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Abstract: In the search for new quinoid compounds endowed with potential anticancer activity,
the synthesis of novel heterodimers containing the cytotoxic 7-phenylaminoisoquinolinequinone and
2-phenylaminonaphthoquinone pharmacophores, connected through methylene and ethylene spacers,
is reported. The heterodimers were prepared from their respective isoquinoline and naphthoquinones
and 4,4′-diaminodiphenyl alkenes. The access to the target heterodimers and their corresponding
monomers was performed both through oxidative amination reactions assisted by ultrasound and
CeCl3·7H2O catalysis “in water”. This eco-friendly procedure was successfully extended to the one-pot
synthesis of homodimers derived from the 7-phenylaminoisoquinolinequinone pharmacophore.
The electrochemical properties of the monomers and dimers were determined by cyclic and square
wave voltammetry. The number of electrons transferred during the oxidation process, associated to
the redox potential EI1/2 , was determined by controlled potential coulometry.

Keywords: twin drugs; heterodimers; green synthesis; amination reaction; cyclic voltammetry;
half-wave potential

1. Introduction

Quinones are ubiquitous in nature and comprise one of the largest classes of anticancer agents [1–3].
Among the broad variety of drugs used clinically in the therapy of solid cancers, mitomycin,
mitoxantrone, and saintopin contain the common quinone nucleus into their active pharmacophores.
The most remarkable characteristics of these quinoid drugs are their abilities to act as DNA intercalators,
reductive alkylators of biomolecules, and/or generators of reactive oxygen species (ROS) such as
hydroxyl radical, hydrogen peroxide, superoxide anion, and singlet oxygen [4], which can damage
tumor cells [5–12] via oxidative stress [5,13,14]. It is worth to note that in spite of the broad range
of effects of quinoid compounds on grown inhibition of diverse cancer cells, the major limitations,
in terms of their use as cancer drugs, are their side effects [15].

A common aminoquinoid unit appeared as a key structural scaffold in diverse natural occurring
cytotoxic compounds, such as smenospongine [16,17], streptonigrin [18–23], mansouramicyn C [24,25]
and, synthetic cytotoxic 1,4-benzoquinones, 1,4-naphthoquinones [26,27], and heterocyclic analogs [28–32].

A number of synthetic aminoisoquinolinequinones and polycyclic analogs have been the subject
of study for many years due to their in vitro cytotoxic activities on several cancer cell lines [33–39].
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A well-established procedure to prepare alkyl- and arylaminoquinones is based on the oxidative
coupling reaction of quinones with alkyl- and arylamines [40–44]. It is widely accepted that the
oxidative coupling reaction involves a Michael addition of the nitrogen nucleophiles to the quinones,
followed by oxidation of the hydroquinone intermediates [44].

In Figure 1, representative synthetic phenylaminoquinones endowed with in vitro cytotoxic
properties against a number of human cancer cell lines are depicted [26,30–32]. The common feature of
these aminoquinones to target cancer cells has been attributed, in part, to their abilities to produce
oxidative stress via generation of reactive oxygen species (ROS) [45,46].
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Figure 1. Structure of biological active phenylaminoquinones.

The biological activity of quinones is often related to their electrochemical behavior [47–52].
The ability of the quinone nucleus to accept one or two electrons to give the corresponding semiquinone
radical anion (Q•−) or hydroquinone dianion (Q2−) species is believed to induce formation of reactive
oxygen species (ROS), responsible for the oxidative stress in cells [11,47,53].

Recently, we successfully applied the twin-drug approach [54] to improve the antiproliferative
activity and selectivity of the phenylaminoisoquinolinequinone pharmacophore [29,55]. The designed
homodimers were prepared through a one-pot procedure from phenylaminoisoquinolinequinones
and 4,4′-diaminodiphenylmethane (DDM). It was also reported the selective access to monomers,
which are involved in the formation of homodimers [54]. The following Scheme 1 exemplifies the
selective access to the corresponding monomer or homodimer employing suitable molar ratio between
the quinone and diamine precursors.
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The selective access to the monomers and the cytotoxic levels of the monomers and
homodimers [54] encourage us to extend our studies to the synthesis of heterodimers constituted
by anilinoisoquinolinequinone and 2-anilinonaphthoquinone pharmacophores connected through
methylene spacers [26]. Bearing in mind that monomers and dimers exhibit one and two electro-active
quinone nucleus, respectively, we were also interested to get insight into their electrochemical properties.
Herein we report results on the eco-friendly access to monomers, heterodimers, and homodimers
derived from isoquinolinequinones, naphthoquinones, and 4,4′-diamino diphenyl alkanes. The new
synthesized monomers and dimers were subject to electrochemical studies by cyclic voltammetry,
square wave voltammetry, and controlled potential coulometry.

