d) for eight consecutive days. Mice were sacrificed 4 h after the last application. (B) Epidermis thickness (mm) was measured on MGG-
stained sections. Results are from two independent experiments (treated n = 11 and untreated n = 5). (C) Representative MGG-stained slides from each
experimental group. (scale bar = 50 mm, 200X magnification). (D) Quantification of Ki-67+ cells/field. (E) Representative Ki67 immunohistochemistry staining from
each experimental group. (scale bar = 50 mm, 200X magnification). (F) Expression of inflammatory markers in whole skin samples was quantified by RTqPCR.
Results were pooled from two independent experiments (treated n = 15 and untreated n = 6). Results are expressed as median and interquartile range and each dot
represents an individual mouse. Statistical analysis was performed using Mann-Whitney test, ns: non significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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recombinant IL-23 that mediates its effect through induction of
IL-17 and IL-22 (18). These experiments were performed in
Mapk8-/-, Mapk8∂Ep, and Mapk8fl/fl mice (Figure 4A).
Recombinant mouse IL-23 induced epidermis thickening to a
similar extent in the three groups (Figures 4B, C). Next, we
injected recombinant mouse IL-17A and reached the same
conclusions (Figures 4D–F). These results suggest that the
dominant role of JNK1 in the Aldara® model is not related to
its effect downstream of the IL-17R.

Transcriptomic and Epigenomic Profiles of
Epidermal Cells Upon Aldara® Treatment
To further elucidate the role that JNK1 plays in keratinocytes in the
context of Aldara®-treated skin, we sorted EpCam+CD49fhi

epidermal cells from WT and Mapk8∂Ep mice after 8 days of
topical application of Aldara® (Figure 5A) (gating strategy
Supplementary Figure 1). We then performed transcriptomic
(RNA-Seq) and epigenomic (ATAC-Seq) analysis to define their
molecular profiles.
Frontiers in Immunology | www.frontiersin.org 7
We validated that the Mapk8 gene gave rise to a truncated
mRNA upon K14-driven expression of the Cre recombinase
(Figure 5B). Then, we identified 102 differentially expressed
genes (25 down and 77 up-regulated genes) in JNK1-deficient
cells as compared to their controls (FdR<0.01, FC>2) (Figure
5C). Several genes involved in epidermal differentiation,
proliferation or formation of the cornified envelope such as
Krt25, Krt71, Casp14, Klk5, Tgm3, Klk5, Flg, and histone-
encoding genes were down-regulated in absence of JNK1,
suggesting that this kinase controls part of the differentiation
program induced in the context of skin inflammation. Geneset
enrichment analysis (GSEA) confirmed this notion, as pathways
involved in cell cycle, biogenesis or skin development were
downregulated in absence of Mapk8 (Figures 5D, E).

To further determine the underlying molecular processes at
play, we analyzed epigenomic landscapes of these cells by ATAC-
Seq approaches. This technique allows us to map open
chromatin regions throughout the genome (19). We observed
extensive modifications in Mapk8 deficient cells as 2,456 and
A
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FIGURE 4 | Acanthosis induced by IL23 or IL17A does not require JNK1. (A) Mapk8fl/fl, Mapk∂Ep and Mapk8-/- mice received daily ear injections of rmIL-23 for four
consecutive days. Mice were sacrificed 24 h after the last injection. (B) Epidermis thickness (mm) was measured on MGG-stained sections. Results are from two
independent experiments (rmIL-23 n = 8 or 14 according to mice groups and PBS n = 6 or 4). (C) Representative MGG-stained slides from each experimental
group. (scale bar = 50 mm, 200X magnification). (D) Mapk8fl/fl, Mapk∂Ep and Mapk8-/- mice received daily ear injections of rmIL-17A for four consecutive days. Mice
were sacrificed 24 h after the last injection. (E) Epidermis thickness (mm) was measured on MGG-stained sections. Results are from two independent experiments
(rmIL-17 n = 8 and PBS n = 3 or 2 or 1 according to mice groups). (F) Representative hematoxylin and eosin (HE)-stained slides from each experimental group.
(scale bar = 50 mm, 200X magnification). Results are expressed as median and interquartile range and each dot represents an individual mouse. Statistical analysis
was performed using Mann-Whitney test, ns, non significant.
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1,211 regions were found to be significantly more or less
accessible in controls, respectively (Figure 6A). Most of the
differentially accessible peaks were located in enhancers rather
than in promoters. These observations suggest important and
widespread functional impact of JNK1 signaling on the
epigenet ic programming of epidermal cel ls during
inflammation. For example, we observed decreased accessibility
in regulatory elements associated with the genes that encodes
Elovl1, involved in epidermal barrier formation (20), Cdc20, an
essential regulator of cell division, Tgm3, a transglutaminase
involved in the formation of the cornified cell envelope
upregulated in psoriasis (21), Hbegf (encoding one of the
EGFR ligands) (Figure 6B). We scanned for binding motifs at
the center of ATAC peaks located in these differentially
accessible regions using Ciiider algorithm (http://ciiider.com/).
We observed a very strong enrichment for consensus binding
motifs characteristic of AP-1 family in WT-specific enhancers,
strongly supporting the notion that JNK1 acts upstream of c-Jun
Frontiers in Immunology | www.frontiersin.org 8
in this context. (Figure 6C). Next, we performed gene-ontology
analysis using GREAT (genomic regions enrichment of
annotations tool) (22). The most relevant pathways were
associated with regions that were less accessible in JNK1-
deficient cells. As expected, many of these regions were
involved in MAP kinase activity, epithelial cell proliferation
and epidermis development. Importantly, several signaling
pathways, such as EGFR, TLR and TGFbR were also identified
(Figure 6D). As EGFR pathway is altered in psoriatic lesions
(23), we further investigated this pathway. To specifically define
whether our transcriptomic data were compatible with a role of
JNK1 downstream of EGFR pathway, we performed GSEA
analysis using public datasets from keratinocytes treated with
the EGFR tyrosine kinase inhibitor AG1478 or with shRNA
targeting amphiregulin (AREG) (Figure 6E) (24, 25). Genes that
were decreased in both conditions were also significantly
depleted in JNK1-deficient keratinocytes. Taken together, these
data indicate that JNK1 participates in the differentiation
A

