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Abstract: Identifying disease-associated microRNAs (disease miRNAs) contributes to the
understanding of disease pathogenesis. Most previous computational biology studies focused on
multiple kinds of connecting edges of miRNAs and diseases, including miRNA–miRNA similarities,
disease–disease similarities, and miRNA–disease associations. Few methods exploited the node
attribute information related to miRNA family and cluster. The previous methods do not completely
consider the sparsity of node attributes. Additionally, it is challenging to deeply integrate the node
attributes of miRNAs and the similarities and associations related to miRNAs and diseases. In the
present study, we propose a novel method, known as MDAPred, based on nonnegative matrix
factorization to predict candidate disease miRNAs. MDAPred integrates the node attributes of
miRNAs and the related similarities and associations of miRNAs and diseases. Since a miRNA is
typically subordinate to a family or a cluster, the node attributes of miRNAs are sparse. Similarly,
the data for miRNA and disease similarities are sparse. Projecting the miRNA and disease similarities
and miRNA node attributes into a common low-dimensional space contributes to estimating
miRNA-disease associations. Simultaneously, the possibility that a miRNA is associated with a disease
depends on the miRNA’s neighbour information. Therefore, MDAPred deeply integrates projections
of multiple kinds of connecting edges, projections of miRNAs node attributes, and neighbour
information of miRNAs. The cross-validation results showed that MDAPred achieved superior
performance compared to other state-of-the-art methods for predicting disease-miRNA associations.
MDAPred can also retrieve more actual miRNA-disease associations at the top of prediction results,
which is very important for biologists. Additionally, case studies of breast, lung, and pancreatic
cancers further confirmed the ability of MDAPred to discover potential miRNA–disease associations.

Keywords: miRNA–disease associations; projection of node attributes; nonnegative matrix factorization;
projection of connecting edges; low-dimensional feature vector

1. Introduction

MicroRNAs (miRNAs) are small noncoding, single-stranded RNAs encoded by endogenous
genes with a length of approximately 22–24 nucleotides [1–4]. MiRNAs play important regulatory
roles by targeting messenger RNA for splicing or translational inhibition in animals and plants [5].
Increasing evidences shows that miRNAs are involved in the development and progression of many
diseases [6–9]. Therefore, identifying the regulatory relationships between diseases and miRNAs can
help researchers explore the pathogenesis of disease.

Early studies mainly used biological experiments to obtain high-accuracy experimental results that
fundamentally proved the associations of miRNAs and diseases. However, experimental methods are
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costly and time-consuming and have low success rates. In recent years, researchers have increasingly
turned to computational biology to predict disease miRNAs, which has achieved good results. Our
previous work can be divided into two categories. The first category [10–13] is the inference of
candidate diseases based on the regulatory relationships of miRNAs and target miRNAs. Since the
number of experimentally validated target miRNAs is insufficient, a set of putative targets is typically
inferred by a prediction program. Next, we use the target miRNA and genes associated with known
diseases to calculate miRNAs similarities. However, the results of the prediction program have high
false-positive rates, reducing the performance of such methods.

The second kind of method is mainly based on miRNAs with similar functions that are typically
associated with similar diseases, which is useful for predicting disease-related candidates [14–18]. First,
Wang et al. [19] used miRNA-associated diseases to calculate miRNAs similarities. Previous studies
were conducted to build miRNA networks based on miRNAs similarities and random walking around
the network to obtain network topology information [20–22] to infer miRNA–disease associations.
Some methods used miRNA similarities to model nonnegative matrix factorization [23–25] to predict
diseases miRNAs. These methods rely on specific diseases associated with related known miRNAs
and do not apply to new diseases without related known miRNAs. In a heterogeneous network with
information of disease similarities, miRNA similarities, and miRNA–disease associations, there are
many different methods for predicting disease-related candidates. Some methods use machine learning
methods [26–28] such as ensemble learning [29] to predict disease-associated miRNAs. For example,
path information [30] has been used in heterogeneous networks to predict associations between diseases
miRNAs and candidate miRNAs associated with diseases could be predicted by matrix factorization
or random walks on heterogeneous networks [31]. However, most methods do not consider the node
attributions of miRNA or low-dimensional projection representation of miRNAs and diseases.

Rfam [32] incorporated multiple miRNA with similar mature miRNA sequences into the same
miRNA family through multi-sequence alignment. There is a consistent seed region among miRNAs
in the same family. The seed region refers to the 2–8 bases at the 5′ end of a mature miRNA, which is
the key region for the interaction between a miRNA and target gene. Therefore, miRNAs belonging to
the same family may regulate similar target genes and thus may be associated with similar diseases.
Previous studies showed that some human miRNAs are distributed very close to each other in the
genome (<20 kb), i.e., they are distributed in clusters. Multiple miRNAs belonging to the same cluster
typically transcribe synchronously and perform certain functions in coordination. Thus, miRNAs in the
same cluster are more likely to be associated with similar diseases. Therefore, obtaining information
on the encoding of families and clusters of miRNAs is necessary [33,34]. Based on miRNA node
attributions, we can project miRNA similarities matrix, disease similarities matrix, and miRNA node
attributions to obtain a representative low-dimensional space. Previous approaches to integrating
miRNA families and cluster information did not project such information into low-dimensional feature
spaces. The advantage of projection is that it extracts representative information on low-dimensional
features, which in turn helps to improve predictive disease-associated miRNA performance.

