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Abstract
Segmentation is the partitioning of the body axis into a series of repeating units
or segments. This widespread body plan is found in annelids, arthropods, and
chordates, showing it to be a successful developmental strategy for growing
and generating diverse morphology and anatomy. Segmentation has been
extensively studied over the years. Forty years ago, Cooke and Zeeman
published the Clock and Wavefront model, creating a theoretical framework of
how developing cells could acquire and keep temporal and spatial information
in order to generate a segmented pattern. Twenty years later, in 1997,
Palmeirim and co-workers found the first clock gene whose oscillatory
expression pattern fitted within Cooke and Zeeman’s model. Currently, in 2017,
new experimental techniques, such as new   experimental models,ex vivo
real-time imaging of gene expression, live single cell tracking, and simplified
transgenics approaches, are revealing some of the fine details of the molecular
processes underlying the inner workings of the segmentation mechanisms,
bringing new insights into this fundamental process. Here we review and
discuss new emerging views that further our understanding of the vertebrate
segmentation clock, with a particular emphasis on recent publications that
challenge and/or complement the currently accepted Clock and Wavefront
model.
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Introduction
Development is the process by which multicellular organisms start 
out as just one cell, multiply into millions of others that biochemi-
cally communicate with each other, rearrange their positioning, and 
even die in a programmed way. Embryo segmentation represents 
a particularly interesting phase of development, where a collec-
tion of physical, chemical, and biochemical events are successfully 
orchestrated in space and time in order to develop a fully grown 
organism.

Segmentation is the partitioning of the body axis into a series of 
repeating units or segments. In vertebrates, this process occurs in 
the embryo by subdivision of the presomitic mesoderm (PSM) into 
metameric structures termed somites, although other segmented 
systems exist in vertebrates (for an excellent review on this sub-
ject, see Graham et al.1). Segments in vertebrate embryos were first 
documented by the Italian biologist Marcello Malpighi in the 17th 
century2, but, according to Verbout3, it was not until the work of 
Francis Balfour in the late 19th century that the term “somite” (mes-
oblastic somites in the original writing) was first used to describe 
them4. Somites form sequentially from rostral to caudal along the 
anterior-posterior (A-P) axis of the embryo, budding off in bilat-
eral pairs from the unsegmented paraxial mesoderm on either side 
of the neural tube. These simple structures contain the precursor 
cells of the axial skeleton, musculature, connective tissue, blood 
vessel endothelium, and dermis of the vertebrate trunk, as well as 
muscles of the limbs5. Each segment will give rise to a somite-base 
unit, each connected to the brain via individual nerve structures, 
allowing an organized projection of the A-P adult body in the brain, 
which is crucial for an optimized central/peripheral communication 
in the organism.

In this article, we review some of the recent progress made on the 
study of segmentation. We start by providing an overview of the 
evolution of segmentation in the animal kingdom, briefly discuss-
ing the current hypotheses for its origin. Then we discuss the mech-
anism of segmentation. We briefly introduce the 40-year-old model 
of somitogenesis—the Clock and Wavefront model—and discuss 
how recent studies have been reshaping its original formulation. 
We finish by providing a list of open questions. The brief nature 
of this review precludes it from being comprehensive, since not all 
important developments could be discussed in such a short format. 
Accordingly, we sincerely apologize to all authors whose relevant 
work is not cited for space considerations.

Origin and evolution of segmentation
Overt body segmentation is considered a main evolutionary innova-
tion occurring in three major animal phyla—annelids, arthropods, 
and chordates (reviewed in 6). By the end of the 19th century, these 
classical segmentation processes were viewed as homologous6. 
However, this assumption has been challenged by two subsequent 
scientific findings. Firstly, the advent of phylogenetic analysis 
showed that these clades are evolutionarily more distant to each 
other than to other unsegmented taxa7,8. Secondly, the majority of 
segmented animals present a sequential mode of segmentation, 
where oscillations combined with embryo growth yield a rostral to 
caudal sequence of segments. Please note, however, that arthropods 

present alternative modes of segmentation, which are discussed 
elsewhere9–11.

