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Abstract

Background: Minimisation of the delay to diagnosis is critical to achieving optimal outcomes for HIV patients and to
limiting the potential for further onward infections. However, investigation of diagnosis delay is hampered by the fact
that in most newly diagnosed patients the exact timing of infection cannot be determined and so inferences must be
drawn from biomarker data.

Methods: We develop a Bayesian statistical model to evaluate delay-to-diagnosis distributions in HIV patients
without known infection date, based on viral sequence genetic diversity and longitudinal viral load and CD4 count
data. The delay to diagnosis is treated as a random variable for each patient and their biomarker data are modelled
relative to the true time elapsed since infection, with this dependence used to obtain a posterior distribution for the
delay to diagnosis. Data from a national seroconverter cohort with infection date known to within ± 6months, linked
to a database of viral sequences, are used to calibrate the model parameters. An exponential survival model is
implemented that allows general inferences regarding diagnosis delay and pooling of information across groups of
patients. If diagnoses are only observed within a given window period, then it is necessary to also model incidence as
a function of time; we suggest a pragmatic approach to this problem when dealing with data from an established
epidemic. The model developed is used to investigate delay-to-diagnosis distributions in men who have sex with
men diagnosed with HIV in London in the period 2009–2013 with unknown date of infection.

Results: Cross-validation and simulation analyses indicate that the models developed provide more accurate
information regarding the timing of infection than does CD4 count-based estimation. Delay-to-diagnosis distributions
were estimated in the London cohort, and substantial differences were observed according to ethnicity.

Conclusion: The combination of all available biomarker data with pooled estimation of the distribution of
diagnosis-delays allows for more precise prediction of the true timing of infection in individual patients, and the
models developed also provide useful population-level information.
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Background
The majority of patients diagnosed with type-1 human
immunodeficiency virus (HIV) are not identified in the
primary stage of infection [1]. Some patients undergo reg-
ular testing for HIV, and so their test history can be used
to determine an interval of time within which infection
must have occurred; such ‘seroconverter’ cohorts have
been the focus of much research on disease progression
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from infection [2, 3]. However, for most new diagnoses
patients do not have a history of regular testing and so
there can be considerable uncertainty with regards to the
timing of their infection. Knowledge of the delay from
infection to diagnosis is critical for public health monitor-
ing of testing strategies and for estimation of the probable
number of undiagnosed infections in a given population.
There has been a renewed focus on early diagnosis of
HIV as a public health priority in recent years, following
the reporting of randomised trials that have definitively
shown a reduction in transmission [4] and improvements
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in clinical outcomes [5] resulting from earlier initiation of
antiretroviral therapy (ART). However, there is a statisti-
cal challenge in inferring the timing of infection using only
biomarker data obtained after diagnosis.
The term ‘seroconversion’ describes the appearance of

HIV antibodies in a patient’s blood, which are detected
by screening tests for HIV. In a minority of patients, the
timing of seroconversion can be accurately dated because
they either presented with seroconversion illness or they
underwent laboratory tests during the seroconversion
period that definitively indicate the acute stage of infec-
tion. For ‘seroprevalent’ patients not diagnosed in acute
infection (before or during seroconversion) and without a
record of recent negative tests, the use of ‘recent infection
testing algorithm’ (RITA) methods (based on antibody
levels or affinity) can give an indication of whether they
are likely to have recently contractedHIV, with cut-offs for
the tests typically defined to identify infections within the
previous 3–6months [6]. However, the use of such tests
is limited by imperfect performance in identifying recent
infections using a fixed cut-off [7], and by the fact that they
do not provide information regarding the precise timing
of infections that were not ‘recent’. Furthermore, when
carrying out epidemiological research using observational
cohorts of patients, the availability of historic information
on RITA tests may be limited.
For epidemiological studies and public health monitor-

ing, CD4+ cell count at diagnosis is the most commonly
used biomarker to assess the likely delay from infection
to diagnosis [8–10]. CD4+ cells are a class of white blood
cell that is gradually depleted in untreated HIV+ patients,
and so relatively lower values indicate a probable greater
delay in diagnosis. The CD4+ cell count is an important
prognostic marker, meaning that monitoring is well inte-
grated into the national surveillance systems for a number
of countries [1, 10]. The decline in CD4+ cell count in
untreated HIV infection has commonly been modelled as
linear, on a square-root scale, in terms of time since sero-
conversion, with a ‘random intercepts and slopes’ model
used to account for inter-patient differences in the value
at seroconversion and rate of decline [3]. However, CD4+
cell counts show considerable variability between individ-
uals and over time, and it has been shown that models that
also contain less deterministic stochastic process elements
can provide a better fit to this biomarker in treatment-
naïve HIV+ patients [11, 12]; this raises questions regard-
ing the precision with which CD4+ cell counts alone can
be used to identify the probable true date of HIV infection.
It has been reported that measures of viral genetic diver-

sity may also provide valuable information regarding the
extent of the delay from infection to diagnosis of HIV. It is
thought that in most patients HIV infection results from
a ‘founder virus’ of a single genotype [13]. HIV is known
to be a very rapidly evolving pathogen and mutations

occur within an untreated individual infected with the
virus, leading to an increase in viral diversity over time
[14]. Classical bulk sequencing used for HIV drug resis-
tance testing does not provide full information regarding
the array of viral sequences present in an individual, but
Kouyos et al. [15] found that the proportion of ambiguous
nucleotide calls provides a useful proxy for viral diversity
and hence also acts as an indicator for the time elapsed
since infection. Similar findings have been replicated in
other cohorts [16, 17].
Meixenberger et al. previously evaluated the combi-

nation of data on ambiguous nucleotide calls in pol
sequences with RITA immunoassay results, viral load
and CD4+ cell counts in identifying patients with recent
HIV infection and found no benefit in combining mul-
tiple markers in comparison to the use of their RITA
immunoassay alone [18]. However, in the method of anal-
ysis used, optimal fixed cut-offs for each variable were
defined in order to generate dichotomous predictions as
to whether the infection of each given patient was ‘recent’
or not, and it may be possible to extract more useful
information from the data through statistical modelling of
variables on their original continuous scales.
We aimed to develop a statistical framework that would

make full use of all available clinical information in esti-
mating the delay to diagnosis, and hence the true date, of
a patient’s HIV infection. We derive parameter distribu-
tions using models for biomarker data that do not assume
exact knowledge of a true date of infection even in sero-
converters, and we generate full posterior distributions
in evaluating the probable date of infection conditional
on the clinical data in individual patients. Furthermore,
we demonstrate a novel method to investigate the distri-
bution of times from infection to diagnosis in any given
subgroup of patients. This method involves estimation
of the incidence of new infections as a function of time,
building on models previously used to investigate the pro-
gression from transfusion-linked HIV infection to AIDS,
with the potential for further public health applications.