2. Results

2.1. Chemistry

The strategy to construct the heterodimers, where the phenylamino groups of the selected quinoid
pharmacophores are connected through methylene spacers, is based on oxidative monoamination
reactions of the parent isoquinolinquinones 1 and 2 with the 4,4′-diamino diphenyl alkanes 3 and 4
followed by amination reactions of the resulting monomers with naphthoquinones 8 and 9 (Figure 2).

Molecules 2019, 24, x FOR 3 of 13 

 

The selective access to the monomers and the cytotoxic levels of the monomers and homodimers 
[54] encourage us to extend our studies to the synthesis of heterodimers constituted by 
anilinoisoquinolinequinone and 2-anilinonaphthoquinone pharmacophores connected through 
methylene spacers [26]. Bearing in mind that monomers and dimers exhibit one and two electro-
active quinone nucleus, respectively, we were also interested to get insight into their electrochemical 
properties. Herein we report results on the eco-friendly access to monomers, heterodimers, and 
homodimers derived from isoquinolinequinones, naphthoquinones, and 4,4′-diamino diphenyl 
alkanes. The new synthesized monomers and dimers were subject to electrochemical studies by cyclic 
voltammetry, square wave voltammetry, and controlled potential coulometry. 

2. Results 

2.1. Chemistry 

The strategy to construct the heterodimers, where the phenylamino groups of the selected 
quinoid pharmacophores are connected through methylene spacers, is based on oxidative 
monoamination reactions of the parent isoquinolinquinones 1 and 2 with the 4,4′-diamino diphenyl 
alkanes 3 and 4 followed by amination reactions of the resulting monomers with naphthoquinones 8 
and 9 (Figure 2). 

 
Figure 2. Precursor of phenylaminoisoquinolinquinone-containing monomers and heterodimers. 

The access to the designed heterodimers 10, 11, and 12 was planned through the 
aminoisoquinolinequinone monomers 5, 6, and 7 resulting from the reaction between the quinones 
1/2 and symmetrical diamines 3/4. The synthetic approach to heterodimer 10 was firstly examined 
from isoquinolinequinone 1, naphthoquinone 8, and diamine 3. The required monomer precursor 5 
was synthesized in 74% yield, according to our previously reported procedure [54], by reaction of the 
quinone 1 with diamine 3 in a 1:2 mole ratio, catalytic amounts of CeCl3·7H2O in ethanol at room 
temperature [29]. Further reaction assays of 5 with naphthoquinone 9 in a 1:2 ratio under the above-
mentioned conditions, performed at room temperature and, in refluxing ethanol, produced 
heterodimer 10 albeit in low yields (22% and 28%, respectively). The heterodimer 10 was isolated as 
a purple solid, m.p. 186 °C (d). The IR spectrum reveals the presence of N–H and C=O bands at v/cm−1: 
3337, 1720, 1666, and 1673, respectively. The 1H-NMR spectrum shows the signals of two vinylic 
protons at δ 7.54 and 7.67 ppm and the amino proton signals at δ 7.54 and 7.67 ppm. In the aromatic 
proton region, the proton signals of the naphthoquinone fragment, at δ: 7.67, 7.76 and 8.11, were 
observed and those of the protons of the phenyl groups of the linker that appeared as a multiplet at 
δ 7.21 ppm. The methylene protons of the spacer are observed at 4.00 ppm. The 13C-NMR spectrum 
displays signals of three carbonyl groups at δ: 181.5, 181.1, 180.4, and the mass spectrum shows the 
molecular ion [M+] peak at m/z 598.1971. 

Interestingly, when a water suspension containing compounds 5 and 9 (1:2 mole ratio) and 
CeCl3·7H2O were ultrasound-irradiated [56] for 6 h, heterodimer 10 was generated and isolated in 
88% yield (Scheme 2). Based on this excellent outcome, we decided to extend this green procedure to 
the synthesis of monomers 5–7 and heterodimers 11 and 12. The reactions that were conducted under 
irradiation period of 1.5–7 h, produced the respective monomers 5–7 in excellent yields (94–98%), and 

Figure 2. Precursor of phenylaminoisoquinolinquinone-containing monomers and heterodimers.