These observations raise (at least) two intriguing questions: did  
the segmented body plan evolve once or multiple times, and 
how (and why) did the simultaneous segmentation evolve? Two  
alternative hypotheses have been postulated to address these  
questions (for reviews, see 6,12–14): (i) either sequential  
segmentation is an ancestral characteristic present in the last 
common ancestor of bilaterian animals, which remained  
conserved in the three segmented taxa and lost in all others15,16 
(with the corollary that the simultaneous segmentation is derived 
from the sequential one) or (ii) segmentation arose separately 
in each of the three lineages and is therefore an example of  
convergent evolution. Different lines of evidence claim to  
corroborate each of these possibilities. For instance, some argue 
that the similar molecular pathways found in sequential segmenta-
tion of arthropods is indicative of homology17; others suggest that 
these similarities may just be a consequence of the pleiotropy of 
signaling pathways such as Delta-Notch and thus misleading in this 
debate. Another interesting hypothesis is the possibility that these 
molecular similarities have been co-opted from a mechanism of 
posterior growth present in the common ancestor between the two 

Figure 1. Chick embryo showing the segmented pattern 
along the anterior-posterior (A-P) axis. Embryo stage HH17, 
corresponding to 30 pairs of somites (age 52–64 hours). Dorsal 
view, stained with DAPI (cyan). Arrows indicate individual somites in 
different maturation stages.
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groups18,19. This issue is very much still an open question. Accord-
ingly, more than just asking how the different mechanisms of seg-
mentation are related, one could ask: what are the main principles 
underlying them, what developmental and evolutionary changes 
lead to them, or even if there are other possible mechanisms we 
have not considered yet20. These questions can be addressed by both 
broadening the diversity of organisms used to study segmentation21  
and exploring the potential of using computational evolution and 
synthetic biology22,23,24 to generate and test hypotheses (for an  
excellent example of a comprehensive theoretical study on the  
evolution of segmentation, see 16).

The mechanism of segmentation
The Clock and Wavefront model
In 1976, a theoretical model was proposed by Cooke and  
Zeeman to explain the dynamics of somitogenesis—the Clock  
and Wavefront model25. This model proposes that cells of the  
PSM present an internal molecular oscillator—the clock—which  
is paired with a wavefront of cell differentiation progressing cau-
dally as the embryo body axis elongates. This first conceptual  
model provided a possible explanation for how the temporal  
dynamics of a clock could be translated into a spatial pattern of 
somites.

The molecular segmentation clock
Twenty years later, Palmeirim et al.26 showed that c-hairy1, an 
avian homologue of the Drosophila hairy gene, was expressed 
dynamically in the PSM in a tissue-autonomous manner. Pulses of  
c-hairy1 occur in individual PSM cells, with a 90-minute period. 
The fact that the individual PSM cells along the A-P axis are in  
different phases of the gene expression cycle (reviewed in 27)  
creates a kinematic wave (a wave in which transport is absent or 
negligible) of gene expression that sweeps rostrally, arresting in the 
anterior PSM, correlating in time and space with somite boundary 

formation26. These results provided the first evidence supporting  
the long-held clock and wavefront hypothesis25.

Nowadays, the clock is regarded as a genetic network composed  
of cell-autonomous and cell-to-cell signaling components,  
spanning multiple cells. Most genes involved are from the Notch, 
Fgf, and Wnt signaling pathways28,29 yet vary amongst model  
species such as chick, zebrafish, and mouse30.

Time to space translation
The segmentation clock oscillates in time with a sinusoidal  
curve, whose phase is locally synchronized between neighboring 
cells. According to the Cooke and Zeeman25 model, as the wave-
front passes down the PSM, it interacts with the clock, causing  
cells within the same period of oscillation to differentiate and 
become part of the same segment. This interaction is proposed to 
activate a developmental program that yields the formation of an 
epithelial somite in the anterior PSM.

This theoretical framework has provided an explanation for  
how the embryo could translate the information encoded in the 
temporal periodicity of oscillations of individual cells onto a  
spatially periodic pattern of segmentation from head to tail along 
the PSM. This model presents two important predictions: (i) each 
segment length (S) is determined by the period of the clock (T) and 
the velocity of the wavefront’s progress across the PSM (v), i.e.  
S = v T, and (ii) the total number of segments in the embryo (n) is  
set by the total duration of the segmentation process (d) and the  
period of the clock (T), i.e. n = d/T31. This model places the period 
of the clock in a central role for determining the length and overall  
anatomy of the embryo25,27,32. To form the correct number of  
somites, regardless of the differences in embryo size, both the 
period of the clock and the speed of the wavefront must be  
regulated in proportion to the overall length of the PSM25.

Figure 2. Time to space translation. Kinematic waves of gene expression sweep the A-P axis, arresting anteriorly, followed by somite 
formation.
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Currently, new models contemplate the fact that the kinematic wave 
of clock expression narrows as it sweeps from the posterior to the 
anterior PSM, gradually slowing the clock anteriorly, with peaks of 
clock expression separated by one segment length in the anterior 
PSM27,33–36.