Methods
We first provide a general outline of the methodology that
we have developed to investigate diagnosis delays in HIV.
We initially fit a model to biomarker data in terms of time
since infection in a ‘calibration’ dataset of seroconvert-
ers in whom we have strong information regarding the
date of infection; this is done in order to characterise the
‘natural history’ of the biomarkers in untreated patients.
Using this fitted model, we can make inferences regard-
ing the timing of infection in a seroprevalent patient given
their observed biomarker data and date of diagnosis. In
order to do this we also need to consider whether we can
make any prior assumptions regarding the likely infec-
tion date before looking at the biomarker data, and one
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simple approach is to assume that the date of infection
is equally likely for any point in time from the legal age
of sexual consent until diagnosis (termed a ‘uniform prior
distribution’). However, we further develop a method that
explicitly models the average diagnosis delay within a
group of patients using a survival distribution. This is all
done within a Bayesian framework.
The modelling approach developed is applied to data

from clinical cohort studies and evaluated using simu-
lation analyses. The established method of CD4 back-
estimation of infection dates [8] is used for comparison
throughout.

Biomarker models
The model for longitudinal observations of pre-treatment
CD4 counts follows the structure as described by Stirrup
et al [19]. Briefly, CD4 counts are modelled on the square-
root scale, using a statistical model that includes random
intercept and slope components, independent measure-
ment error terms and a fractional Brownian motion
stochastic process component. An interlinked model for
pre-treatment VL measurements (on log10-scale) is used
based on that proposed by Pantazis et al [20, 21]. The pro-
portion of ambiguous nucleotide calls at first treatment-
naïve viral sequence is modelled using a zero-inflated
beta model. This effectively comprises a logistic regres-
sion model for the occurrence of no ambiguous calls and a
model for a beta-distributed variable amongst those cases
with any ambiguous calls observed.
CD4, VL and sequence ambiguity are all modelled in

terms of the ‘true time elapsed from date of infection’ in
each patient. For those patients in whom this is not known
exactly, this variable is formed by the sum of ‘time from
diagnosis to observation’ and an unobserved latent vari-
able representing the delay from infection to diagnosis
(denoted τi for the ith patient). For the calibration dataset
τi is given a uniform prior distribution over an interval
equal to the time between last negative and first positive
HIV-1 tests in each patient, and for seroprevalent patients
two different options for the prior are considered: a uni-
form prior or a prior implicit in a joint model for HIV
incidence and delay to diagnosis.
We are interested in epidemiological analysis on a scale

of months and years, and so do not distinguish between
dates of infection and seroconversion. Further model
and computational details are given in Additional file 1:
Appendix A.

Individual patient predictions with uniform priors
The biomarker model fitted to the calibration dataset is
used to generate distributions for the delay to diagnosis
in seroprevalent patients. We approximate the posterior
distribution for all of the biomarker model parameters
resulting from the calibration dataset using a multivariate

normal distribution, and then use this as the prior for
these model parameters in subsequent analyses for new
patients.
When evaluating the delay to diagnosis in each indi-

vidual new seroprevalent patient, we initially use a uni-
form prior distribution for this latent variable (τi), defined
between zero and an upper limit equal to the time elapsed
between the patient’s 16th birthday (or 1st Jan. 1980,
whichever, is later) and the date of their HIV diagnosis.
The model for the observed CD4 counts, VL measure-
ments and sequence ambiguity in each new patient is
dependent on the value of τi as for the model fitted to
the calibration dataset, although the range of possible val-
ues is wider. Information regarding the probable diagnosis
delay is obtained by generating the posterior distribution
of τi for each patient given their observed biomarker data.
We employ this approach to generate predictions for one
patient at a time (i.e. separate statistical models are gen-
erated and processed for each patient, although this can
be run in parallel for cohorts of patients using cluster
computers).

Survival models for delay to diagnosis
In making population-level inferences, there is a problem
that some patients have little biomarker data available or
have biomarker values that only provide limited informa-
tion regarding the timing of infection. We address this
issue through the fitting of an exponential survival model
for diagnosis following HIV infection. This approach
enables information to be pooled across similar patients,
and also allows direct investigation of patient character-
istics associated with the delay to diagnosis in cases of
HIV. In these analyses the approximate multivariate nor-
mal prior distribution for biomarker parameters result-
ing from the calibration dataset is used as previously
described, but data from the entire subgroup of interest of
newly observed seroprevalent patients are combined in a
single statistical model.
The event time in the survival models fitted is defined

as the time from HIV infection to diagnosis, once again
specified as an unobserved latent variable (τi) with value
restricted to lie between zero and an upper limit equal to
the time difference between the patient’s 16th birthday (or
1st Jan. 1980) and the date of their HIV diagnosis. How-
ever, the prior distribution of τi is implicit in a statistical
model for HIV incidence and diagnosis. As when using a
uniform prior distribution for τi, for each seroprevalent
patient biomarker data are modelled in terms of the true
time elapsed from date of infection and this allows a pos-
terior distribution for the delay in diagnosis to be obtained
that is conditional on this information.
We can, of course, only include patients in whom HIV

has been diagnosed in the analysis, and so there is no cen-
soring of survival times. However, for a cohort of patients
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diagnosed in any given calendar period there is both left
and right truncation of the event times. In this setting it
is also necessary to model the incidence rate of new HIV
infections in the population of interest.We define the start
and end of the study period as TL and TR, respectively, and
denote the point in calender time of HIV infection in the
ith patient as ti. The left truncation results from the fact
that any given patient can only be included in the cohort if
TL < ti+τi. The right truncation results from the fact that
a patient will only be observed if ti + τi < TR. This situa-
tion is directly analogous to the problem of estimating the
distribution of incubation time from transfusion-acquired
HIV infection to AIDS, an important issue at the start of
the HIV epidemic, in which there was left truncation of
observations due to a lack of recording of very early AIDS
cases and right truncation due to the fact that transfusion
events leading to HIV infection could only be identified
retrospectively upon the development of AIDS [22]; we
develop ourmodel for the incidence rate of newHIV cases
and the delay-to-diagnosis distribution based on the work
of Medley et al. [23, 24] in this previous context, and we
use notation also based on that employed by Kalbfleisch
and Lawless [25].
Following Medley et al. [23, 24] and Kalbfleisch and

Lawless [25], initiating events (i.e. HIV infections) occur
according to a Poisson process for which the rate of new
events is a function of time; in technical terms we define
an intensity function for the process h(x;α), x > −∞,
where x is a variable representing calender time and the
intensity function h(x) is determined by parameter vector
α. We assume that the delay to diagnosis τ is independent
of the time of infection x, with cumulative distribution
function F (τ ) and density function f (τ ) = dF (τ ) /dτ .
Medley et al. [23, 24] and Kalbfleisch and Lawless [25]
considered the situation at the start of an epidemic, with
observation of diagnoses at any point in time up to the
end of the analysis (i.e. the period (−∞,TR]) and the first
non-zero incidence at a defined point in time (set to 0).
However, we are interested in modelling populations in
later stages of theHIV epidemic and so only consider diag-
noses occurring within a defined period [TL,TR], without
specifying a start time for the epidemic. We do not con-
sider the possibility that a new HIV infection is never
diagnosed (e.g. due to death before diagnosis), but believe
that the proportion of such cases would be very small
in the population of interest. The joint log-likelihood (�)
function, omitting dependence on model parameters, for
the incidence and observation of HIV cases is then:

� =
n∑

i=1

{
log (h (xi)) + log

(
f (τi)

)} − A,

where, A =
∫ TR

−∞
h (x) {F (TR − x) − F (TL − x)} dx,

=
∫ TL

−∞
h (x) {F (TR − x) − F (TL − x)} dx

+
∫ TR

TL
h (x) F (TR − x) dx.