The access to the designed heterodimers 10, 11, and 12 was planned through the
aminoisoquinolinequinone monomers 5, 6, and 7 resulting from the reaction between the quinones
1/2 and symmetrical diamines 3/4. The synthetic approach to heterodimer 10 was firstly examined
from isoquinolinequinone 1, naphthoquinone 8, and diamine 3. The required monomer precursor
5 was synthesized in 74% yield, according to our previously reported procedure [54], by reaction
of the quinone 1 with diamine 3 in a 1:2 mole ratio, catalytic amounts of CeCl3·7H2O in ethanol at
room temperature [29]. Further reaction assays of 5 with naphthoquinone 9 in a 1:2 ratio under the
above-mentioned conditions, performed at room temperature and, in refluxing ethanol, produced
heterodimer 10 albeit in low yields (22% and 28%, respectively). The heterodimer 10 was isolated as
a purple solid, m.p. 186 ◦C (d). The IR spectrum reveals the presence of N–H and C=O bands at
v/cm−1: 3337, 1720, 1666, and 1673, respectively. The 1H-NMR spectrum shows the signals of two
vinylic protons at δ 7.54 and 7.67 ppm and the amino proton signals at δ 7.54 and 7.67 ppm. In the
aromatic proton region, the proton signals of the naphthoquinone fragment, at δ: 7.67, 7.76 and 8.11,
were observed and those of the protons of the phenyl groups of the linker that appeared as a multiplet
at δ 7.21 ppm. The methylene protons of the spacer are observed at 4.00 ppm. The 13C-NMR spectrum
displays signals of three carbonyl groups at δ: 181.5, 181.1, 180.4, and the mass spectrum shows the
molecular ion [M+] peak at m/z 598.1971.

Interestingly, when a water suspension containing compounds 5 and 9 (1:2 mole ratio) and
CeCl3·7H2O were ultrasound-irradiated [56] for 6 h, heterodimer 10 was generated and isolated in 88%
yield (Scheme 2). Based on this excellent outcome, we decided to extend this green procedure to the
synthesis of monomers 5–7 and heterodimers 11 and 12. The reactions that were conducted under
irradiation period of 1.5–7 h, produced the respective monomers 5–7 in excellent yields (94–98%),
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and compounds 11 and 12 in moderate yield (48% and 50%) (Scheme 2). The lower yields formation of
heterodimers 11 and 12 compared to that of dimer 10 could be attributed to steric hindrance interactions
involved in the addition of the nitrogen nucleophiles 11 and 12 across the disubstituted electrophilic
quinone double bond of 9.
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Scheme 2. Preparation of hetero- and homodimers from quinones 1, 2, 8, 9 and diamines 3 and 4.

The one-pot access to homodimers 13–15 from their respective isoquinolinquinones 1 and 2 and
their symmetrical diamines 3 and 4 were also carried out under ultrasound irradiation, catalyzed with
CeCl3·7H2O in water. Under these conditions, the respective homodimers 13–15 were isolated in good
yields (65–75%) (Scheme 2).

The structures of the new compounds 6, 7, 10–12, 14, and 15 were established by infrared
spectroscopy (IR), 1H- and 13C-nuclear magnetic resonance (NMR), bidimensional nuclear magnetic
resonance (2D-NMR), and high-resolution mass spectroscopy (HRMS).

2.2. Electrochemistry

The monomers 5–7 and dimers 10–12, 14, and 15 were evaluated for their half-wave potentials
(EI1/2 and EII1/2 ). For all the compounds, the first faradaic process (EI1/2 ) presents a reversible behavior,
and the second process is quasi-reversible. In Table 1, the electrochemical parameters determined in
this study are summarized. The net charge consumption was used to calculate the number of electrons
for each compound. In the monomers (5–7), the values of charge are close to 10 mC, which indicate a
one-electron transfer during the faradaic process. However, for the heterodimers and homodimers it is
close to 20 mC under the studied conditions, which implies 2-electrons. These transferred electron
values were corroborated by the following equation:

∣∣∣Epc − (Epc/2)
∣∣∣ = 90.6

n for an ideal reversible peak
(EI1/2 ), where EPc is the cathodic peak potential and Epc/2 is potential at half-width of the cathodic peak
for all the studied molecules [57–59].