We propose MDAPred, a new method for predicting the associations of candidate disease miRNAs.
MDAPred integrates the node attributes of miRNAs and the related similarities and associations of
miRNAs and diseases. MDAPred deeply integrates the projection of information such as miRNAs,
diseases, miRNA families, and clusters in low-dimensional feature spaces. Projecting miRNAs and
diseases and miRNA node attributions into a common low-dimensional space is useful for measuring
the distance between miRNAs and diseases. The distance is closely related to the association of the
miRNA with the disease. Because miRNAs with similar neighbours are more likely to be associated
with similar diseases, the model makes full use of the miRNA’s neighbour information. Thus, a
predictive model based on various projections and miRNA neighbour information was built and
an iterative algorithm was developed to solve the model to obtain predictions of the associations
of miRNAs and diseases. Experimental results based on cross-validation showed that MDAPred
method has superior performance compared to several other state-of-the-art methods. Particularly,
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when focusing on the top part of the prediction results, MDAPred method successfully retrieved more
real disease miRNAs. The case studies of three cancers further confirmed the ability of MDAPred to
discover potential miRNA–disease associations.

2. Results and Discussion

2.1. Evaluation Metrics

We used 5-fold cross-validation as an evaluation method for predicting the miRNA and disease
association performances. We randomly divided the associations of all known disease miRNAs into
five equal parts. Of these, 4 were training sets for training the models and the remaining one was
used as a test set for evaluation. We regarded the association in the test set as a positive sample and
association between all unobserved miRNAs and diseases as a negative sample. In our association
prediction ranking, a higher ranking of positive samples indicated better prediction performance.

Using a model based on nonnegative matrix factorization, we obtained predicted scores for
miRNAs and diseases and ranked them in descending order. In this descending order, a higher positive
example indicated better the prediction performance. For a pair of known associated diseases and
miRNAs, if the association prediction score obtained by the model is higher than the threshold δwe set,
it is judged as a positive sample. Otherwise, if the predicted score of the counter example is lower than
δ, the sample is judged as negative. By varying the size of threshold δ, the corresponding true-positive
rate (TPR) and false-positive rate (FPR) can be obtained and are defined as follows,

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

, (1)

where TP is the number of positive samples, TN is the number of the negative samples, and FN is the
number of positive samples misidentified as negative. Correspondingly, FP indicates the number of
negative samples misidentified as positive. TPR indicates the proportion of positive samples correctly
identified among the total positive samples, and FPR is the misidentified negative samples accounting
for all negative samples. By changing the threshold δ, we can obtain different TPR and FPR values.
These TPR and FPR were used to plot the receiver operating characteristic (ROC) curve. The overall
predicted performance was evaluated by calculating the area under the ROC curve (AUC).

Since the ratio of the number of unobserved miRNA–disease associations (negative samples) to
the number of known associations (positive samples) was 1:30, there was a serious class imbalance
between the positive and negative samples. Therefore, we used the precision-recall (PR) curve, which
is more convincing than the ROC curve [35], as another evaluation standard. Similarly, by changing
the threshold, new precision and recall values can be obtained to draw the PR curve and the area of PR
curve (AUPR) is calculated. The precision and recall values are defined as follows,

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (2)

where precision refers to the proportion of correctly recognized positive examples in the retrieved
samples, while recall represents the ratio of correctly recognized positive examples to the total number
of positive examples.

Additionally, biologists typically select the top miRNA candidates in the prediction results to
verify their associations with diseases through biological experiments. In the prediction results of the
top k, a larger number of positive samples appear to indicate more valuable predictions. Therefore, we
calculated the recall rate of the top k, which is the ratio of positive samples in top k relative to the total
positive samples, as another criterion for evaluating disease and miRNA performance.

Currently, the data for miRNA and disease association showed that most diseases are only
associated with a few miRNAs, leading to a lack of sufficient association data to evaluate prediction
models. Therefore, we selected 15 common diseases from the database for cross-validation and
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simulation experiments, each with a well-characterized disease and typically associated with at least
80 miRNAs.