B

D E

C

FIGURE 5 | JNK1 signaling contributes to the transcriptomic program of keratinocytes isolated from Aldara®-treated mice. (A) WT and Mapk8∂Ep mice were shaved
and then treated daily with a topical dose of Aldara® cream (62.5 mg/d) for eight consecutive days. Mice were sacrificed 4h after the last application. After skin
dissociation and EpCam+CD49fhi cells isolation, RNA sequencing and ATAC-sequencing were performed. (B) Integrative Genomics Viewer tracks showing reads
coverage for RNA expression of Mapk8 gene in WT (red) and Mapk8∂EP (blue). Gene position is indicated at the top of the panel. (C) Volcano plot of RNA-seq data
of keratinocytes from WT versus Mapk8∂Ep mice shows the adjusted P-value versus fold-change (up in WT, red; up in Mapk8∂Ep, blue). The numbers of differentially
expressed genes are indicated. (D) Heatmaps of RNA-seq data comparing the z-score (log2 fold-change (FC) from median) of selected genes involved in pathways
that are enriched in WT cells in comparison to Mapk8∂EP keratinocytes. (E) Gene set enrichment network displays clusters of pathways overrepresented in WT (red)
and Mapk8∂Ep (blue) keratinocytes, respectively. Nodes represent gene sets and edges represent mutual overlap. Overlap significance is indicated by the edge’s
thickness. Color density indicates NES (Normalized enrichment score).
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program of epidermal cells in response to inflammatory signals
and suggest a potential involvement of the EGFR pathway in
this process.

JNK1 Contributes to Acanthosis Induced
by Recombinant AREG
Based on our epigenomic data, we postulated that during
Aldara®-induced inflammation and psoriasis, JNK1 could act
downstream of the EGFR pathway in epidermal cells. As
previously described (26, 27) and consistent with human data
(23, 28, 29), we observed that expression of EGFR ligands such as
Frontiers in Immunology | www.frontiersin.org 9
Hb-EGF, AREG, EREG and of EGFR was increased in the skin of
Aldara®-treated compared to untreated mice (Figure 7A).
Therefore, to assess the potential role of EGFR signaling in this
model, WT mice received intraperitoneal injections of AG1478,
an EGFR tyrosine kinase inhibitor or DMSO (Figure 7B). In
parallel, WT mice were treated with SP600125, a classical JNK
inhibitor. We noticed that Aldara®-induced epidermal
thickening (Figures 7C, D) and keratinocyte proliferation (Ki-
67 staining) (Figures 7E, F) were reduced in WT mice receiving
SP600125 or AG1478 compared to DMSO-treated mice.
Henceforth, to further assess the role of JNK1 downstream of
A B