This matches the form of the expression used previ-
ously [23–25], but the integral denoted A is adjusted to
reflect the truncated observation window and the lack of
assumptions regarding the start of the epidemic.
It is noted by Kalbfleisch and Lawless [25] that the abso-

lute incidence of new infections can be eliminated from
the joint likelihood function by conditioning on the total
number of cases observed. However, it is still necessary to
model the relative incidence as a function of calendar time
unless constant incidence can be assumed at all points up
until the end of the study period. The assumption of con-
stant incidence might be justified for a completely stable
endemic disease, but this condition is not common in the
epidemiology of infectious diseases.
We are primarily interested in fitting a model for the

delay-to-diagnosis distribution, but in doing so we are
therefore required to model the incidence of new infec-
tions prior to and during the calender period under inves-
tigation. Ideally the function for the incidence of new HIV
cases, h (x), would be chosen so as to provide a plausi-
ble representation of the entire epidemic. However, when
attempting to fit models to data from patients diagnosed
decades after the start of the epidemic, this is not a prac-
tical objective. Instead, we propose a pragmatic approach
in which the incidence (h (x)) is assumed to be either
exponentially increasing or decreasing prior to the calen-
der period of interest (i.e. for x < TL), and to be either
constant or in a separately defined state of exponential
change during the period itself (i.e. for TL < x < TR). We
therefore define the incidence rate function as either:

1:h (x) = e(c+δ1(x)b(x−TL)), or

2:h (x) = e(c+δ1(x)b(x−TL)+δ2(x)d(x−TL)),

where the function δ1 (x) = 1 if x < TL and 0 otherwise,
δ2 (x) = 1 if x > TL and 0 otherwise, and c, b and d are
model parameters: exp (c) is the incidence rate at TL, b
determines the rate of decay (b < 0) or growth (b > 0) of
incidence prior to this and d (in ‘Option 2’) determines the
change in incidence after TL. For an exponential model for
the delay-to-diagnosis distribution with rate parameter λ,
for b + λ > 0 the integral required for the log-likelihood
function can be solved analytically in each case (results in
Additional file 1: Appendix B).
The functions that we have suggested for h(x) clearly

cannot provide a full description of the HIV epidemic.
However, we propose that allowing for an increasing or
decreasing trend in HIV incidence directly prior to the
period of interest will appropriately adjust for truncation
of diagnosis dates as long as the function h(x) provides an
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adequate description across the probable range of infec-
tion dates of the patients included in the analysis. The first
option presented assumes constant incidence of new HIV
infections during the observation period, which may be
appropriate for short analysis windows, whilst the second
option also allows a change in incidence following the start
of the observation period. Further computational details
are given in Additional file 1: Appendix B.

Datasets and software used
We present analyses that make use of viral sequences of
the protease and reverse transcriptase regions of the pol
gene collected by the UK HIV Drug Resistance Database
[26] that can be linked to pseudo-anonymised clinical
records of patients enrolled in the UK Collaborative HIV
Cohort (UK CHIC) [27] and UK Register of Seroconvert-
ers (UKR) cohort [2]. The statistical methodology was
developed using a ‘calibration’ dataset comprising 1299
seroconverter patients from the UKR cohort who can
be linked to a treatment-naïve partial pol sequence. All
patients included from the UKR cohort have an interval
between last negative and first positive HIV tests of less
than 1 year, and some patients were identified during pri-
mary infection, meaning that their date of infection can
be treated as fixed and known. Injecting drug users were
excluded from the analysis.
The methodology developed was then applied to a sero-

prevalent cohort of men who have sex with men (MSM)
diagnosed with HIV in London over a 5-year period span-
ning 2009–2013 and enrolled in the UK CHIC study. We
only included men with an age of at least 18 years at time
of diagnosis with a treatment-naïve partial pol sequence
stored in the UK HIV Drug Resistance Database. We also
excluded any men enrolled in the UKR study. This led to
a sample size of 3521 patients. Pre-treatment CD4 counts
and VL measurements were included in the analysis, but
were not considered as part of the inclusion criteria.
We employ a fully Bayesian approach, implemented in

the Stan probabilistic programming language [28]. We
carried out all Bayesian modelling using a Linux clus-
ter computer; although fitting individual models using a
modern desktop computer would be feasible. The authors
acknowledge the use of the UCL Legion High Perfor-
mance Computing Facility (Legion@UCL), and associated
support services, in the completion of this work. Maxi-
mum likelihood estimation of random effects models was
performed using the lme4 package for R; these were used
in the CD4 back-estimation of infection dates performed
for comparison.

Cross-validation analysis
We performed a cross-validation analysis using the cali-
bration dataset of seroconverters in order to evaluate the
performance of our methodology. We split the calibration

dataset into five test groups of nearly equal size (i.e. 259 or
260 patients per group) and refitted the biomarker model
five times, excluding one of the test groups on each occa-
sion. The resulting biomarker model fit was then used to
generate predictions regarding the timing of HIV sero-
conversion in the excluded group for each iteration as
if they were seroprevalent patients, i.e. disregarding any
knowledge regarding the precise timing of infection or
history of negative HIV tests. We initially used a uni-
form prior distribution for time of infection (from the
patient’s 16th birthday to date of HIV diagnosis) when
generating predictions, and also fitted exponential sur-
vival models for the delay to diagnosis pooled across the
test group in each case (without the need to account for
truncation of observations). Maximum likelihood estima-
tion of a standard ‘random intercepts and slopes’ model
for CD4 counts was also carried out alongside Bayesian
fitting of the biomarker model at each iteration, and pre-
dictions were generated in the test group using simple
CD4 back-estimation as described by Rice et al. [8].