The first potential for compounds 5–7 (via one-electron), and, for dimers 10, 11, 12, 14–15
(vía two-electrons) produce the corresponding semiquinone radical anion(s) [6,13,14]. The first and
second reduction potential of monomer 5 correspond to the monoelectronic transfer processes: EI:
Q + e− = semiquinone radical anion (Q•−) and EII: Q•− + e− = quinone dianion (Q2−) [60,61]. It is
important to note that in the case of dimers 10, 11, 12, 14, and 15, a broad faradaic process associated to
the overlap between EI1/2 and EII1/2 is detected due to the conjugate nature of the benzene ring groups
together with the fast-kinetic reaction of the carbonyl groups [62,63].

Figure 3 shows the voltammograms for monomer 5–7 and homo- and heterodimer 10–12, 14–15
(Supplementary Figures S1–S8, Cyclic voltammetry and square wave voltammetry (SWV)).
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Figure 3. Cyclic voltammetry 100 mV s−1 of (a) monomers 5, 6, 7; (b) heterodimers 10–12; (c) homodimers
14, 15; with a concentration of 0.1 M of the molecules studied in 0.1 M tetrabutylammonium perchlorate
(TBAP) in acetonitrile and saturated N2 atmosphere.

The electrochemical parameters presented in Table 1 indicate that monomers 5–7 exhibited a relative
closeness in the values of the potential EI1/2 and EII1/2 and widening of the faradic signal associated
with both processes. These facts could be attributed to the electronic nature of the substituents of the
compounds [46]. In the case of heterodimers 10 and its chlorine analog 11, the shift to more positive
values of EI1/2 and EII1/2 of the later with respect to 10 could be attributed to the electron-withdrawing
effect of the chlorine atom. Similarly, the shift to more positive values of EI1/2 of monomer 6 compared
to 7, and homodimer 14 compared to 15 could be explained by the stronger electron-withdrawing
ability of the methoxycarbonyl group in 14 than the acetyl group in 15. These results agree with
precedents on the influence of electron-withdrawing substituents in aminoquinones groups, on their
oxidant properties [64–67].

The data analysis led us also to found differences between the potential EI1/2 and EII1/2 of dimers
and monomers containing the 4,4′-diaminodiphenylalkane fragment in terms of the nature of the
alkane spacers. The comparison of the monomers 5 and 6, which differ in the chain length of the alkane
spacers, shows that the formal potentials of the ethylene-containing monomer 6 appeared at more
positive values than its methylene-containing analog 5. Additional examples are required to establish
the influence of the chain length on the potential EI1/2 and EII1/2 .
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Table 1. Electrochemical parameters of compounds 5–7, 10–12, and 14–15.

Compound N◦ Structure −EI1/2 (mV) a
−EII1/2 (mV) a n b

5
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3. Materials and Methods

3.1. General

All solvents, reagents, and precursors such as quinones 8 and 9 were purchased from different
companies such as Aldrich (St. Louis, MO, USA) and Merck (Darmstadt, Germany) and were
used as supplied. Melting points were determined on a Stuart Scientific SMP3 (Bibby Sterilin Ltd.,
Staffordshire, UK) apparatus and are uncorrected. The IR spectra were recorded on an FT IR Bruker
spectrophotometer; (model Vector 22 Bruker, Rheinstetten, Germany), using KBr disks, and the
wave numbers are given in cm−1. 1H- and 13C-NMR spectra were recorded on a Bruker Avance-400
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instrument (Bruker, Ettlingen, Germany) in CDCl3 at 400 and 100 MHz, respectively. Chemical shifts
are expressed in ppm downfield relative to tetramethylsilane and the coupling constants (J) are
reported in hertz. Data for 1H-NMR spectra are reported as follows: s = singlet, br s = broad singlet,
d = doublet, m = multiplet, and the coupling constants (J) in Hz. Bidimensional NMR techniques
were used for signal assignments. HRMS-ESI were carried out on a Thermo Scientific Exactive Plus
Orbitrap spectrometer (Thermo Fisher, Bremen, Germany) with a constant nebulizer temperature of
250 ◦C. The experiments were performed in positive ion mode, with a scan range of m/z 100–300.
All fragment ions were assigned by accurate mass measurements at high resolution (resolving power:
140,000 FWHM). The samples were infused directly into the electrospray ionization source (ESI) using
a syringe pump at flow rates of 5 µL min−1. Silica gel Merck 60 (70–230 mesh, from Merck, Darmstadt,
Germany) was used for preparative column chromatography and TLC aluminum foil 60F254 for
analytical thin-layer chromatography (TLC). Isoquinolinequinones 1–2 were prepared by previously
reported procedures [40].