Alternative models for segmentation
Three relevant alternative mechanisms to transform oscillations 
into spatial stripes have been proposed: 

(i) A Turing-Hopf mechanism has been shown by Hans Meinhardt 
to produce striped patterns from oscillations, provided that a gradi-
ent generates the first two stripes37.

(ii) Similarly, Murray and co-workers demonstrated that an oscil-
lator phase-gradient can also transform the oscillations into spatial 
patterns38. This proposal gained more strength from a recent study 
suggesting that such a phase-gradient mechanism, rather than a 
wavefront, may be involved in freezing oscillations in vertebrate 
segmentation39 (vide infra).

(iii) More recently, Cotterell et al.40 proposed the Progressive  
Oscillatory Reaction Diffusion (PORD) model. This elegant  
mathematical model is also a Turing mechanism, yet it  
overcomes the shortcomings of Meinhardt’s model37; namely, 
the PORD model is able to describe the scaling of the somites 
with body size, and it can generate cell-autonomous oscilla-
tions without diffusion. Additionally, the PORD model displays 
enough flexibility to switch between simultaneous and sequential  
segmentation41–43, contrary to Murray’s coupled oscillators 
model38.

Most notably, in all of these models, the wavefront is an emergent 
property of the time-space transformation rather than a causal 
agent16,40. Further experimental research is required to help define 
the models that provide the most insight into the segmentation 
mechanism.

Recent experimental insights into vertebrate 
segmentation
Segment scaling
Lauschke and colleagues proposed in 2013 a segment scaling  
mechanism based on a Phase-Gradient encoding, i.e. the gradual 
shift in the oscillation phase of PSM cells encodes information for 
the spatial patterning of the PSM tissue39. Contrary to long-range 
molecular gradients (such as the wavefront proposed by Cooke and 
Zeeman), a phase-gradient describes the distribution of a dynamic 
cellular state. This provides a possible explanation for how the 
embryo maintains stable segment proportions despite overall 
changes in size, e.g. due to normal embryo growth or as observed 
when, after experimental reduction of embryo size, the total  
number of segments remains unaltered and the segments become 
proportionally smaller44,45.

Using their newly developed ex vivo experimental setting com-
posed by a quasi-monolayer of mouse primary PSM cells (mPSM)  
combined with real-time gene expression imaging, the authors 
observed that (i) the period of oscillation in the central mPSM 

remains constant regardless of PSM length, (ii) the velocities of 
kinematic waves change linearly with overall mPSM length (larger 
samples display proportionally faster kinematic waves, indicating 
that oscillatory activity adapts to match the spatial context in which 
it occurs), and (iii) the phase-gradient slope is predictive of segment 
size.

Overall, this study suggests that segment size definition could 
be encoded at the level of phase differences between PSM cells,  
without the requirement for a molecular gradient, also known as a 
wavefront.

Period of segmentation
In 2014, Soroldoni and co-workers set out to study the period of 
segmentation. Using real-time measurements of genetic oscillations 
in zebrafish embryos, they showed that the time scale of genetic 
oscillations is not sufficient to explain the period of segmentation 
as the segmentation clock postulates46. Instead, the rate of tissue 
shortening provides the second time scale necessary to determine 
the period of segmentation through what they termed a “Doppler 
effect” modulated by a gradual change in the oscillation profile 
across the tissue.

Briefly, they found that (i) both anterior and posterior PSM oscil-
late, albeit with different amplitudes, (ii) oscillations in the pos-
terior PSM are slower than in the anterior PSM (i.e. there is not 
a single well-defined period for the segmentation clock), (iii) the 
period of anterior PSM oscillations matches the period of segmen-
tation, and (iv) there is a substantial shortening of the PSM over 
time, leading to a relative motion of the anterior end of the PSM 
toward the posterior end (where the waves arrest), hence creating a 
“Doppler effect” due to the shortening of the time interval between 
wave onset and arrest46.

Overall, the authors conclude that the rhythm of sequential  
segmentation is an emergent property controlled by three vari-
ables: the period of the individual genetic oscillators, the change 
of the kinematic wavelength (i.e. oscillation profile), and the short-
ening of the PSM length. Notably, the authors remark that such 
a “Doppler effect” is incompatible with the previously proposed  
Phase-Gradient scaling mechanism, since the latter requires that the 
number of waves along the PSM remains constant, whereas this 
study shows that, at least in zebrafish, the number of waves changes 
between anterior and posterior PSM.