D

E

C

FIGURE 6 | JNK1 drives the epigenomic program of keratinocytes upon Aldara® treatment. (A) MA plot of mean ATAC-seq counts per peak showing the
differentially open regions of Mapk8∂Ep keratinocytes (blue) and WT keratinocytes (red) with the indicated number of regions. Histograms indicate the number of
opening or closing regions in WT in comparison to Mapk8∂Ep keratinocytes at promoters and enhancers. (B) Representative ATAC-Seq tracks showing differentially
accessible regions at the loci of Elovl1, Cdc20, Tgm3, and Hbegf genes (highlighted in purple). Position of each region in the genome is indicated at the top of each
track. (C) CiiiDER analysis of putative transcription factors motifs from differentially open regions of keratinocytes in Mapk8∂Ep and WT. Transcription factors are
colored according to the p-value of their gene coverage and whether they are over- (red) or under- (blue) represented in Mapk8∂Ep keratinocytes. The size of each
point is also proportional to log10 P-value. Consensus sequence of FOSB : JUNB, BATF, NRF1 and EGR3 transcription factors are shown with their respective p-
values. (D) GREAT analysis of pathways putatively regulated by differentially open regions of WT keratinocytes. The adjusted p-values are shown after -Log10
conversion. (E) GSEA plots of RNA-Seq data sets and the indicated gene sets. NES and FDR are shown. ATAC-seq was performed on two independent samples
from each group.
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the EGFR signaling, we assessed epidermal thickening in
response to recombinant mouse AREG (rmAREG) intradermal
injections in Mapk8-/-, Mapk8∂Ep and Mapk8fl/fl mice (Figure 7G).
Histological sections revealed reduced acanthosis in Mapk8-/- and
Mapk8∂Ep treated mice compared toMapk8fl/fl controls (Figures 7H,
Frontiers in Immunology | www.frontiersin.org 10
I). Finally, we evaluated the proliferation of murine primary
keratinocytes stimulated by rmAREG in vitro for 48 hours and
observed a significant reduction in EDU+ cells in keratinocytes
isolated from Mapk8∂Ep mice in comparison to their Mapk8fl/fl

littermates (Figure 7J). These data indicate that JNK1 contributes
A B

D

E F

G

IH J

C

FIGURE 7 | The role of JNK1 in the EGFR axis. (A) Expression of EGFR ligands and EGFR receptor in whole skin samples of WT mice stimulated by Aldara® cream
for eight consecutive days was quantified by RTqPCR. Results were pooled from two independent experiments. (B) WT mice received daily intraperitoneal injection
of DMSO, SP600125 or AG1478, then mice were shaved and treated daily with a topical dose of Aldara® cream (62.5 mg/d) for eight consecutive days. Mice were
sacrificed 4h after the last application. (C) Epidermis thickness (mm) was measured on MGG-stained sections. Results were collected from two independent
experiments (treated n = 15 or 10 and untreated n = 9 or 6 according to mice groups). (D) Representative MGG-stained slides from each experimental group. (scale
bar = 50 mm, 200X magnification). (E) Quantification of Ki-67+ cells/field. (F) Representative Ki67 immunohistochemistry staining from each experimental group.
(scale bar = 50 mm, 200X magnification). (G) Mapk8fl/fl, Mapk∂Ep and Mapk8-/- mice received daily ear injections of rmAREG for four consecutive days. Mice were
sacrificed 24h after the last injection. (H) Epidermis thickness (mm) was measured on MGG-stained sections. Results are from one experiment representative of two
independent experiments (rmAREG n = 8 or PBS n = 4 per experiment). (I) Representative HE-stained slides from each experimental group. (scale bar = 50 mm,
200X magnification). (J) Living proliferating murine primary keratinocytes after 48h of rmAREG (100ng/ml) stimulation. Results are from one experiment representative
of two independent experiments. Results are expressed as median and interquartile range and each dot represents an individual mouse. Statistical analysis was
performed using Mann-Whitney, ns: non significant, *p < 0.05, **p < 0.01, ***p < 0.001,****p < 0.0001.
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to keratinocyte proliferation downstream of the EGFR pathway,
thereby participating to Aldara®-induced acanthosis (Figure 8).
DISCUSSION