The ultrasound-promoted reactions were carried out in standard oven-dried glassware in a
Branson sonicator cup horn working at 19.7–20.0 kHz (75 W).

3.2. Chemistry

3.2.1. Preparation of Monoamination Compounds 5–7. General Procedure

Suspensions of quinones 1–2 (1 mmol) and corresponding diamine (2 equiv), CeCl3·7H2O
(5 mmol %), and water (20 mL) were left with ultrasonic irradiation after completion of the reaction as
indicated by TLC. The reaction mixture was partitioned between chloroform and water, the organic
extract was washed with water (2 × 15 mL), dried over Na2SO4, and evaporated under reduced
pressure. The residue was column chromatographed over silica gel (95:5 CH2Cl2/EtOAc) to yield the
corresponding pure monoamination compounds 5–7.

3.2.2. Preparation of Heterodimers 10–12. General Procedure

Suspensions of compounds 5–7 (2 mmol), naphthoquinone 8/9 (1 mmol), CeCl3·7H2O (5 mmol %),
and water (20 mL) were left with stirring under ultrasonic irradiation after completion of the reaction
as indicated by TLC. The reaction mixture was partitioned between chloroform and water, the organic
extract was washed with water (2 × 15 mL), dried over Na2SO4, and evaporated under reduced
pressure. The residue was column chromatographed over silica gel (95:5 CH2Cl2/EtOAc) to yield the
corresponding pure heterodimers 10–12.

3.2.3. Preparation of Homodimers 13–15. General Procedure

Suspensions of quinones 1/2 (4 mmol) and corresponding diamine 3/4 (1 equiv), CeCl3·7H2O
(5 mmol %), and water (20 mL) were left with stirring under ultrasonic irradiation after completion
of the reaction. The reaction mixture was partitioned between chloroform and water, the organic
extract was washed with water (2 × 15 mL), dried over Na2SO4, and evaporated under reduced
pressure. The residue was column chromatographed over silica gel (95:5 CH2Cl2/EtOAc) to yield the
corresponding pure homodimers 13–15.

Methyl-7-(4-(4-aminobenzyl)phenyl)amino)-1,3-dimethyl-5,8-dioxo-5,8-dihydroisoquinoline-4-carboxylate (5).
m.p. 149–150 ◦C; IR (KBr) v/cm−1: 3423 (N-H), 3305, and 3251 (NH2), 1734 (C=O ester), 1668 (C=O
quinone). 1H-NMR (400 MHz, CDCl3) δ 2.61 (s, 3H, 3-Me), 2.99 (s, 3H, 1-Me), 3.60 (s, 2H, NH2),
3.88 (s, 2H, CH2), 4.00 (s, 3H, CO2Me), 6.30 (s, 1H, 6-H), 6,62 (dd, J = 8.3 Hz, 12.8 Hz, 2H), 6.96
(t, J = 6.8 Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.68 (s, 1H, N-H). 13C-NMR (100 MHz,
CDCl3) δ 182.1, 181.7, 169.6, 161.6, 161.3, 146.0, 145.1, 142.7, 140.8, 138.3, 130.9, 130.5, 125.5, 123.4,
120.3, 115.8, 115.7, 102.5, 53.4, 40.9, 26.5, 23.3. HRMS [M + H]+: calculated for C26H23N3O4: 442.1762;
found: 442.1761.
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Methyl 7-(4-(4-aminophenethyl)phenylamino)-1,3-dimethyl-5,8-dioxo-5,8-dihydroisoquinoline-4 carboxylate
(6). m.p. 212–213 ◦C; IR (KBr) v/cm−1: 3465 (NH), 3368, and 3312 (NH2) 1723 (C=O ester), 1665 (C=O
quinone). 1H-NMR (400 MHz, CDCl3) δ 2.64 (s, 3H, 3-Me), 2.87 (m, 4H, CH2CH2), 3.01 (s, 3H, 1-Me),
3.67 (s, 2H, NH2), 4.03 (s, 3H, CO2Me), 6.32 (s, 1H, 6-H), 6.64 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 8.3 Hz,
2H), 7.18 (dd, J = 23.1, 8.4 Hz, 4H), 7.28 (s, 1H, NH). 13C-NMR (100 MHz, CDCl3) δ 181.7, 181.4, 169.2,
161.2, 161.0, 145.6, 144.4, 140.5, 137.8, 134.5, 131.3, 129.9, 129.3, 125.1, 122.9, 119.9, 115.3, 102.1, 53.0, 37.7,
36.9, 26.1, 22.9. HRMS [M + H]+: calculated for C27H25N3O4: 456.19181; found: 456.1913.

