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Abstract

Adverse drug effects (ADEs) are one of the leading causes of death in developed countries

and are the main reason for drug recalls from the market, whereas the ADEs that are associ-

ated with action on the cardiovascular system are the most dangerous and widespread. The

treatment of human diseases often requires the intake of several drugs, which can lead to

undesirable drug-drug interactions (DDIs), thus causing an increase in the frequency and

severity of ADEs. An evaluation of DDI-induced ADEs is a nontrivial task and requires

numerous experimental and clinical studies. Therefore, we developed a computational

approach to assess the cardiovascular ADEs of DDIs. This approach is based on the com-

bined analysis of spontaneous reports (SRs) and predicted drug-target interactions to esti-

mate the five cardiovascular ADEs that are induced by DDIs, namely, myocardial infarction,

ischemic stroke, ventricular tachycardia, cardiac failure, and arterial hypertension. We

applied a method based on least absolute shrinkage and selection operator (LASSO) logis-

tic regression to SRs for the identification of interacting pairs of drugs causing corresponding

ADEs, as well as noninteracting pairs of drugs. As a result, five datasets containing, on aver-

age, 3100 potentially ADE-causing and non-ADE-causing drug pairs were created. The

obtained data, along with information on the interaction of drugs with 1553 human targets

predicted by PASS Targets software, were used to create five classification models using

the Random Forest method. The average area under the ROC curve of the obtained mod-

els, sensitivity, specificity and balanced accuracy were 0.837, 0.764, 0.754 and 0.759,

respectively. The predicted drug targets were also used to hypothesize the potential mecha-

nisms of DDI-induced ventricular tachycardia for the top-scoring drug pairs. The created five

classification models can be used for the identification of drug combinations that are poten-

tially the most or least dangerous for the cardiovascular system.
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Author summary

Assessment of adverse drug effects as well as the influence of drug-drug interactions on

their manifestation is a nontrivial task that requires numerous experimental and clinical

studies. We developed a computational approach for the prediction of adverse effects that

are induced by drug-drug interactions, which are based on a combined analysis of sponta-

neous reports and predicted drug-target interactions. Importantly, the approach requires

only structural formulas to predict adverse effects, and, therefore, may be applied for new,

insufficiently studied drugs. We applied the approach to predict five of the most impor-

tant cardiovascular adverse effects, because they are the most dangerous and widespread.

These effects are myocardial infarction, ischemic stroke, ventricular tachycardia, arterial

hypertension and cardiac failure. The accuracies of predictive models were relatively high,

in the range of 73–81%; therefore, as example, we performed a prediction of the five car-

diovascular adverse effects for the large number of drug pairs and revealed the combina-

tions that may potentially cause ventricular tachycardia along with potential molecular

mechanisms. We consider that the developed approach can be used for the identification

of pairwise drug combinations that are potentially the most or least dangerous for the car-

diovascular system.

Introduction

Adverse drug effects (ADEs) are one of the top 10 causes of death in developed countries, are

one of the main reasons for stopping the development of new drug-candidates and are the

main reason for drug recalls from the market [1, 2]. Cardiovascular effects are some of the

most serious ADEs that may lead to hospitalization or death, and, at the same time, are wide-

spread [1]. The ADE profile of a particular drug-candidate is usually investigated during stan-

dard preclinical animal tests and clinical trials according to the GLP and GCP requirements.

However, many rare, but serious, ADEs cannot be revealed by these studies, because of inter-

species differences, the limited number of patients or animals and the duration of studies;

thus, additional in vitro and in silico methods for the detection of serious ADEs are currently

being developed [3–8]. These methods are based on the determination of the relationships

between several chemical and biological features of drugs and their ADEs. Among these fea-

tures are molecular descriptors, known and predicted drug targets, gene expression changes

induced by drugs, phenotypic features such as perturbed pathways, or known ADEs. The rela-

tionships between these features and ADEs are usually established using various machine

learning methods and network-based approaches. It is accepted that the interaction with

human proteins is the most common cause of ADEs; therefore, known and predicted human

targets are the most common type of drug features that are used in corresponding studies.