2.2. Comparison with Other Methods

To better evaluate the predictive performance of MDAPred, we compared the method to
GSTRW [22], BNPMDA [36], Liu’s method [37], PBMDA [30], and DMPred [23] as state-of-the-art
methods for predicting miRNA and disease associations. We adjusted the hyperparameters of
these comparison methods to achieve the best prediction performance. Based on the results of a
cross-validation analysis, the value of hyperparametric α1, α2, α3, and α4 of MDAPred was selected
from {0.01, 0.1, 1, 10}. MDAPred showed the best performance when α1 = 0.1, α1 = 0.1, α2 = 0.1,
α3 = 0.1, and α4 = 0.1. For the comparison method, we based the hyperparameters on the best
parameters in the corresponding papers (γ = θ = 0.2, α = β = 0.8, ω = 0.6 for GSTRW; λM = 1

7 ,
λD = 1

10 , θ = 1
20 for DMPred; λ = 0.8, δ = 0.9, η = 0.1, λ = 0.5 for Liu’s method; L = 3, α = 2.26 for

PBMDA, and α = 0.5, β = 0.5 for BNPMDA).
DMPred exploited nonnegative matrix factorization to predict candidate miRNAs and achieved

better performance. You et al. proposed a method called PBMDA which inferred disease-related
miRNA by exploiting the information of paths connecting miRNAs and disease. GSTRW is a prediction
miRNA–disease association method based on random walk. Liu’s method inferred potential candidate
miRNAs by exploiting the network topology information. BNPMDA predicted disease-related miRNA
based on hierarchical clustering. Figure 1 demonstrates the receiver operating characteristic (ROC)
and precision-recall (PR) curves of MDAPred and the other five methods.

Figure 1. Receiver operating characteristic (ROC) and precision-recall (PR) curves of MDAPred and
the other five methods. (A) ROC curves (B) PR curves.

As shown in Figure 1A and Table 1, MDAPred method achieved the best average performance
(AUC = 0.964) among all 15 diseases that we considered. In particular, it outperformed DMPred
by 3.1%, PBMDA by 9.1%, GSTRW by 15.8%, Liu’s method by 6.0%, and BNPMDA by 12.5%. We
also listed the AUC of all six methods on 15 well-characterized human disease (Table 1), MDAPred
yielded the best performed for 13 of the common diseases. GSTRW used disease similarities and
miRNA similarities when predicting the candidate miRNAs but did not consider the disease miRNA
associations. Therefore, GSTRW showed the lowest performance. As shown in Figure 1A, the ROC
curves of both BNMPDA and PBMDA overlapped. PBMDA using path information performed better
than the BNMPDA using layer clustering. Liu’s method achieved better results than the above two
methods. Although these methods use different calculations, they make full use of the topology
information of heterogeneous networks. DMPred based on nonnegative matrix factorization used
network topology and the original features of miRNAs and diseases for predicting associations, which
achieved a competitive prediction performance. MDAPred is also based on a nonnegative matrix
algorithm. Unlike DMPred, this method considers not only node attributes but also uses projection



Molecules 2019, 24, 3099 5 of 16

to obtain the association prediction. Figure 1A and Table 1 show that MDAPred exhibited the best
performance against 15 common diseases.

Table 1. Areas under the ROC curves (AUCs) of MDAPred and other methods on 15 diseases.

Disease Name
AUC

MDAPred DMPred PBMDA GSTRW Liu’s Method BNPMDA

Breast neoplasms 0.986 0.974 0.906 0.837 0.920 0.902
Hepatocellular carcinoma 0.982 0.931 0.910 0.791 0.929 0.900

Glioma 0.957 0.855 0.882 0.786 0.914 0.843
Acute myeloid leukemia 0.979 0.963 0.885 0.796 0.910 0.865

Lung neoplasms 0.964 0.944 0.862 0.813 0.906 0.855
Melanoma 0.978 0.910 0.849 0.758 0.893 0.839

Osteosarcoma 0.968 0.985 0.860 0.771 0.897 0.859
Ovarian neoplasms 0.970 0.967 0.888 0.844 0.918 0.877

Pancreatic neoplasms 0.956 0.821 0.879 0.833 0.902 0.870
Alzheimer Disease 0.968 0.958 0.833 0.816 0.875 0.830

Carcinoma, Renal Cell 0.964 0.894 0.856 0.784 0.900 0.854
Diabetes Mellitus, Type 2 0.964 0.936 0.870 0.870 0.905 0.869

Glioblastoma 0.938 0.951 0.849 0.759 0.889 0.843
Heart failure 0.962 0.959 0.884 0.814 0.909 0.882

Atherosclerosis 0.962 0.955 0.891 0.822 0.910 0.876

Average AUC 0.964 0.933 0.873 0.806 0.904 0.839

The bold values indicate the higher AUCs.

As shown in Figure 1B, the average PR curve of the 15 common diseases of MDAPred was higher
than that of the other five methods. The average AUC of MDAPred was 10.3% better than DMPred,
16.7% better than PBMDA, 38% better than GSTRW, 14% better than Liu’s method, and 24.4% better
than BNPMDA. Of the 15 common diseases, MDAPred showed the best performance in 14 of these
diseases (Table 2).

Table 2. AUPRs of MDAPred and other methods on 15 diseases.