4-acetyl-7-(4-(4-aminophenethyl)phenylamino)-1,3-dimethylisoquinoline-5,8-dione (7). m.p. 224–225 ◦C; IR
(KBr) v/cm−1: 3339 (NH), 3224, and 3183 (NH2), 1671 (C=O acetyl) and 1612 (C=O quinone), 1H-NMR
(400 MHz, CDCl3) δ 2.53 (s, 3H, COMe), 2.56 (s, 3H, 3-Me), 2.85 (m, 4H, CH2CH2), 2.98 (s, 3H, 1-Me),
3.60 (s, 2H, NH2), 6.28 (s, 1H, 6-H), 6.62 (d, J = 8.3 Hz, 2H), 6.93 (d, J = 8.2 Hz, 2H), 7.16 (dd, J = 23.8,
8.4 Hz, 4H), 7.72 (s, 1H, NH). 13C-NMR (100 MHz, CDCl3) δ 22.9, 25.9, 31.1, 36.9, 37.7, 101.7, 115.3,
120.0, 123.0, 129.3, 129.9, 131.2, 133.5, 134.4, 137.9, 140.6, 144.5, 145.9, 159.8, 160.4, 181.7, 182.3, 203.8.
HRMS [M + H]+: calcd for C27H25N3O3: 440.19689; found:440.1966.

Methyl 7-(4-(4-(1,4-dioxo-1,4-dihydronaphthalene-2-ylamino)benzyl)phenylamino)-1,3-dimethyl-5,8-dioxo-5,8-
dihydroisoquinoline-4-carboxylate (10). m.p. 186 ◦C; IR (KBr) v/cm−1: 3337 (NH), 1720 (C=O ester), 1673
and 1666 (C=O quinone). 1H-NMR (400 MHz, CDCl3) δ 2.61 (s, 3H, 3-Me), 2.99 (s, 3H, 1-Me), 4.00
(s, 5H, CO2Me, CH2), 6.32 (s, 1H, CH), 6.38 (s, 1H, CH), 7.21 (m, 8H, arom), 7.54 (s, 1H, NH), 7.67 (m, 3H,
NH, CH), 7.76 (t, J = 8.3 Hz, 1H, CH), 8.11 (t, J = 6.7 Hz, 1H, CH). 13C-NMR (100 MHz, CDCl3) δ 181.5,
181.1, 180.4, 177.0, 173.2, 169.3, 161.7, 162.1, 144.8, 141.3, 139.2, 138.8, 137.1, 135.5, 134.8, 133.3, 132.9,
131.3, 130.7, 130.4, 129.0, 127.7, 127.0, 124.1, 123.4, 102.5, 67.5, 53.3, 39.1, 32.7, 22.1. HRMS [M + H]+:
calculated for C36H27N3O6: 598.19729; found: 598.1971.

Methyl 7-(4-(4-(3-chloro-1,4-dioxo-1,4-dihydronaphthalene-2-ylamino)benzyl)phenylamino)-1,3-dimethyl-5,8-
dioxo-5,8-dihydroisoquinoline-4-carboxylate (11). m.p. 268–270 ◦C; IR (KBr) v/cm−1: 3323 (NH), 1719
(C=O ester), 1681 and 1678(C=O quinone), 721 (C-Cl). 1H-NMR (400 MHz, CDCl3) δ 2.61 (s, 3H, 3-Me),
2.99 (s, 3H, 1-Me), 4.00 (s, 3H, CO2Me), 4.01 (m, 2H, CH2), 6.32 (s, 1H, 6-H), 7.03 (d, J = 8.3 Hz, 2H),
7.17 (m, 4H, arom), 7.24 (m, 2H, arom), 7.69 (m, 3H, NH, CH), 7.76 (m, 1H, CH), 8.12 (d, J = 7.5 Hz, 1H,
CH), 8.19 (d, J = 7.6 Hz, 1H, CH). 13C-NMR (100 MHz, CDCl3) δ 181.8, 181.5, 180.7, 177.6, 173.7, 169.3,
161.4, 161.1, 145.7, 141.7, 139.3, 138.2, 137.9, 135.9, 135.2, 133.1, 132.8, 131.0, 130.4, 130.0, 129.0, 127.3,
127.2, 124.7, 123.3, 102.4, 66.9, 53.2, 38.9, 32.1, 22,8. HRMS [M + H]+: calculated for C36H26ClN3O6:
632.15831; found:632.1582.