Segmentation clock dynamics
In 2015, Shih et al.36 studied, in vivo, the dynamics of the clock 
slowing down relative to somite boundary formation as it 
moves anteriorly through the PSM36. For this, they followed the  
PSM segmentation clock oscillations in real-time, with single-cell 
resolution, in zebrafish embryos.

By focusing on cells that eventually form each somite bound-
ary, they showed that (i) in vivo, the clock gradually slows down 
in the more anterior PSM cells, creating a distribution of oscilla-
tion phases—a spatial and temporal phase-gradient—where cells 
at one-somite distance are in opposite phases of clock expression,  
(ii) the clock wave increases in amplitude for the final two  
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oscillations, and (iii) PSM cells oscillate until they incorporate into 
somites.

Most importantly, the authors discuss the lack of experimental 
evidence for the theoretical “arrest-front” causing oscillations to 
smoothly stop in the anterior PSM by the posteriorly progressing 
wavefront postulated by the Clock and Wavefront model25. Instead, 
they propose the Clock Wave Stopping model. This proposal  
postulates that the segmentation clock itself may play a role in 
determining the wavefront by creating a signal directly encoded 
by the phase-gradient, with a two-somite periodicity36. This is in  
line with the suggestion from Lauschke et al.39.

This model is based on one important observation: within a given 
forming somite, individual cells stop oscillating in discrete groups 
in a posterior to anterior direction (P-A), i.e. in the same direction 
as the waves of clock expression and not in the opposite direc-
tion, as would be expected from an A-P wavefront stopping signal.  
In this Clock Wave Stopping model, cells in the anterior PSM  
continue to oscillate with their neighbors, regardless of future 
somite position, consistent with the observations that synchrony is 
regulated by Delta-Notch interactions47,48.

Autonomous segmentation clock
In early 2016, Webb et al.31 addressed the longstanding question of 
whether individual PSM cells are able to sustain autonomous oscil-
lations without the external input from neighboring cells.

To this end, the authors recorded the expression of Her1 in single 
cells from a transgenic reporter cell line obtained from the tailbud 
of zebrafish, showing that the individual cells are capable of auton-
omous genetic oscillations in vitro, in the absence of intercellular 
communication, albeit with substantial variability (noise)31. When 
comparing these autonomous oscillator data with the oscillations  
at the tissue level in intact zebrafish embryos (from Soroldoni  
et al.46), the authors concluded that individual cells have a  
longer period (ca. twofold slower) and are less precise than the 
population at the tissue level. This shows the importance of  
synchronization and coupling for the proper working of the  
segmentation clock.

Self-organized spatiotemporal waves
Also in 2016, Tsiairis and Aulehla49 presented compelling evidence 
that PSM cells can self-organize from disordered initial conditions. 
For this study, the authors dissociated the PSM from several mouse 
embryos into single cells and used the randomized cell suspen-
sion to generate dense cell re-aggregates. These were then cultured 
and subjected to real-time imaging and quantification of signaling 
activity using the dynamic Notch signaling reporter LuVeLu (Venus 
fluorescence driven from the lunatic fringe promoter)49.

They reported several relevant findings, from which we highlight 
the following: (i) after 5–6 hours of culture, cells synchronize and 
exhibit in-phase oscillations in multiple foci that formed within 
each re-aggregate, (ii) self-organized foci recapitulate spatio-
temporal organization of in vivo PSM, indicating that each focus 
represents miniature PSM (emerging PSM) that forms spontane-
ously upon randomization and re-aggregation, (iii) the collective 
synchronization of the cells corresponds to the arithmetic average 
of the input oscillator frequencies (i.e. it depends on frequencies 

of the input cell population), as predicted in models for coupled 
phase oscillators50, rather than matching the highest frequency of  
potential pacemaker cells, and (iv) upon DAPT treatment  
(a chemical inhibitor of Notch signaling), randomized PSM cells 
fail to synchronize, in agreement with previous in vivo findings51; 
however, the individual cells maintained oscillatory activities with 
amplitudes similar to the untreated ones.

Overall, this report indicates that, after randomization, individual  
mouse PSM cells self-organize into ordered macroscopic  
miniature PSM structures that are capable of tuning oscillation 
dynamics in response to surrounding cells, leading to collective  
synchronization with an average frequency, re-establishing wave-  
like patterns of gene activity.

Control of the segmentation clock period
Later in the same year, Liao et al.52 asked whether an increase in 
Delta-Notch signaling causes a change in the segmentation period. 
To answer this, they generated transgenic zebrafish lines with a 
range of extra copies of a transgene containing the deltaD locus 
(together with its full genomic regulatory region) and measured the 
segmentation period by multiple embryo time-lapse microscopy52.