Many of the developed methods require knowledge of only the structural formula of a drug-

candidate to predict its potential ADEs; therefore, they can be used at the earliest stages of

drug development, which may sufficiently increase their effectiveness [3, 4, 8].

In real clinical practice, the treatment of human diseases often requires the administration

of several drugs, which can lead to drug-drug interactions (DDIs), thus causing an increase in

the frequency and severity of ADEs [9]. An evaluation of the effect of DDIs on the manifesta-

tion of ADEs is a nontrivial task and requires numerous preclinical and clinical studies. To

solve this problem various computational approaches for the prediction of DDIs were devel-

oped [10–22]. Most of these approaches are based on the calculation of similarities between

the profiles of various chemical and biological features of two drugs. These similarities can be
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calculated based on molecular fingerprints, drug targets, their amino acid sequences, pathways

and Gene Ontology (http://www.geneontology.org/) annotations, the Anatomical Therapeutic

Chemical (ATC) Classification terms (https://www.whocc.no/atc_ddd_index/), as well as

known ADEs of individual drugs [10, 12, 13, 15–17, 18, 20, 22]. The Tanimoto coefficient is

the most common similarity that is measure in these studies; however, more complicated mea-

sures can be used, e.g., several approaches were developed to calculate the proximity of the

protein targets of two drugs in a protein-protein interaction network [12, 17]. Similarity mea-

sures based on the profiles of different features can be integrated into single interaction scores

that allow drug pairs to be ranked according to their potential ability to interact with each

other. To estimate the parameters of such integration and validation of obtained results, infor-

mation about known DDIs was used. Such data can be obtained from various public databases,

including DrugBank (https://www.drugbank.ca/). For example, Cheng F. with colleagues [13]

used several machine learning methods with drug phenotypic, therapeutic, chemical and geno-

mic similarities used as features to predict DDIs. The classifiers were trained on the set of

known DDIs from the DrugBank database and the same number of randomly chosen drug

pairs as the negative examples. The best result with the area under the ROC-curve (AUC) 0.67

was achieved using a support vector machine with a Gaussian radial basis function kernel. In

addition to approaches that are based on similarities, some other methods were developed [14,

19]. Zakharov A.V. with colleagues [19] used separate training sets of pairwise drug combina-

tions for each of four isoforms of cytochromes P450, which are examples of known DDIs. The

corresponding information was obtained from the literature. Drug pairs were represented as

mixtures of compounds in ratio 1:1, and several types of molecular descriptors were generated

for them. The prediction models were generated by using the radial basis function self-consis-

tent regression and a Random Forest. The balanced accuracies that were obtained from the

cross-validation procedure varied from 0.72 to 0.79, depending on the dataset [19]. Luo H.,

with colleagues, used the sums and differences of the docking scores for 611 human proteins

to describe 6328 drug pairs, which represented known DDIs from the DrugBank database, and

the same number of drug pairs was randomly chosen as a negative example. A predictive

model was created based on l2-regularized logistic regressions to obtain their values. The

obtained accuracy, sensitivity and specificity that were calculated based on the 10-fold cross-

validation procedure were 0.804, 0.847 and 0.772, respectively [14].

Despite the significant progress in predicting DDIs, all of these methods allow for estimat-

ing only the fact of interaction, but not the resulting ADEs, whereas such information is

important to assess the clinical significance of DDIs. The main problem is the absence of

known data for most of the DDI-induced ADEs. The major source of data on ADEs of individ-

ual drugs is drug labels [23]; however, they usually contain very few data on ADEs that are

induced by DDIs. Nevertheless, the corresponding information can be obtained through the

analysis of spontaneous reports (SRs) which are received by regulatory agencies from health-

care professionals and patients. Each SR contains information about all drugs that are pre-

scribed to a patient, as well as information about developed ADEs. An analysis of large sets of

SRs allows for relationships between certain ADEs and individual drugs [24–29], or drug com-

binations [30–35], to be revealed. The datasets of individual drugs with information about

ADEs obtained by an analysis of SRs were earlier successfully used for the creation of predic-

tive models that are based on structure-activity relationships [27, 29]. The corresponding

information on ADEs that is induced by pairwise drug combinations may also potentially be

used for this purpose.