JNKs (JNK1, 2, and 3) are named after their capacity to
phosphorylate and activate the protein c-Jun, a member of the
AP-1 family of transcription factors. However they have multiple
other targets and also function as a transcriptional co-regulator
(30). JNK1 is ubiquitously expressed and contributes to
inflammation in multiple settings. For instance, initial studies
indicated that JNK1 contributed to Th2 differentiation and
function (31, 32). In the context of experimental autoimmune
encephalomyelitis, JNK1 in myeloid cells was shown to
participate in the induction of pathogenic Th17 responses (33).
Furthermore, in experimental arthritis, this kinase regulates
macrophage migration (34). In contrast, JNK1 plays a
deleterious role for the control of systemic Candida albicans
infection through its effect on CD23 expression by innate
immune cells (35). Herein, we demonstrate that it also
participates in Aldara®-induced skin inflammation. We show
that JNK1 in myeloid cells was required to trigger the expression
of inflammatory cytokines. Imiquimod is a TLR7 ligand that
directly activates dermal dendritic and Langerhans cells (36, 37).
However, the presence of isostearic acid in the Aldara®-cream
also participates in the full inflammatory response through
activation of the inflammasome pathway (38). In vitro
experiments with bone marrow-derived macrophages indicated
that JNK1 was involved in the inflammasome pathway rather
than downstream of TLR signaling (Figure 8). This is in line with
previous data revealing that JNK1 directly phosphorylates
NLRP3, thereby promoting caspase-1 activation and IL-1b
processing (39). It is possible that JNK2 partially compensate
for the lack of JNK1 as previously demonstrated in the context of
obesity-related inflammation or epidermis development (40, 41).
Importantly, despite the fact that inflammatory markers were
clearly decreased in mice lacking JNK1 in myeloid cells,
epidermal thickening was not affected. We therefore
Frontiers in Immunology | www.frontiersin.org 11
hypothesized that JNK1 could also play a direct role in
keratinocytes. We observed that epidermal proliferation
induced by Aldara® treatment was decreased in Mapk8∂Ep

mice. As heterozygous MAPK8 mutation in patients suffering
from chronic mucocutaneous C. albicans was associated with
decreased in vitro responsiveness to IL-17A (6), we evaluated the
capacity of recombinant IL-23 or IL-17A to trigger acanthosis in
these mice. Our data indicate that JNK1 activation downstream
of the IL-17R does not play a dominant role for the induction of
cell proliferation in this experimental setting. Our transcriptomic
and epigenomic data on epidermal cells from Aldara®-treated
Mapk8∂Ep mice indicated that JNK1 signaling was involved in
key biological processes linked to cell proliferation and
keratinocyte differentiation. Among the potential upstream
regulators, we identified the EGFR system, which represents a
critical regulator of skin inflammatory responses. This is
consistent with the observation that Jnk1-/-Jnk2+/- or cJun∂EP

mice display impaired embryonic eyelid closure, a feature
regulated by the EGFR axis (5, 42, 43). Multiple evidences
suggest the involvement of this pathway in psoriasis (44).
Indeed, EGFR-ligands such as TGF-a, HB-EGF and AREG are
more present in psoriatic skin compared to healthy skin. EGFR
expressed mostly by basal keratinocytes is not upregulated in
psoriatic lesions (28, 45). Moreover, EGFR kinases inhibitors
used as cancer therapy such as Erlotinib, Lapatinib and
monoclonal antibodies targeting the extracellular domain of
EGFR including Cetuximab were shown to improve psoriatic
lesions in cancer patients (46–50). We observed that EGFR
kinase inhibitor AG1478 also decreased Aldara®-induced
acanthosis, suggesting that this pathway is also involved in this
experimental setting. Taken together, our results suggest that
acanthosis induced by Aldara® requires both EGFR and IL-17
signaling. In this context, the effect we observed in absence of
JNK1 or upon pharmacological inhibition appears to be limited
to the EGFR pathway.

Our results open a promising new therapeutic window
stemming from our description in a mouse model of the role of
JNK1 in psoriasis. Developing pharmaceutical drug inhibitors for
clinical use remains a challenging task, as witnessed by adverse
effects after an oral JNK inhibitor treatment for idiopathic
FIGURE 8 | The role of JNK1 in the Aldara®-induced skin inflammation. On one hand, JNK1 contributes to IL-1b production by macrophages in the context of
inflammasome activation by Aldara® cream. On the other hand, JNK1 contributes to keratinocyte proliferation by acting downstream of the EGFR.
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pulmonary fibrosis (51). Nonetheless, the local use of a JNK
inhibitor for the treatment of acute hearing loss showed a
favorable safety profile (52). Moreover, the majority of psoriatic
patients suffers from mild-to-moderate psoriasis that can be
managed by topical treatments (53, 54). These elements constitute
a rationale for the clinical evaluation of topical JNK inhibitors for
the treatment of mild-to-moderate cutaneous forms of psoriasis.
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