Simulation analyses
To further investigate the properties of the methodol-
ogy developed, we carried out several simulation analyses.
Firstly, we generated data for 2000 hypothetical patients
with unknown date of HIV infection without considering
the truncation of observation times. For this purpose we
set distributional parameters equal to the posterior mean
values obtained when our model was fitted to the calibra-
tion dataset without the inclusion of lab-specific random
effects and, to further simplify matters, data were only
generated for white MSM with subtype-B HIV acquired
at the age of 32. The delay from infection to diagnosis
was set to follow an exponential distribution with rate
parameter of 0.5 (on the scale of years). Nucleotide ambi-
guity proportions were simulated at the time of diagnosis,
and CD4 counts and VL measurements were generated at
time of infection, after 1.5months, 3months and subse-
quently at 6-month intervals from 6months to 3 years. If a
negative CD4 count was generated, then this and all sub-
sequent simulated clinic visits were censored; this meant
that a few simulated patients were excluded completely
and so a new patient was generated to replace them. The
limit of detection for VL was set to 50 copies/mL in the
simulations. We initially used a uniform prior distribution
for time of infection (from the patient’s 16th birthday to
date of HIV diagnosis) when generating predictions, and
also fitted an exponential survival model for the delay to
diagnosis pooled across simulated patients. Simple CD4
back-estimation based on a fitted ‘random intercepts and
slopes’ model was used for comparison [8].
Two additional simulation analyses were carried out

with time-varying incidence and truncation of observa-
tion times. Patients were generated with characteristics,
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delays to diagnosis and scheduled set of viral sequence,
CD4 and VL observations as described for the simulation
of observations without truncation. However, incidence
was varied over a measure of calender time, and patients
were only selected for analysis whose simulated date of
diagnosis fell within a specified analysis window. Models
were fitted with estimation of both the rate of diagno-
sis parameter (λ) and incidence rate over calendar time,
allowing the latter to vary before and during the analy-
sis window. Firstly a simulated cohort was generated with
increasing incidence from zero for 10 years prior to the
analysis window, and a constant incidence rate of 200/year
during the analysis window of 5 years’ duration. Secondly
a simulated cohort was generated with constant incidence
rate of 300/year for 10 years, followed by a decrease to
150/year over the 5 years prior to the analysis window
and a further decrease to 100/year over the 5 years of the
analysis window itself.

Results
Biomarker model in calibration dataset
When the biomarker model was fitted to the calibration
dataset it was found that most patient and viral charac-
teristics did not show any clear association with the pro-
portion of ambiguous nucleotide calls on viral sequencing,
with the 90% credibility intervals (CrI) for these parame-
ters including zero, and so most of these parameters were
dropped from the model to simplify it. There was one
exception in that male patients infected via heterosexual
sex are more likely to have zero ambiguous nucleotide
calls (95% CrI for parameter on logit-scale: 0.06–1.36, in
model without lab effects), and so this was retained in the
model reported and used for subsequent analysis.

Some substantial inter-lab differences were observed in
the probability of observing a viral sequence with zero
ambiguity calls, and so lab-specific random effects (as
described in Additional file 1: Appendix A) are retained
in all analyses. We describe the relationship between time
elapsed from HIV infection to viral sequencing and the
proportion of ambiguous nucleotide calls for a ‘typical’
lab, with the three lab-specific random effect terms set
to zero. Immediately following HIV infection there is an
estimated probability of zero ambiguous nucleotide calls
on viral sequencing of just below 0.5, but this probabil-
ity drops to close to zero for sequences obtained beyond
around 5 years from the date of infection (Fig. 1a). There
is a corresponding increase in the mean percentage of
ambiguous nucleotide calls, amongst those patients in
whom any are observed, from around 0.5% immediately
following infection to around 1.2% 10 years after infection
(Fig. 1b). Further details and summaries of the posterior
distributions for all model parameters, including those for
CD4 counts and VL, are provided in Additional file 1:
Appendix C.

Investigation of delay to diagnosis in seroprevalent cohort
The delay-to-diagnosis distribution was investigated in
the cohort of 3521 seroprevalent MSM. We first gen-
erated predictions for the delay to diagnosis of each
individual patient using a uniform prior (in combina-
tion with the biomarker model). The overall mean of
the posterior expectation in each patient was 4.12 years,
and divided by ethnicity it was 3.99 years for white (n =
2577), 4.58 years for black (n = 239) and 4.46 years for
mixed/other/unknown (n = 705) patients. For those
patients in whom at least one CD4 count was available,
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the overall mean diagnosis delay estimated by CD4 back-
estimation was 2.87 years (n = 3414), and divided by eth-
nicity it was 2.59 years for white (n = 2501), 3.97 years for
black (n = 233) and 3.56 years for mixed/other/unknown
(n = 680) patients.
The use of ‘incidence and delay-to-diagnosis’ mod-

els fitted to the entire dataset of seroprevalent patients
revealed a similar pattern of differences between sub-
groups defined by ethnicity as found using uniform priors
or CD4 back-estimation, but the estimates of average
delay were consistently lower (Table 1). When a con-
stant incidence of HIV was assumed during the window
period and a single delay-to-diagnosis distribution was fit-
ted across all ethnic groups (Fig. 2a), the posterior mean
estimate of average time (1/λ) from infection to diagno-
sis was 1.82 years (95% CrI 1.64–2.04 years), and allowing
the incidence of HIV to change during the window period
led to only a small change in the estimate to 1.77 years
(95% CrI 1.59–1.96 years) even though a change in inci-
dence was found during this period (Fig. 2b). The second
model was further extended to allow differences in the
delay-to-diagnosis distribution according to ethnicity, and
patients of black (2.91, 95% CrI 1.92–4.76 years) or other
(2.68, 95% CrI 2.04–3.45 years) ethnicity were found to
have substantially higher average time-to-diagnosis than
white patients (1.57, 95% CrI 1.41–1.75 years). The ethnic
classifications of patients also showed differences in inci-
dence trends over time (Fig. 2c). Further computational
details and examples of predictions for the date of infec-
tion in individual patients are presented in Additional
file 1: Appendix D.

Results of cross-validation analysis
The cross-validation analysis made use of the calibration
dataset of seroconverters and so the maximum possible

true diagnosis delay in these patients is 1 year. However,
when our methodology was used with a uniform prior
distribution for the delay to diagnosis of each patient
the mean estimated diagnosis delay was 2.45 years (taking
the mean of posterior expectations) and the interquartile
range was 1.16–3.26 years (Fig. 3a). This was worse than
the performance of simple CD4 back-estimation for which
the mean estimated delay to diagnosis was 1.71 years with
an interquartile range of 0.00–2.90 years (Fig. 3c). Plots are
presented of the estimated diagnosis delay against patient
age at diagnosis because the time period from start of sex-
ual activity to date of diagnosis represents the maximum
possible delay from infection to diagnosis, and so there is
the potential for greater delays amongst patients who are
older at diagnosis.
When an exponential survival model was used for the

delay to diagnosis, individual patient estimates for the
diagnosis delay were appropriately corrected into the
range 0–1 years (Fig. 3b). This performance was mediated
by high values for the posterior distribution of the rate
of diagnosis parameter (λ), with posterior mean ranging
from 9.2–12.6 across the test groups (corresponding to
a mean delay to diagnosis of 4–6weeks). The mean esti-
mated diagnosis delay was 0.01 years and the interquartile
range was 0.07–0.12 years; average delays around this level
are not likely to be observed in patients with unknown
date of infection, but these results demonstrate how the
methodology developed can successfully pool information
across a group of patients.