We developed a computational approach for the assessment of cardiovascular ADEs of

DDIs. The approach is based on a combined analysis of SRs and predicted drug-target interac-

tions (DTIs) and allows for the prediction of five cardiovascular ADEs of DDIs: myocardial
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infarction, ischemic stroke, ventricular tachycardia, arterial hypertension and cardiac failure,

with balanced accuracies from 0.73 to 0.81. Unlike most of the other methods, our approach

requires only structural formulas to predict cardiovascular adverse effects for any pair of

drugs, and, therefore, may be applied for new, drug-like compounds that have not yet been

studied. The developed approach can be used for the identification of pairwise drug combina-

tions that are potentially the most or least dangerous for the cardiovascular system.

Results and discussion

General description of the approach

We developed a new computational approach for the assessment of cardiovascular ADEs of

DDIs through a combined analysis of SRs and predicted DTIs (Fig 1).

Fig 1. The scheme of a developed computational approach for the assessment of cardiovascular ADEs of DDIs.

ISs–inference scores from Comparative Toxicogenomics Database, LASSO LR–least absolute shrinkage and selection

operator (LASSO) logistic regression, PS–propensity scores (see Material and Methods).

https://doi.org/10.1371/journal.pcbi.1006851.g001
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The approach is based on two main steps: creation of datasets on cardiovascular DDI-

induced ADEs containing drug pairs that potentially cause or do not cause ADEs, and the cre-

ation of classification models for each dataset based on predicted drug targets as descriptors.

The creation of datasets is based on the analysis of SRs from the standardized version of pub-

licly available parts of the FDA database [36]. The analysis was performed using least absolute

shrinkage and selection operator (LASSO) logistic regression with the addition of propensity

scores as independent variables [35] (see Materials and Methods for details), which allows for

the identification of drug pairs that potentially cause or do not cause cardiovascular ADEs–

positive and negative examples. Each “positive” drug pair represents a potential synergistic or

additive effect of DDI on the development of ADEs. This method takes into account the con-

founding effects of other drugs and risk factors on the manifestation of ADEs and, thus, allows

for datasets with lower numbers of false positives to be obtained. To further improve the qual-

ity of datasets, information about the ADEs of individual drugs [37] was used to filter out

potentially false positive and false negative examples (see Materials and Methods). Since the

created datasets may still contain non-causal drug pair-ADE associations, we used an approach

based on inference scores (ISs) [38] derived from Comparative Toxicogenomics Database

(http://ctdbase.org/) to validate them and estimate their quality (see Materials and Methods).

At the second step of the approach, a PASS Targets software [39] was used to predict inter-

actions of individual drugs that were from obtained datasets with 1553 human protein targets.

The sums and absolute values of the differences in the probability estimates of interaction with

targets were used as descriptors for drug pairs. The classification models were built using Ran-

dom Forest along with a method that allows for the applicability domain to be determined.

The accuracy of prediction is estimated using a 5-fold cross-validation procedure (see Materi-

als and Methods). To demonstrate the practical benefit of the obtained models, predictions of

ADEs for a large amount of drug pairs were performed. The analysis of the biological role of

predicted protein targets for the top predicted drug pairs that potentially cause ADEs allows

for proposing the potential mechanisms of corresponding DDIs.