Disease Name
AUPR

MDAPred DMPred PBMDA GSTRW Liu’s Method BNPMDA

Breast neoplasms 0.818 0.800 0.718 0.389 0.725 0.566
Hepatocellular carcinoma 0.816 0.715 0.767 0.483 0.749 0.676

Glioma 0.613 0.175 0.390 0.224 0.436 0.386
Acute myeloid leukemia 0.544 0.466 0.386 0.122 0.408 0.324

Lung neoplasms 0.686 0.620 0.561 0.370 0.596 0.542
Melanoma 0.689 0.366 0.482 0.205 0.524 0.491

Osteosarcoma 0.601 0.620 0.356 0.181 0.373 0.327
Ovarian neoplasms 0.714 0.366 0.529 0. 400 0.236 0.496

Pancreatic neoplasms 0.692 0.569 0.457 0.333 0.556 0.478
Alzheimer Disease 0.522 0.351 0.136 0.086 0.485 0.220

Carcinoma, Renal Cell 0.481 0.206 0.314 0.135 0.143 0.299
Diabetes Mellitus, Type 2 0.549 0.398 0.259 0.132 0.356 0.268

Glioblastoma 0.533 0.284 0.346 0.161 0.303 0.336
Heart failure 0.599 0.393 0.301 0.134 0.348 0.300

Atherosclerosis 0.315 0.309 0.304 0.084 0.297 0.218

Average PR 0.603 0.500 0.436 0.233 0.463 0.359

The bold values indicate the higher AUPRs.

A higher recall rate of the top k of miRNAs indicates that more true miRNAs associated with
diseases are correctly identified. The top k average recall rate for 15 common diseases is shown in
Figure 2. Under the various top k, MDAPred method recall was significantly higher than those of the
other methods. For the top 30, MDAPred method showed a recall rate of 0.641, the top 60 recall rate
was 0.862, and the top 90 recall rate was 0.965. The recall rate of the top 30 for DMPred method was
0.448, for the top 60 was 0.675, and for the top 90 was 0.791. Most recall values determined using
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PBMDA were close to those obtained using Liu’s method. The former’s top 30, top 60, and top 120 call
values were 0.390, 0.580, and 0.680, respectively. The latter’s top 30, top 60, and top 120 call values were
0.402, 0.594, and 0.705, respectively. BNPMDA’s top 30, top 60, and top 90 were 0.465, 0.653, and 0.764
respectively. GSTRW method showed the worst performance, with a top 240 recall value of only 0.79.
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In addition, to further verify that the AUCs and AUPRs of MDAPred were significantly higher
than those of other methods, we perform a paired t-test. All paired t-test results were less than 0.05,
which indicates that MDAPred’s performance was significantly better than that of other methods
(Table 3).

Table 3. Comparison of different methods based on AUCs with a paired t-test.

p-Value between MDAPred and
Other Methods DMPred PBMDA GSTRW Liu’s Method BNPMDA

p-values of ROC curves 2.4983 × 10−41 3.2311 × 10−5 6.3212 × 10−16 6.9812 × 10−8 2.9742 × 10−6

p-values of PR curves 2.2341 × 10−35 1.8643 × 10−6 1.6542 × 10−6 3.4521 × 10−5 8.8432 × 10−4

2.3. Case Studies

To demonstrate the ability of MDAPred to discover high-quality candidate miRNAs, we conducted
case studies of breast, pancreatic, and lung cancers. Because breast cancer is one of the most common
cancers, we used it as an example to analyze its top 50 candidates in detail (Table 4).

Xie et al. used text mining techniques to extract the association between experimentally validated
miRNAs and diseases [38]. These associations were further manually verified and have been
incorporated into miRCancer database, which contains 632 cancer-associated 6323 miRNA–disease
associations. dbDEMC [39] is a differentially expressed miRNA database in human cancers containing
2224 miRNAs differentially expressed in 36 cancers. As shown in Table 3, 39 of the 50 miRNA candidate
genes were included in dbDEMC database and 21 candidates were included in miRCancer database.
This suggests that these miRNAs are abnormally expressed in breast cancer and are associated with
breast cancer.
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Table 4. The top 50 breast cancer-related candidates.

Rank MiRNA name Evidence Rank MiRNA name Description

1 hsa-mir-186 dbDEMC, PhenomiR 26 hsa-mir-885 literature [40]
2 hsa-mir-99b dbDEMC, PhenomiR 27 hsa-mir-6838 Unconfirmed
3 hsa-mir-483 PhenomiR 28 hsa-mir-323a dbDEMC, PhenomiR
4 hsa-mir-4480 literature [41] 29 hsa-mir-1244 dbDEMC
5 hsa-mir-181d dbDEMC, PhenomiR, miRCancer 30 hsa-mir-361 PhenomiR, miRCancer

6 hsa-mir-28 dbDEMC, PhenomiR 31 hsa-mir-216a dbDEMC, PhenomiR,
miRCancer

7 hsa-mir-455 PhenomiR, miRCancer 32 hsa-mir-136 dbDEMC, PhenomiR
8 hsa-mir-154 dbDEMC, PhenomiR, miRCancer 33 hsa-mir-569 literature [42]
9 hsa-mir-330 dbDEMC, PhenomiR, miRCancer 34 hsa-mir-336 dbDEMC
10 hsa-mir-454 dbDEMC, PhenomiR 35 hsa-mir-325 dbDEMC, PhenomiR
11 hsa-mir-181 dbDEMC, PhenomiR, miRCancer 36 hsa-mir-571 dbDEMC
12 hsa-mir-208b dbDEMC, PhenomiR 37 hsa-mir-95 dbDEMC, PhenomiR