Methyl 7-(4-(4-(3-chloro-1,4-dioxo-1,4-dihydronaphthalen-2-ylamino)phenethyl)phenylamino)-1,3-dimethyl-5,8-
dioxo-5,8-dihydroisoquinoline-4-carboxylate (12). m.p. 263–265 ◦C; IR (KBr) v/cm−1: 3307 (NH), 1722
(C=O ester), 1679, and 1675 (C=O quinone), 720 (C-Cl). 1H-NMR (400 MHz, CDCl3) δ 2.61 (s, 3H,
3-Me), 2.95 (s, 4H, CH2CH2), 2.99 (s, 3H, 1-Me), 4.00 (s, 3H, CO2Me), 6.29 (s, 1H, 6-H), 7.05 (dd, J = 41.2,
8 Hz, 4H, arom), 7.16 (q, J = 8.5 Hz, 4H, arom), 7.69 (m, 3H, CH, NH), 7.76 (t, J = 7.5 Hz, 1H, CH), 8.11
(d, J = 7.6 Hz, 1H, CH), 8.19 (d, J = 7.6 Hz, 1H, CH). 13C-NMR (100 MHz, CDCl3) δ 181.6, 181.4, 180.6,
177.5, 169.2, 161.2, 160.9, 145.6, 141.2, 139.7, 138.9, 137.8, 135.5, 135.0, 134.8, 132.9, 132.7, 129.9, 129.8,
128.5, 127.1, 126.9, 125.1, 124.5, 123.0, 119.9, 117.2, 114.4, 102.2, 23.0, 26.1, 29.7, 37.2. HRMS [M + H]+:
calculated for C37H28ClN3O6: 646.17396; found: 646.1796.

Dimethyl-7,7′-(4,4′-methylenebis(4,1-phenylene)bis(azanediyl)bis(1,3-dimethyl-5,8-dioxo-5,8- dihydroisoquinoline-
4-carboxylate) (13). m.p. 199–200 ◦C; IR (KBr): ν/cm−1: 3446 (NH), 1736 (C=O ester), 1652 and 1647
(C=O quinone). 1H-NMR (CDCl3) δ 2.64 (s, 6H, 3-Me), 3.02 (s, 6H, 1-Me), 4.03 (s, 8H, CH2 and CO2Me),
6.34 (s, 1H, 6-H), 7.26 (m, 8H, arom.), 7.73 (s, 2H, NH). 13C-NMR (100 MHz, CDCl3) δ 181.6, 181.4,
169.1, 161.3, 160.9, 145.5, 138.8, 137.8, 135.2, 130.2, 125.1, 123.2, 119.9, 102.3, 53.0, 40.8, 26.1, 22.93. HRMS
[M + H]+: calculated for C39H32N4O8: 685.2293; found: 685.2208.

Dimethyl7,7′-(4,4′-(ethane-1,2-diyl)bis(4,1-phenylene))bis(azanediyl)bis(1,3-dimethyl-5,8-dioxo-5,8-dihydroisoquinoline
-4-carboxilate) (14). m.p. 290–293 ◦C; IR (KBr) v/cm−1: 3315 (NH), 1730 (C=O ester), 1650 and 1649 (C=O



Molecules 2019, 24, 4378 9 of 13

quinone). 1H-NMR (400 MHz, CDCl3) δ 2.53 (s, 6H, 3-Me), 2.56 (s, 6H, 1-Me), 2.96 (s, 4H, CH2CH2),
2,99 (s, 6H, CO2Me), 6.28 (s, 2H, 6-H), 7.18 (q, J = 8.5 Hz, 8H, arom), 7.73 (s, 2H, NH). 13C-NMR
(100 MHz, CDCl3) δ 203.8, 182.7, 182.1, 160.8, 160.2, 146.4, 140.0, 138.2, 135.3, 133.9, 130.3, 123.6, 120.4,
102.3, 37.4, 31.3, 26.2, 23.2. HRMS [M + H]+: calculated for C40H34N4O8: 699.24496; found: 699.2449.