Results of simulation analyses
Without truncation of observation times
The results of the simulation analysis for 2000 patients
without truncation of observation times are summarised
in Fig. 4 and Table 2. The use of our methodology with

Table 1 Estimates of mean diagnosis delay (years) in the cohort of 3521 seroprevalent men who have sex with men diagnosed in
London in the period 2009–2013 using the models developed in this paper and by CD4 back-estimation

By patient ethnicity

Model Overall White Black Mixed/other/unknown

CD4 back-estimationa 2.87 2.59 3.97 3.56

Full biomarker model with uniform priorsb 4.12 3.99 4.58 4.46

Full biomarker model with exponential survival model for
diagnosis

Constant incidence during analysis window, no division by
ethnicityc

1.82 (1.64–2.04) — — —

Changing incidence during analysis window, no division by
ethnicityc

1.77 (1.59–1.96) — — —

Changing incidence during analysis window, with division
by ethnicityc

— 1.57 (1.41–1.75) 2.91 (1.92–4.76) 2.68 (2.04–3.45)

aMean of point estimates
bMean of posterior expectation in each individual patient
cEstimated as part of model with associated 95% CrI
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Fig. 2 Plots of estimated incidence rates (/year) of new HIV infections. Results frommodels fitted to the cohort of 3521 seroprevalent men who have
sex with men. In a the incidence of new HIV infections is assumed to be constant in the window period, whereas in b and c it is allowed to vary. In a
and b, a single delay-to-diagnosis distribution is fitted across all patients, whereas in c it is split according to white (black line), black (blue line) and
other (red line) ethnic classifications. 95% credibility intervals are shown as dotted lines

a correctly defined exponential survival model showed
the best accuracy for individual patient predictions for
the delay to diagnosis: taking the posterior mean for each
individual as a point estimate gave a mean absolute error
of 1.04 years and a mean squared error of 2.15, with
values of 2.22 years and 8.39 for the use of our methodol-
ogy with uniform priors and 2.12 years and 8.40 for CD4
back-estimation.

For the model with exponential survival distribution
individual patient predictions show ‘shrinkage’ towards
the population average of 2 years, explaining the consis-
tent overestimation for smaller true delays and underes-
timation for larger true delays, but the mean bias was
very close to zero (-0.02 years). However, consistent over-
estimation was observed when uniform priors were used
(reflecting a larger prior expected value for the delay),
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Fig. 3 Plot of predictions of delay to diagnosis resulting from the cross-validation analysis. Results are shown in relation to patient age at diagnosis,
and are presented using our methodology (full biomarker (bio.) model; for which • is the posterior expectation) with a uniform priors or b a pooled
exponential survival (surv.) model in each test group and c using standard CD4 back-estimation. The diagonal black line shows the ‘expected’
diagnosis delay for a uniform prior distribution from the age of 16 to the date of diagnosis in each patient. LOESS regression curves are also shown
(blue line) with 95% CI (shaded grey). The maximum true diagnosis delay in these patients is 1 year
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ba c

Fig. 4 Predictions of delay to diagnosis (Dx) against true delay from the simulation analysis without truncation. Results are presented using our
methodology (for which • is the posterior expectation with 95% credibility interval in grey) with a uniform priors or b a pooled exponential survival
(surv.) model and c using standard CD4 back-estimation. The diagonal green line shows the line of equality for perfect predictions in each patient.
LOESS regression curves are also shown (blue line) with 95% CI (shaded grey)

with a mean bias of 1.97 years. Furthermore, the poste-
rior 95% CrIs for the delay to diagnosis in each patient
showed correct coverage when the exponential model
was used (94.1%) but not when uniform priors were
used (89.5%). Whilst ad hoc procedures have been pro-
posed, simple CD4 back-estimation does not incorporate

Table 2 Summary of accuracy of delay-to-diagnosis predictions
for the simulation analysis of 2000 patients without truncation of
observation times. Our methodology was applied using either
uniform priors or an exponential survival model for diagnosis
delays, and CD4 back-estimation was used for comparison

Full biomarker
model,
uniform prior

Full biomarker
model,
exponential
survival model

CD4 back-
estimation

Absolute error

Mean (years) 2.22 1.04 2.12

Lower quartile (years) 0.79 0.37 0.67

Median(years) 1.73 0.75 1.54

Upper quartile(years) 3.24 1.40 2.98

Mean squared error
(years2)

8.39 2.15 8.40

Bias (mean
error) (years)

1.97 –0.02 0.68

Coverage of 95% CrIa 89.5 94.1 NA

acoverage of 95% credibility intervals for posterior distribution of the diagnosis
delay in individual patients (relative to known true value in simulation)

a coherent method for generating confidence or credibil-
ity intervals, but themean bias was 0.68 years reflecting an
overestimation of the average diagnosis delay. The expo-
nential survival model recovered an appropriate estimate
and CrI for the rate of HIV diagnosis following infec-
tion (posterior expectation: λ̂ = 0.52, 95% CrI 0.48–0.57;
true value=0.5).
This simulation analysis shows that our method for esti-

mating the delay-to-diagnosis distribution across a group
of patients can lead to smaller prediction errors on a
per patient basis and more accurate group-level infer-
ences than the use of CD4 back-estimation. When our
methodology was used with uniform priors for the delay-
to-diagnosis distribution in each patient the performance
was poor both at the individual-patient and group level,
despite the use of all available pre-treatment biomarker
information within the model; this shows that the use of
uniform priors in the analysis of diagnosis delays can lead
to very inaccurate inferences. Results have been described
for a single simulated cohort for simplicity of presenta-
tion, but this simulation analysis was repeated 100 times
to confirm the performance of the exponential survival
model (Additional file 1: Appendix E).

With truncation of observation times
For the first simulated cohort with a truncated observa-
tion window, generated with increasing and then constant
incidence, there was a total of 877 patients diagnosed dur-
ing the analysis period. The incidence of new infections
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Fig. 5 Plot of estimated incidence rate (/year) of new infections for first simulation with analysis window. The estimated incidence rate (/year) of
new HIV infections (black line) is plotted with 95% credibility interval (dotted line) for simulation with increasing incidence prior to and constant
incidence during the analysis window. Horizontal grey lines show the true incidence rate used to generate the data, and vertical grey lines show the
limits of the analysis window

during the window period was estimated correctly, and
the estimated trend prior to the analysis window also
reflected that used to generate the data (Fig. 5). The
95%CrI for the posterior distribution for the rate of diag-
nosis parameter included the true value (0.42–0.64, pos-
terior expectation=0.53; true value=0.5). When a delay-
to-diagnosis model was fitted without accounting for any
potential change in incidence, a posterior expectation of
0.59 (95%CrI 0.52–0.67) was obtained for this param-
eter. Code to generate an equivalent dataset and refit
the ‘incidence and delay-to-diagnosis’ model is provided
online (Additional files 2, 3, 4, and 5).

For the second simulated cohort with a truncated
observation window, generated with decreasing inci-
dence, there was a total of 721 patients diagnosed
during the analysis period. The incidence of new infec-
tions during the window period was estimated correctly
(Fig. 6). The incidence prior to the window period was
not captured perfectly due to the constraints of the
model used, but the trend estimated by the posterior
mean of the model parameters did reflect that used to
generate the data (with the 95%CrI indicating consid-
erable uncertainty). The 95%CrI for the posterior dis-
tribution for the rate of diagnosis parameter included

Fig. 6 Plot of estimated incidence rate (/year) of new infections for second simulation with analysis window. The estimated incidence rate (/year) of
new HIV infections (black line) is plotted with 95% credibility interval (dotted line) for simulation with decreasing incidence prior to and during the
analysis window. Horizontal grey lines show the true incidence rate used to generate the data, and vertical grey lines show the limits of the analysis
window



Stirrup and Dunn BMCMedical ResearchMethodology  (2018) 18:65 Page 11 of 14

the true value (0.39–0.55, posterior expectation=0.47;
true value=0.5). When a delay-to-diagnosis model was
fitted without accounting for any potential change in
incidence, a posterior expectation of 0.44 (95%CrI 0.39–
0.48) was obtained for this parameter. These simulations
demonstrate that our methodology can correctly identify
trends in incidence, assuming that the model is appro-
priate to the data, and that it can be used to estimate
the average diagnosis delay with adjustment for changes
in incidence.