13 hsa-mir-663 dbDEMC, PhenomiR 38 hsa-mir-517b dbDEMC, PhenomiR,
miRCancer

14 hsa-mir-133 dbDEMC, PhenomiR, miRCancer 39 hsa-mir-323 dbDEMC, PhenpmiR
15 hsa-mir-30 dbDEMC, PhenomiR, miRCancer 40 hsa-mir-633 dbDEMC
16 hsa-mir-504 dbDEMC 41 hsa-mir-1183 dbDEMC
17 hsa-mir-543 dbDEMC 42 hsa-mir-4454 literature [43]
18 hsa-mir-217 dbDEMC, PhenomiR, miRCancer 43 hsa-mir-705 dbDEMC
19 hsa-mir-33 dbDEMC, PhenomiR, miRCancer 44 hsa-mir-532 dbDEMC, PhenomiR
20 hsa-mir-211 dbDEMC, PhenomiR, miRCancer 45 hsa-mir-126a dbDEMC, miRCancer
21 hsa-mir-449b dbDEMC, PhenomiR, miRCancer 46 hsa-mir-1909 dbDEMC

22 hsa-mir-362 miRCancer 47 hsa-mir-539 dbDEMC, PhenomiR,
miRCancer

23 hsa-mir-208 dbDEMC, PhenomiR 48 hsa-mir-520f PhenomiR, miRCancer
24 hsa-mir-433 dbDEMC, PhenomiR, miRCancer 49 hsa-mir-498 miRCancer
25 hsa-mir-520e dbDEMC, PhenomiR, miRCancer 50 hsa-mir-3135b literature [44]

PhenomiR database [45] contains miRNAs differentially expressed in diseased tissues compared
to normal tissues. Twenty-six candidate miRNAs are present in PhenomiR database, indicating
that they are upregulated or downregulated in breast cancer. Although hsa-mir-4480 [41] had
a centrality score of 9. It was still described as a breast cancer-related miRNA in the SKBR3
network. Hsa-mir-885 [40] directly targets B7-H3 by association with the B7-H3 3′-UTR region,
suggesting that hsa-mir-885 have a direct role in modulating B7-H3 protein expression in breast cancer.
Chaluvally-Raghavan et al. [42] demonstrated that hsa-miR-569, which is overexpressed in a subset
of ovarian and breast cancers, at least in part owing to the 3q26.2 amplicon, alters cell survival and
proliferation. Xian Wang et al. [43] performed a differential expression profile analysis of hsa-mir-4454
in breast cancer cells. Junjun et al. [44] confirmed that hsa-mir-3135b is differentially expressed in the
breast cancer cell line MCF7. Hsa-mir-6838 is marked “Unconfirmed” and thus not currently supported
by the databases and the relevant literature.

Supplementary Table S1 lists the top 50 candidates associated with lung cancer. DbDEMC database
contains 35 candidates showing abnormal expression in lung cancer, and 31 candidate miRNAs are
present in miRCancer database, demonstrating their association with lung cancer disease. Thirty-seven
candidate miRNAs are present in PhenomiR database, showing their expression levels significantly
altered in lung cancer cells. NCIH460, a lung cancer cell line, was treated with a screening library,
revealing the ability of hsa-mir-4480 [46] to inhibit the growth of lung cancer cells. Park et al. [47]
showed that hsa-mir-1843 is significantly upregulated compared with normal lung tissue. Long
noncoding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of the
hsa-mri-4262 pathway [48]. In addition, EZH2 and miR-4448 show mutual negative regulations for
tumor progression via epithelial mesenchymal transition in small cell lung cancer [49]. Hsa-mir-3161 is
listed as differentially expressed miRNAs in lung adenocarcinoma by Gou et al. [50]. Hsa-mir-3074-5p
is also significantly correlated with small cell lung cancer metastasis [51].

For pancreatic cancer, the top 50 candidate associations are listed in Supplementary Table S2.
Forty-eight and 18 candidates are present in dbDEMC and miRCancer databases, respectively, indicating
that they are associated with the disease. Forty candidate miRNAs are present in the PhenomiR
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database, suggesting that the expression levels of this gene in pancreatic cancer cells significantly differ
from those in normal tissues.

The data of disease and miRNA used herein was derived from the latest Human miRNA–Disease
Database (HMDD, released in March 2019) [52], which contains 7908 miRNA–disease association pairs
that have been validated by biological experiments. Disease terms from the American Medical Library
(Mesh, hattp://www.ncbi.nlm.nih.gov/mesh) were used to construct directed acyclic graphs (DAGs) to
calculate the semantic similarities of the disease. We obtained the disease phenotypic similarity [53]
information from previous work. The information of 530 miRNA families is extracted from miRBase
(version 22.1) [54]. According to previous studies, we obtained 1309 clusters by setting the distance
between two miRNAs to no more than 20 kb.