7,7′-(4,4′-(ethane-1,2-diyl)bis(4,1-phenylene))bis(azanediyl)bis(4-acetyl-1,3-dimethylisoquinoline-5,8-dione)
(15). m.p. 245–246 ◦C; IR (KBr) v/cm−1 3163 (NH), 1693 (C=O acetyl). 1H-NMR (400 MHz, CDCl3) δ
2.52 (s, 6H, COMe), 2.56 (s, 6H, 3-Me), 2.96 (s, 4H, CH2CH2), 2.99 (s, 6H, 1-Me), 6.27 (s, 2H, 6-H), 7.18
(q, J = 8.6 Hz, 8H, arom), 7.74 (s, 2H, NH). 13C-NMR (100 MHz, CDCl3) δ 203.8, 182.3, 181.6, 160.5,
159.8, 145.9, 139.6, 137.8, 134.6, 133.3, 130.0, 123.2, 101.8, 60.4, 37.1, 31.1, 26.0, 23.0. HRMS [M + H]+:
calculated for C40H34N4O6: 667.25513; found: 667.2570.

3.3. Electrochemical Measurement

The electrochemical measurements were performed in an electrochemical three electrodes cell.
Calomel saturated electrode (SCEsat.) and platinum wire were used as a reference (implementing a
Luggin capillary system) and as a counter electrode, respectively. Glassy carbon electrode was used as
a working electrode (area: 0.196 cm2, Pine Instrument). The measurements were performed using
a bipotentiostat (CH Instrument, CH1720E) in acetonitrile containing 0.1 M tetrabutylammonium
perchlorate (TBAP) at room temperature. Before the measurements, the solution was deoxygenated
using N2 as purging gas for 15 min.

The half-wave potential (E1/2) of the quinone compounds were characterized by cyclic voltammetry
in a potential range from −1.9 or −1.5 to 0.5 V at a scan rate of 0.1 V s−1. The E1/2 was calculated
as the average between the anodic and cathodic peak ((Epa+Epc)/2) [59]. In addition, square wave
voltammetry (SWV) was carried out (from −1.5 to −0.5 V vs SCE) to corroborate the half-wave potential,
using acetonitrile containing 0.1 M tetrabutylammonium perchlorate (TBAP) at room temperature and
purging with N2 gas for 15 min (Supplementary Figures S1–S8, Cyclic voltammetry and square wave
voltammetry (SWV)).

The number of electrons transferred in the faradaic process (Epa or Epc) was determined by
coulometric measurements. The tests were performed at a fixed potential 0.1 V higher than the highest
anodic peak determined by cyclic voltammetry for two hours. The number of electrons was calculated
considering the total charge (Qnet) and using the Faraday equation that relates the charge to each mole
of quinone studied. (Qnet = nFz,) [59] where, n = number of moles of the compound, F = Faraday
constant (96.487 C mol−1) and z = number of transferred electrons [59]. The concentration of the
compounds was 1 × 10−5 M in a total volume of 10 mL.

4. Conclusions

In conclusion, we have synthesized a series of novel heterodimers containing the cytotoxic
7-phenylaminoisoquinolinequinone and 2-phenylaminonaphthoquinone pharmacophores connected
through methylene and ethylene spacers. The access to the target heterodimers and their corresponding
monomers was performed both through oxidative amination reactions assisted by ultrasound and
CeCl3·7H2O catalysis “in water”. This eco-friendly procedure was successfully extended to the one-pot
synthesis of homodimers derived of the 7-phenylaminoisoquinolinequinone pharmacophore. For the
mono and dimeric compounds, it was determined that the corresponding first potentials (EI1/2 ) are
reversible while the second potentials (EII1/2 ) are quasi reversible (∆EII1/2 ). Furthermore, it was also
established that during the oxidation process associated with the potential EI1/2 , the net charge
consumption for the monomers is close to 10 mC, while for the heterodimers and homodimers is
nearly 20 mC. These facts indicate that in the case of homo- and heterodimers two semiquinone anion
radical species are simultaneously generated in the same molecule at similar formal EI1/2 potentials
(via two-electron).
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Abbreviations

DDM 4:4′-Diaminodiphenylmethane
IR Infrared
2D-NMR Bidimensional Nuclear Magnetic Resonance
HRMS High Resolution Mass Spectroscopy
SCE Calomel Saturated Electrode
TBAP Tetrabutylammonium perchlorate
MIC Minimal Inhibitory Concentration
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