Discussion
In this paper we have developed novel statistical method-
ology to derive probability distributions for the date of
HIV infection in individual patients and to investigate the
characteristics of delay-to-diagnosis distributions within a
population of interest. The use of a fully Bayesian frame-
work for statistical modelling allows the combination of
multiple sources of available information and also means
that uncertainty in parameter estimates can be incorpo-
rated in all stages of the analysis, without the need for
bootstrapping to generate credible or confidence inter-
vals. We have included viral nucleotide ambiguity, CD4
counts and VL measurements in the models developed,
but the framework could also be readily extended to incor-
porate other biomarkers where available. The information
that can be gained through our methodology is of direct
use for public health monitoring and planning, and it may
also provide a useful contribution to research into HIV
transmission networks and dynamics.
In demonstrating our methods we have investigated

how diagnosis delays vary with patient ethnicity among
MSM in London, finding substantially greater delays to
diagnosis in non-white individuals. This finding is con-
sistent with those reported based on a crude definition
of late diagnosis of CD4 count <350 within 3months
of diagnosis [29], and a similar pattern of differences
was observed when we used CD4 back-estimation for
comparison in our analysis. However, the average diag-
nosis delay for all groups was found to be lower when
it was estimated using a survival model pooled across
patients. Explicit estimation of the diagnosis delay distri-
bution in subgroups of interest could be very useful for
public health monitoring and in the planning of inter-
ventions such as targeted outreach testing. We should
note that we have analysed a selected cohort with inclu-
sion conditional on enrolment into the UK CHIC study
and availability of a treatment-naïve viral sequence, and
so the findings that we have observed cannot be used
for any specific public health conclusions without further
research.
There are some conceptual similarities between our

approach and that developed by Sommen et al. [30]
using immunological markers for recent HIV infection.

Sommen et al. [30] fitted longitudinal models for HIV
antigen biomarkers by maximum likelihood estimation
with integration over the known possible interval of infec-
tion times in a cohort of seroconverters, and the parame-
ter estimates obtained were then used to derive posterior
distributions for the true time of infection in seropreva-
lent patients given their observed biomarker data using an
exponential prior distribution for the delay to diagnosis;
however, the parameter determining the shape of the
exponential prior distribution was treated as fixed and
known. Romero-Severson et al. [31] further developed
the approach of Sommen et al. [30], and used a prior
distribution fitted to point estimates of delay to diagno-
sis based on BED-enzyme immunoassay results. We have
taken this approach a step further and have estimated the
characteristics of the delay distribution using data from
seroprevalent patients, without using intermediate point
estimates, through the use of a fully Bayesian modelling
framework. We could not directly apply the models devel-
oped by Sommen et al. [30] and Romero-Severson et al.
[31] to our cohort, as we did not have immunoassay data
available for the patients.
Both Sommen et al. [30] and Romero-Severson et al.

[31] derived posterior distributions for the date of HIV
infection in individual patients as a step towards gener-
ating incidence estimates within a population of interest.
In the present work we have shown that modelling of
incidence is required in order to appropriately estimate
the delay-to-diagnosis distribution across a subgroup of
patients, unless constant incidence can be assumed. The
estimates of incidence resulting from our study relate to a
highly selected group of patients and so are not of direct
interest with regards to public health planning. However,
it would be possible to apply our methodology to an uns-
elected cohort of patients, even if some individuals have
very little or no biomarker data available, in order to
estimate the total incidence in a population of interest.
Several established methodological approaches to the

estimation of HIV incidence from surveillance data have
been developed from a Bayesian multi-state model pro-
posed by Sweeting et al. [32], with Birrell et al. [33] and
van Sighem et al. [9] providing examples of the applica-
tion of such models to national cohorts. In these analyses,
the rate of diagnosis following HIV infection is estimated,
but data are modelled in terms of discrete time points
and discrete disease stages are defined in terms of CD4
count. The models that we have developed are defined on
the original continuous time scale, allowing more detailed
analysis of the delay from infection to diagnosis in indi-
vidual patients or across a population. Our models may
allow changes in incidence to be quantified over a smaller
time period, given the use of all available biomarker
data in continuous form, but this requires further
investigation.
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There has been much interest recently in the use of
phylogenetic analysis to investigate HIV transmission net-
works and dynamics, which requires the direction of
infection in transmission pairs to be identified. For exam-
ple, Ratmann et al. [34] conducted an analysis of Dutch
MSM and estimated that in over 70% of infections in their
selected cohort, transmission had occurred from an undi-
agnosed man, indicating a need for more targeted testing
for HIV. Ratmann et al. used CD4 back-estimation to
derive infection times in assessing direction of transmis-
sion, which could be further refined using our method-
ology; given the clinical and viral sequence data of a
transmission pair, it would be possible to explicitly derive
the probabilities for which patient was the first to be
infected, and of onward transmission having occurred
within a defined period of time following the initial infec-
tion. Another potential application for ourmethods would
be to estimate the probability of infection having been
acquired in another country among patients in migrant
populations, as averaging over patient-specific probabil-
ities might give different results to the use of point
estimates in individual patients as has previously been
performed [8].
A limitation of the present study is that RITA/antigen

biomarkers were not included in the analysis. This was
because of only very limited available data in the cali-
bration dataset. However, as we have noted, it would be
straightforward to incorporate such data into the frame-
work developed. RITA/antigen biomarkers alone are gen-
erally only used to provide a dichotomous classification
into recent or non-recent infection, but in combination
with other clinical and genetic data it would be possi-
ble to further refine the interval within which infection
is likely to have occurred in any given seroprevalent
patient.
Another limitation of this study is that we only con-

sidered classical bulk Sanger sequencing of a limited
segment of the viral genome, and did not include any
data from ‘next generation sequencing’ (NGS) methods.
This was due to the fact that historical data were used
for the analysis, although it is worth noting that, in
the UK, NGS has still only been introduced for clini-
cal use in HIV in a few centres. NGS techniques can
provide complete sequencing of the viral genome and
also enable more in-depth assessment of viral diversity
than classical Sanger sequencing, allowing phylogenetic
techniques to be employed to reconstruct viral evolution
from one or more founder viruses, which in turn can be
used to predict the date of infection [35]. These tech-
niques would, however, require greater computational
resources for the processing of sequence data for each
patient, and someasures of ambiguous nucleotide propor-
tions may still be useful for carrying out population-level
analyses.