The primary goal of the study was to predict disease–miRNA associations. To integrate miRNA
similarities, disease similarities, miRNA–disease association, and miRNA node attributions, a model
based on nonnegative matrix factorization was constructed (Figure 3), and then this model was solved
with an iterative algorithm. This model can reveal association scores of miRNAs mi and diseases d j. A
higher association score indicates a greater likelihood of an association.

Figure 3. Multiple data representations of miRNAs and diseases: (a) calculate miRNA similarities
through miRNA–associated diseases, (b) calculate the similarities of disease by combining disease
semantic similarities and disease phenotypic similarities, (c) establish association matrix A based on
known associations between miRNAs and diseases, and (d) create a representation matrix of miRNA
families and clusters.

3. Materials and Methods

3.1. Data Representation of miRNAs and Diseases

MiRNA similarities. It is well-known that miRNAs with similar functions are often associated with
similar diseases. Wang et al. [19] successfully calculated miRNA similarities by using miRNA-associated
diseases. For instance, diseases d1, d5, d6 are associated with miRNA ma, while diseases d2, d4, d5, d6

are associated with miRNA mb and the similarity M(ma, mb) of Sa = {d1, d5, d6} and Sb = {d2, d4, d5, d6}

is calculated as the similarity of ma and mb (Figure 3a). The miRNA similarity matrix is M =
[
Mi j

]
∈

hattp://www.ncbi.nlm.nih.gov/mesh
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<
Nm×Nm , where Nm is the number of miRNAs and Mi j is the similarity of mi and m j. Generally, Mi j is

more than or equal to 0; a higher score indicates greater similar between mi and m j.
Disease similarities. From the dual perspectives of disease semantics and phenotypes (signs

and symptoms), we measured the similarity of two diseases. Generally, we used a DAG to represent
disease-related semantic terms. A larger number of common terms on the DAG for two diseases reflects
greater similarity between the two diseases. If the two diseases have more common phenotypes, then
the two diseases are more similar. Therefore, we quantified the similarities of diseases based on the
semantics and phenotype of the disease (Figure 3b). Xuan et al. [21,23,31,55] successfully integrated
this information and calculated the similarity of diseases, which we obtained from the previous method.
The similarity matrix D =

[
Di j

]
∈ <

Nd×Nd containing Nd diseases indicates the similarity of disease di
and disease d j; a larger value indicates greater similar, and the value of Di j is generally between 0 and 1.

MiRNA–disease associations. According to the known associations between miRNAs and
diseases, an associations matrix A =

[
Ai j

]
∈ <

Nm×Nd was constructed (Figure 3c). Each row of the
association matrix A corresponds to a miRNA, of which the column corresponds to a disease. If the
miRNA mi is associated with a disease d j, then Ai j = 1. If mi and d j are not associated or no association
has been observed so far, then Ai j = 0.

MiRNA node attributes. C ∈ <Nm×(N f +Nc) is a miRNA family and cluster characteristic matrix,
with the rows representing miRNAs and columns showing family or cluster information (Figure 3d).
Vector Ci represent miRNA mi subordinate to N f family and Nc cluster, which are considered node

attributes. Ci j
(
Ci(N f +k)

)
= 1 indicates that the miRNA belongs to the jth family or kth cluster; otherwise,

the value is 0.

3.2. Prediction Models for Disease–miRNA Associations

A model based on nonnegative matrix factorization was constructed, which integrates miRNA
similarities, disease similarities, miRNA and disease associations, as well as miRNA family and cluster
information. Let U ∈ <Nm×Nd indicate the predicted miRNA associated score with the disease. Nm is
the number of miRNAs, Nd is the number of diseases, and Ui j is the score of the miRNA and disease
association. A larger score means that mi and d j are more likely to be associated, and Ui j is typically
greater than or equal to 0.

Projection of miRNA, disease, and node attributes. We projected miRNA disease-related
information into low-dimensional space to extract representative low-dimensional feature vectors.
For the miRNA, M denotes the miRNA similarities matrix, which is projected into the c-dimensional
space. X ∈ <Nm×c is a projection matrix of miRNA similarities, MX ∈ <Nm×c represents the
low-dimensional feature matrix of the miRNAs, and the ith row of MX represents the low-dimensional
feature vector about mi.

For the disease, D is the similarities matrix of the disease, which can be projected into the
low-dimensional space, and the low-dimensional feature matrix can be obtained. Y ∈ <Nd×c is a
projection matrix of disease similarities, DY ∈ <Nd×c is the low-dimensional feature matrix of the
disease, and the jth row of DY represents the low-dimensional feature vector about d j.

For the miRNA of the node attributes, C ∈ <Nm×(N f +Nd) is the feature matrix of the family and
cluster, which is projected into the low-dimensional space to obtain the low-dimensional feature matrix
of the node attributes of the miRNA. Z ∈ <(N f +Nc)×c is the projection matrix of the node attributes.
CZ ∈ <Nm×c is a miRNA low-dimensional feature matrix with node attributes, and its ith row is a
low-dimensional feature vector of the miRNA family and cluster.