They found that only the highest level of DeltaD expression (in the 
Damascus zebrafish line containing ca. 100 copies of deltaD-venus 
transgene) produces altered oscillating gene expression wave pat-
terns and shorter segmentation periods (6.5% faster), generating 
embryos with more, and shorter, body segments. Moreover, the 
effect on period was lost by incubating Damascus embryos with 
DAPT (Notch intracellular domain blocker), showing that the 
observed phenotype is indeed modulated by the overexpression of 
Delta-Notch molecular players. 

The contribution of the proposed “Doppler effect”46 on the  
observed change in segmentation period was also evaluated, 
showing that the alteration of the wave pattern, and not changes  
in the rate of tissue shortening, is responsible for the majority  
of the observed period difference. 

Finally, the authors put forward a simplified model of coupled  
oscillators with time delay to explain the shorter segmentation 
period. Briefly, the coupling strength (i.e. the number of activated 
ligand–receptor pairs over time) is expected to increase as a con-
sequence of the over-expression of DeltaD, and the time delay in 
the coupling is not negligible (i.e., it is significant the time taken 
to transfer the signal from one cell to another owing to the time 
required to synthesize and traffic Delta proteins). The numeri-
cal simulation of such parameter changes leads to a stable time-
periodic wave pattern with an increased number of waves and a 
shortened anterior wavelength, as experimentally observed in the 
Damascus line.

Thus, this study hints that the Delta-Notch signaling, besides syn-
chronizing oscillators, seems to alter the segmentation period by 
affecting the wavelength of the tissue’s spatial pattern. However, 
this issue is not easy to address, since several alternative outcomes 
arise from changing the Delta-Notch signaling. For instance, 
a lengthening of the period due to a reduction in Delta-Notch  
signaling is observed in zebrafish. However, mouse segmentation 
is faster with the blockade of Notch, an outcome predicted only if 
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the length of the time delay in the coupling was shorter than half 
the period34,53.

Open questions
Segmentation has been extensively studied over the years. How-
ever, some fundamental questions remain unanswered, while new 
ones are being asked, most of them fueled by newly developed  
experimental techniques such as high-resolution live imag-
ing, single cell tracking systems, and customized ex vivo cell 
culture assays. Here we compile some of the open questions 
regarding the inner workings of the vertebrate segmentation 
clock. The questions are grouped according to Oates’ Three 
Tier model, which organizes the components of the segmenta-
tion clock into three different scales: single cell oscillators, local  
synchronization, and global control of timing and pattern27.

Cellular oscillator
Q1 | Recently, it has been shown in zebrafish that single cells  
carrying a her1-yfp transgene can oscillate autonomously31.  
However, it remains unknown if this is a particular feature of this 
organism, or if it is an intrinsic characteristic of the segmenta-
tion clock cells and hence observed in other species (this has been 
attempted in chick54 and mouse55 but without definite conclusions 
owing to the technological limitations at the time).

Local synchrony
Q2 | Wave patterns arising from individual oscillators require the 
establishment of a spatial profile in their phases. How are these 
wave patterns regulated?

Q3 | The Delta-Notch intercellular signaling pathway is associated 
with multiple processes, namely lateral inhibition, border forma-
tion, and local synchronization. How is the Delta-Notch signaling 
accomplishing these multiple outcomes?

Global control
Q4 | In vertebrates, the wavefront has been shown to be influenced 
by gradients of Wnt and Fgf signaling coming from the caudal end 
and a counter-gradient of retinoic acid (RA) from the somites. How 
do oscillating cells use and interpret these signaling gradients as 
stop signals to arrest the oscillation?

Q5 | In vertebrates, embryo segmentation occurs simultaneously 
with body elongation. Is it possible to disentangle these two proc-
esses in order to study them separately?

Q6 | The first five somites are not sequentially formed like the ones 
from the trunk43. Instead, they form almost simultaneously and 
without cyclical expression of “clock genes”56. Is there an alterna-
tive mechanism responsible for occipital somite formation?

Q7 | Recently, relevant challenges have been made to the clock 
and wavefront model. Particularly important is the fact that, in 
order to fully grasp the global mechanism underlying segmenta-
tion, it is necessary not only to study gene expression dynamics 
but also to integrate cellular processes like division, movement, and  
differentiation57. Such a comprehensive theoretical framework 
would generate an invaluable tool to create new hypotheses and test 
old ones.
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