Conclusions
The modelling strategy developed in this paper builds
on prior work but includes a novel combination of fea-
tures within a single coherent framework. We have devel-
oped this approach with the aim of making full use of
all available relevant data in assessing timing of infec-
tion in seroprevalent HIV patients, whilst appropriately
incorporating and quantifying uncertainty in both model
parameters and true dates of HIV infection at each stage
of the analysis. Cross-validation and simulation analyses
indicate that the models developed provide more accurate
information regarding the timing of infection than does
CD4 count-based estimation, and they also provide use-
ful population-level information. The focus of the present
paper is on investigation of delays to diagnosis, but we
plan to further develop the application of our framework
for incidence estimation.

Additional files

Additional file 1: Supplementary Appendices. Contains further details of
model specifications, computational notes, parameter summaries in the
calibration dataset and examples of predictions in individual patients.
(PDF 206 kb)

Additional file 2: R script (viewable as plain text) to read in parameter
estimates for the calibration dataset and to then simulate a cohort of
patients with increasing incidence of HIV and a limited observation
window for diagnoses. The same R script fits an ‘incidence and
delay-to-diagnosis’ model to the generated data using a Stan model
template file provided. (R 17 kb)

Additional file 3: Comma-separated value file containing posterior mean
values for parameters of model fitted to the calibration dataset (without
accounting for inter-lab variation in nucleotide ambiguity proportions).
(CSV 4 kb)

Additional file 4: Comma-separated value file containing posterior
covariance matrix for parameters of model fitted to the calibration dataset
(without accounting for inter-lab variation in nucleotide ambiguity
proportions). (CSV 52 kb)

Additional file 5: Stan model template file (which is annotated and can
be viewed as plain text) to fit the ‘incidence and delay-to-diagnosis’ model
with change in incidence prior to and during observation window. (STAN
17 kb)

Abbreviations
AIDS: Acquired immune deficiency syndrome; ART: Antiretroviral therapy; CrI:
Credibility interval; HIV: Human immunodeficiency virus; MSM: Men who have
sex with men; NGS: Next generation sequencing; RITA: Recent infection testing
algorithm; UCL: University College London; UK: United Kingdom; UK CHIC: UK
Collaborative HIV Cohort; UKR: UK Register of Seroconverters; VL: Viral load

Acknowledgements
OTS made use of notes provided by David Dolling in developing the
zero-inflated beta model for nucleotide ambiguity, and used Stata code
written by Ellen White to process sequence data and obtain ambiguity
proportions. Andrew Copas provided comments during the revision process.
We thank the clinicians and technical staff who have contributed to the
databases used in this analysis.

Funding
This work was supported by the UK Medical Research Council (Award Number
164587).

https://doi.org/10.1186/s12874-018-0522-x
https://doi.org/10.1186/s12874-018-0522-x
https://doi.org/10.1186/s12874-018-0522-x
https://doi.org/10.1186/s12874-018-0522-x
https://doi.org/10.1186/s12874-018-0522-x


Stirrup and Dunn BMCMedical ResearchMethodology  (2018) 18:65 Page 13 of 14

Availability of data andmaterials
Access to the UK HIV Drug Resistance Database and UK CHIC data requires
submission of a project proposal to the steering committee. Further
information can be found at ‘www.hivrdb.org.uk/’ and ‘www.ukchic.org.uk/’.

Authors’ contributions
OTS and DTD developed the modelling strategy presented. OTS coded the
analysis and drafted the initial manuscript. DTD and OTS both made revisions
to the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The UK Register of HIV Seroconverters study has research ethics approval
(Research Ethics Committee West Midlands - South Birmingham:
04/Q2707/155). The UK Collaborative HIV Cohort Study (West Midlands –
Edgbaston: 00/7/047) and the UK HIV Drug Resistance Database (London -
Central: 01/2/010) have separate MREC approvals, which waived the
requirement for individual patient consent.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 27 July 2017 Accepted: 13 June 2018

References
1. Rice BD, Yin Z, Brown AE, Croxford S, Conti S, De Angelis D, Delpech

VC. Monitoring of the HIV epidemic using routinely collected data: The
case of the United Kingdom. AIDS Behav. 2017;21:83–90.

2. UK Register of HIV Seroconverters Steering Committee. The AIDS
incubation period in the UK estimated from a national register of HIV
seroconverters. AIDS. 1998;12:659–67.

3. Touloumi G, Pantazis N, Pillay D, Paraskevis D, Chaix M-L, Bucher HC,
Kücherer C, Zangerle R, Kran A-MB, Porter K. Impact of HIV-1 subtype on
CD4 count at HIV seroconversion, rate of decline, and viral load set point
in European seroconverter cohorts. Clin Infect Dis. 2013;56:888–97.

4. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC,
Kumarasamy N, Hakim JG, Kumwenda J, Grinsztejn B, Pilotto JHS,
Godbole SV, Mehendale S, Chariyalertsak S, Santos BR, Mayer KH,
Hoffman IF, Eshleman SH, Piwowar-Manning E, Wang L, Makhema J,
Mills LA, de Bruyn G, Sanne I, Eron J, Gallant J, Havlir D, Swindells S,
Ribaudo H, Elharrar V, Burns D, Taha TE, Nielsen-Saines K, Celentano D,
Essex M, Fleming TR. Prevention of HIV-1 infection with early
antiretroviral therapy. N Engl J Med. 2011;365:493–505.

5. INSIGHT START Study Group. Initiation of antiretroviral therapy in early
asymptomatic HIV infection. N Engl J Med. 2015;373:795–807.

6. Carlin E, Taha Y. Using recent infection testing algorithm tests in clinical
practice. Sex Transm Infect. 2012;88:304–6.

7. Guy R, Gold J, Calleja JMG, Kim AA, Parekh B, Busch M, Rehle T,
Hargrove J, Remis RS, Kaldor JM. Accuracy of serological assays for
detection of recent infection with HIV and estimation of population
incidence: a systematic review. Lancet Infect Dis. 2009;9:747–59.

8. Rice BD, Elford J, Yin Z, Delpech VC. A new method to assign country of
HIV infection among heterosexuals born abroad and diagnosed with HIV.
AIDS. 2012;26:1961–6.

9. van Sighem A, Nakagawa F, De Angelis D, Quinten C, Bezemer D,
Op de Coul E, Egger M, de Wolf F, Fraser C, Phillips A. Estimating HIV
incidence, time to diagnosis, and the undiagnosed HIV epidemic using
routine surveillance data. Epidemiol. 2015;26:653–60.

10. Song R, Hall HI, Green TA, Szwarcwald CL, Pantazis N. Using CD4 data to
estimate HIV incidence, prevalence, and percent of undiagnosed
infections in the United States. JAIDS J Acquir Immune Defic Syndr.
2017;74:3–9.

11. Taylor JMG, Cumberland WG, Sy JP. A stochastic model for analysis of
longitudinal AIDS data. J Am Stat Assoc. 1994;89:727–36.

12. Stirrup OT, Babiker AG, Carpenter JR, Copas AJ. Fractional Brownian
motion and multivariate-t models for longitudinal biomedical data, with
application to CD4 counts in HIV-patients. Stat Med. 2016;35:1514–32.

13. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT,
Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL,
Gao F, Anderson JA, Ping L-H, Swanstrom R, Tomaras GD, Blattner WA,
Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS,
Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N,
Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM.
Identification and characterization of transmitted and early founder virus
envelopes in primary HIV-1 infection. Proc Natl Acad Sci. 2008;105:7552–7.

14. Shankarappa RAJ, Margolick JB, Gange SJ, Rodrigo AG, Upchurch D,
Farzadegan H, Gupta P, Rinaldo CR, Learn GH, He XI, Huang X-L,
Mullins JI. Consistent viral evolutionary changes associated with the
progression of human immunodeficiency virus type 1 infection. J Virol.
1999;73:10489–502.

15. Kouyos RD, von Wyl V, Yerly S, Böni J, Rieder P, Joos B, Taffé P, Shah C,
Bürgisser P, Klimkait T, Weber R, Hirschel B, Cavassini M, Rauch A,
Battegay M, Vernazza PL, Bernasconi E, Ledergerber B, Bonhoeffer S,
Günthard HF. Ambiguous nucleotide calls from population-based
sequencing of HIV-1 are a marker for viral diversity and the age of
infection. Clin Infect Dis. 2011;52:532.

16. Ragonnet-Cronin M, Aris-Brosou S, Joanisse I, Merks H, Vallé D,
Caminiti K, Rekart M, Krajden M, Cook D, Kim J, Malloch L, Sandstrom P,
Brooks J. Genetic diversity as a marker for timing infection in HIV-infected
patients: evaluation of a 6-month window and comparison with BED. J
Infect Dis. 2012;206:756–64.

17. Andersson E, Shao W, Bontell I, Cham F, Wondwossen A, Morris L,
Hunt G, Sönnerborg A, Bertagnolio S, Maldarelli F, Jordan MR.
Evaluation of sequence ambiguities of the HIV-1 pol gene as a method to
identify recent HIV-1 infection in transmitted drug resistance surveys.
Infect Genet Evol. 2013;18:125–31.

18. Meixenberger K, Hauser A, Jansen K, Yousef KP, Fiedler S, von Kleist M,
Norley S, Somogyi S, Hamouda O, Bannert N, Bartmeyer B, Kücherera C.
Assessment of ambiguous base calls in HIV-1 pol population sequences
as a biomarker for identification of recent infections in HIV-1 incidence
studies. J Clin Microbiol. 2014;52:2977–83.

19. Stirrup OT, Babiker AG, Copas AJ. Combined models for pre- and
post-treatment longitudinal biomarker data: an application to CD4
counts in HIV-patients. BMC Med Res Methodol. 2016;16:121.

20. Pantazis N, Touloumi G, Walker AS, Babiker AG. J R Stat Soc: Ser C
(Applied Statistics). 2005;54:405–23.

21. Stirrup O, Copas A, Phillips A, Gill M, Geskus R, Touloumi G, Young J,
Bucher H, Babiker A. Predictors of CD4 cell recovery following initiation of
antiretroviral therapy among HIV-1 positive patients with well-estimated
dates of seroconversion. HIV Med. 2018;19:184–94.

22. Lui K-J, Lawrence DN, Morgan WM, Peterman TA, Haverkos HW,
Bregman DJ. A model-based approach for estimating the mean
incubation period of transfusion-associated acquired immunodeficiency
syndrome. Proc Natl Acad Sci. 1986;83:3051–5.

23. Medley GF, Anderson RM, Cox DR, Billard L. Incubation period of AIDS in
patients infected via blood transfusion. Nature. 1987;328:719–21.

24. Medley GF, Billard L, Cox DR, Anderson RM. The distribution of the
incubation period for the acquired immunodeficiency syndrome (AIDS).
Proc R Soc Lond B Biol Sci. 1988;233:367–77.

25. Kalbfleisch JD, Lawless JF. Inference based on retrospective
ascertainment: an analysis of the data on transfusion-related AIDS. J Am
Stat Assoc. 1989;84:360–72.

26. Cane P, Chrystie I, Dunn D, Evans B, Geretti AM, Green H, Phillips A,
Pillay D, Porter K, Pozniak A, Sabin C, Smit E, Weber J, Zuckerman M.
Time trends in primary resistance to HIV drugs in the United Kingdom:
multicentre observational study. BMJ. 2005;331:1368–8.

27. The UK Collaborative HIV Cohort Steering Committee. The creation of a
large UK-based multicentre cohort of HIV-infected individuals: The UK
Collaborative HIV Cohort (UK CHIC) Study. HIV Medicine. 2004;5:115–24.

28. Carpenter B, Lee D, Brubaker MA, Riddell A, Gelman A, Goodrich B,
Guo J, Hoffman M, Betancourt M, Li P. Stan: A Probabilistic Programming
Language. J Stat Softw. 2017;76(1):1–32.

29. Public Health England. HIV in the UK: 2016 report. [Online; accessed 30
May 2017].

30. Sommen C, Commenges D, Vu SL, Meyer L, Alioum A. Estimation of the
distribution of infection times using longitudinal serological markers of
HIV: implications for the estimation of HIV incidence. Biometrics. 2011;67:
467–75.



Stirrup and Dunn BMCMedical ResearchMethodology  (2018) 18:65 Page 14 of 14

31. Romero-Severson EO, Petrie CL, Ionides E, Albert J, Leitner T. Trends of
HIV-1 incidence with credible intervals in Sweden 2002–09 reconstructed
using a dynamic model of within-patient IgG growth. Int J Epidemiol.
2015;44:998–1006.

32. Sweeting MJ, De Angelis D, Aalen OO. Bayesian back-calculation
using a multi-state model with application to HIV. Stat Med. 2005;24:
3991–4007.

33. Birrell PJ, Gill ON, Delpech VC, Brown AE, Desai S, Chadborn TR, Rice BD,
De Angelis D. HIV incidence in men who have sex with men in England
and Wales 2001–10: a nationwide population study. Lancet Infect Dis.
2013;13:313–8.

34. Ratmann O, van Sighem A, Bezemer D, Gavryushkina A, Jurriaans S,
Wensing A, de Wolf F, Reiss P, Fraser C. Sources of HIV infection among
men having sex with men and implications for prevention. Sci Transl
Med. 2016;8:320–2.

35. Lee HY, Giorgi EE, Keele BF, Gaschen B, Athreya GS, Salazar-Gonzalez JF,
Pham KT, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP,
Hahn BH, Shaw GM, Korber BT, Bhattacharya T, Perelson AS. Modeling
sequence evolution in acute HIV-1 infection. J Theor Biol. 2009;261:
341–60.


	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Biomarker models
	Individual patient predictions with uniform priors
	Survival models for delay to diagnosis
	Datasets and software used
	Cross-validation analysis
	Simulation analyses

	Results
	Biomarker model in calibration dataset
	Investigation of delay to diagnosis in seroprevalent cohort
	Results of cross-validation analysis
	Results of simulation analyses
	Without truncation of observation times
	With truncation of observation times


	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