Modelling miRNA-disease associations. In association matrix A, the values of all 1 represent the
observed miRNA disease association, 0 indicates that an association has not been observed, and most
values of 0 indicate that the miRNA is not associated with the disease. The association matrix A reflects
the true associations between miRNAs and diseases. The element Ui j in the score matrix U indicates
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the possibility that the miRNA is associated with a disease. The evaluated score matrix U should be as
consistent as possible with the actual correlation. The objective function is obtained as follows,

min
U≥0
‖U −A‖2F, (3)

where ‖ · ‖F is the Frobenius norm of a matrix.
Modelling similarities of miRNAs and diseases. The ith row of the low-dimensional feature

matrix (MX) ∈ <Nm×c represents the feature vectors of the miRNA mi in the c-dimensional space.
Similarly, the jth column of (DY)T

∈ <
c×Nd represents the feature vector of the disease d j in the

c-dimensional space. The closer the miRNA mi is to the disease d j in the c-dimensional space, i.e.,
the larger the value of (MX)i(DY)T

j , the more likely mi is associated with d j. An element of the score

matrix Ui j denotes the probability that the predicted mi is associated with d j. Ui j and (MX)i(DY)T
j

should be as consistent as possible. An objective function expansion was obtained as follows,

min
U≥0
‖U −A‖2F + α1‖U −MX(DY)T

‖
2
F , (4)

where α1 is a hyperparameter for adjusting the contribution of the second section.
Modelling node attributes of miRNAs. (CZ)i is the ith row of the matrix (CZ) ∈ <Nm×c,

which records the low-dimensional feature vector of mi based on the miRNA and node attribution.
Correspondingly, (DY)T

j is the i jth row of the matrix of (DY)T, which records the low-dimensional

feature vector. The more consistent (CZ)i and (DY)T
j , the more likely mi is associated with d j. Ui j is the

estimated association score of mi and d j. To make the predicted score matrix U and actual calculated
association as consistent as possible, our objective function is expanded,

min
U≥0
‖U −A‖2F + α1‖U −MX(DY)T

‖
2
F + α2‖U −CZ(DY)T

‖
2
F, (5)

where α2 is the contribution of the adjustment node attribute information.
Modelling the topological structure of miRNAs. miRNAs and k neighbours are more likely to be

associated with similar diseases. A graph model S based on similarity between miRNA and miRNA
was created,

Si j =

{
1, if miRNA mi is one of the similar neighbours of miRNA m j
0, otherwise

. (6)

The graph Laplacian matrix L of miRNA feature graph S is defined as follows,

L = W − S, (7)

where W is a diagonal matrix with W(i, i) =
Nm∑

j
S(i, j). Graph models are used to introduce smooth

regularization, as miRNA with similar features should have similar diseases. The graph model is used
to reflect the correlation and similarity of known indications between different miRNAs. The objective
function is expanded as follows,

min
U≥0
‖U −A‖2F + α1‖U −MX(DY)T

‖
2
F + α2‖U −CZ(DY)T

‖
2
F + α3Tr

(
UTLU

)
, (8)

where α3 is a hyperparameter that adjusts the contribution of the regularization of graphs to the entire
objective function and Tr() represents the trac of the matrix.
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Consider the sparseness of associations. Since a disease is only associated with a limited number
of miRNAs, we imposed l1-regularization to U learn sparse associations. The objective function is
expanded as follows,

min
U≥0
‖U −A‖2F + α1‖U −MX(DY)T

‖
2
F + α2‖U −CZ(DY)T

‖
2
F + α3Tr

(
UTLU

)
+ α4‖U‖1. (9)

3.3. Optimization

The objective function L(U, X, Y, Z) in Equation (9) is a non-convex function, and it is impractical
to obtain its global optimal solution. We divided the function into four subproblems to obtain a
near-optimal solution for L(U).

U-subproblem. When X, Y, and Z are fixed, the subproblem for solving U is as follows,

min
U≥0

L(U) = ‖U −A‖2F + α1‖U −MX(DY)T
‖

2
F+α2‖U −CZ(DY)T

‖
2
F + α3Tr

(
UTLU

)
+ α4‖U‖1. (10)

According to the trace property and Frobenius norm of the matrix, L(U) can be rewritten as follows,

min
U≥0

L(U) = ‖U −A‖2F + α1‖U −MX(DY)T
‖

2
F + α2‖U −CZ(DY)T

‖+ α3Tr
(
UTLU

)
+ α4‖U‖1

= Tr
(
UUT

−UAT
−AUT + AAT

)
+α1Tr(UU −UDY(MX)T

−MX(DY)TUT + MX(DY)TDY
(
MX)T

)
+α2Tr(UUT

−UDY(CZ)T
−CZ(DY)TUT + CZ(DY)TDY

(
CZ)T

)
+α3Tr

(
UTWU −UTSU

)
+ α4‖U‖1,

(11)

where Tr() is the trace of the matrix. By setting the derivative of L(U) with respect to U to 0, we obtain
the following equation,

2U − 2A + 2α1U − 2α1MX(DY)T + 2α2U − 2α2CZ(DY)T + 2α3WU − 2α3SU + α4B = 0, (12)

where B =
[
Bi j

]
∈ <

Nm×Nd is a matrix of which the elements are all 1. By multiplying both sides of
Equation (12) by Ui j, we obtain the following equation

(2U − 2A + 2α1U − 2α1MX(DY)T + 2α2U
−2α2CZ(DY)T + 2α3WU − 2α3SU + α4B)i jUi j = 0.

(13)

Finally, according to the coordinate descent algorithm, we can obtain Ui j’s updated formula by
multiplying its current value with the ratio of the negative terms to the positive term of Equation (13),

Unew
ij ← Ui j ·

2A + 2α1MX(DY)T + 2α2CZ(DY)T + 2α3SU
2U + 2α1U + 2α2U + 2α3WU + α4B

. (14)

X-subproblem. When U, Y, and Z are fixed, the subproblem for solving X is,

min
X≥0

L(X) = α1‖U −MX(DY)T
‖

2
F. (15)

According to the trace property and Frobenius norm of the matrix, L(X) can be rewritten as,

L(X) = α1Tr(UUT
−UDY(MX)T

−MX(DY)TUT + MX(DY)TDY
(
MX)T

)
. (16)

By setting the derivative of L(X) with respect to X to 0, we obtain the following equation,

− 2α1MTUDY + 2α1MTMX(DY)TDY = 0. (17)
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By multiplying both sides of Equation (17) by Xi j, we obtain the following equation,

(−2α1MTUDY + 2α1MTMX(DY)TDY)i jXi j = 0. (18)

X’s updating rule by applying the coordinate gradient descent algorithm is as follows,

Xnew
ij ← Xi j ·

MTUDY

MTMX(DY)TDY
. (19)

Y-subproblem. When U, X, and Z are fixed, the subproblem for solving Y is as follows,

L(Y) = α1‖U −MX(DY)T
‖

2
F + α2‖U −CZ(DY)T

‖. (20)

We transformed the Frobenius norms of the matrices in L(Y) to their trace norms and rewrote L(Y) as
follows,

L(Y) = α1‖U −MX(DY)T
‖

2
F + α2‖U −CZ(DY)T

‖

= α1Tr(UUT
−UDY(MX)T

−MX(DY)TUT + MX
(
DY)TDYXTMT

)
+α2Tr(UUT

−UDY(CZ)T
−CZ(DY)TUT + CZ

(
DY)TDYZTC

)
.

(21)

By setting the derivative of L(Y) with respect to 0, we obtain the following,

2α1DTDY(MX)TMX − 2α1DTUTMX + 2α2DTDY(CZ)TCZ− 2α2DTUTCZ = 0. (22)

After both sides of Equation (22) are multiplied by (Y)i j, we obtain the following equation,

(2α1DTDY(MX)TMX − 2α1DTUTMX + 2α2DTDY(CZ)TCZ− 2α2DTUTCZ)i jYi j = 0. (23)

Y’s updating rule by applying the coordinate gradient descent algorithm is as follows,

Ynew
ij ← Yi j ·

α1DTUTMX + α2DTUTCZ

α1DTDY(MX)TMX + α2DTDY(CZ)TCZ
. (24)

Z-subproblem. When U, X, and Y are fixed, the subproblem for solving Z is as follows,

min
Z≥0

L(Z) = α2‖U −CZ(DY)T
‖

2
F. (25)

Similar to the process for solving the subproblems of U, X, and Y, L(Z) is transformed first according
to the characteristic of the matrix traces. The derivative is then determined with respect to Z. Finally,
the gradient descent algorithm is applied to obtained the updated rule for Z,

Znew
ij ← Zi j ·

CTUDY

CTCZ(DY)TDY
. (26)

The iterative process is over when the absolute difference of L(U, X, Y, Z) at two adjacent moments is
less than a threshold (ε = 10−6) or when the maximum number of iterations, 100, is reached. Finally,
Uij is regarded as the estimated association score between miRNA mi and disease d j (Figure 4).



Molecules 2019, 24, 3099 13 of 16

Figure 4. Iterative algorithm for estimation of the miRNA–disease association scores.

4. Conclusions

In the current study, MDAPred, a new method based on nonnegative matrix factorization, was
developed for predicting potential disease–miRNA candidates. MDAPred deeply integrates the
projections of multiple kinds of connecting edges and the node attributions of miRNAs to enhance
the detection of the disease–miRNA associations. MDAPred also takes full advantage of information
about the neighbours of miRNAs to capture the local topology of miRNAs. A sparse penalty was
introduced to improve the performance of MDAPred. An iterative algorithm was proposed to obtain
discriminative ability. MDAPred was superior to other tested methods not only in their AUCs but also
in their AUPRs. Additionally, MDAPred is useful for biologists, as it can list more real disease–miRNA
associations in its top ranking list. Case studies of three diseases revealed the ability of MDAPred to
identify potential candidates. Therefore, MDAPred can serve as a prioritization tool for identifying
real associations of disease miRNAs through wet-lab experiments.

Supplementary Materials: The following are available online. Table S1: The top 50 candidates for lung cancer.
Table S2: The top 50 candidates for pancreatic cancer. Table S3: The top 50 potential candidates for 341 diseases.
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