Creation of datasets and their validation

At the first step of the proposed approach, we created five datasets of drug pairs that potentially

cause and do not cause five cardiovascular ADEs through the analysis of SRs (see Materials

and Methods), namely, ventricular tachycardia, myocardial infarction, ischemic stroke, arterial

hypertension and cardiac failure (see S1 Table). Each positive drug pair represents an example

of a potential synergistic or additive DDI that causes a corresponding ADE. The datasets con-

tain, on average, more than 3100 drug pairs belonging to 335 individual drugs and 166 ATC

terms (https://www.whocc.no/atc_ddd_index/) of the fourth level (Table 1), reflecting the

chemical/therapeutic/pharmacological subgroup of drugs, which indicates that the created

datasets are representative.

Since the datasets were created by analysis of SRs and were not confirmed experimentally,

they may still contain non-causal associations between drug pairs and ADEs. To validate

Table 1. Characteristics of created datasets on potential DDI-induced ADEs.

Positive pairs Negative pairs Number of drugs Number of ATC classes

Ventricular tachycardia 933 2912 376 181

Myocardial infarction 2479 1279 352 168

Ischemic stroke 838 2101 331 169

Arterial hypertension 549 1029 273 146

Cardiac failure 1350 2108 343 166

https://doi.org/10.1371/journal.pcbi.1006851.t001
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them, we used a method based on inference scores (ISs) [38] from Comparative Toxicoge-

nomics Database (http://ctdbase.org/). ISs are calculated from known drug-gene-disease rela-

tionships and reflect the influence of drugs on disease manifestation (therapeutic or adverse

effect) (see Materials and Methods). We compared ISs for corresponding diseases between

drug pairs from created datasets, which potentially cause and do not cause cardiovascular

ADEs. We calculated AUC values for each dataset and p-values based on the Wilcoxon test to

estimate their statistical significance (Table 2).

The corresponding values range from 0.901 to 0.615 and reflect the quality of the datasets.

According to AUC values, the dataset for arterial hypertension has the best quality, whereas

the dataset for ischemic stroke has the worst quality. It is important to note that AUC values

reflect both errors in datasets, caused by disadvantages of the analysis of SRs, and errors of

approach, which was used for the calculation of corresponding ISs. Thus, the AUC values

reflecting the quality of datasets must really be higher.

According to the obtained results, we can conclude that the created datasets have from

good to moderate quality and can be used for further analysis.

Prediction of DDI-induced cardiovascular ADEs based on drug-target

interactions

We used Random Forest to create classification models based on five datasets and the local

(Tree) approach to determine their applicability domain [40]. The models were created based

on sums and absolute values of differences of probability estimates of interaction with 1553

human protein targets that had been calculated for individual drugs by PASS Targets software

[39]. The accuracy estimates were obtained by a 5-fold cross-validation procedure with use of

the “compound out” approach [41] (see Materials and Methods for details). The obtained aver-

age values of AUC, sensitivity, specificity and balanced accuracy were 0.837, 0.764, 0.754 and

0.759, respectively, whereas 95.7% of the drug pairs were in the applicability domain of the

models (Table 3). The accuracy values generally correlate with the AUC values obtained using

ISs (Table 2).

Table 2. The area under the ROC curve values and their statistical significance calculated for the created datasets

based on inference scores.

AUC p-value

Arterial hypertension 0.901 2.20E-16

Ventricular tachycardia 0.760 2.20E-16

Cardiac failure 0.758 2.20E-16

Myocardial infarction 0.715 2.20E-16

Ischemic stroke 0.615 2.20E-16

https://doi.org/10.1371/journal.pcbi.1006851.t002

Table 3. Prediction accuracy for five cardiovascular DDI-induced ADEs based on 5-fold cross-validation procedure.

AUC Sensitivity Specificity Balanced accuracy In applicability domain

Ventricular tachycardia 0.807 0.743 0.718 0.731 96.1%

Myocardial infarction 0.856 0.794 0.763 0.778 95.3%

Ischemic stroke 0.808 0.734 0.724 0.729 95.6%

Arterial hypertension 0.892 0.789 0.832 0.810 95.5%

Cardiac failure 0.824 0.761 0.734 0.747 96.1%

Average 0.837 0.764 0.754 0.759 95.7%

https://doi.org/10.1371/journal.pcbi.1006851.t003
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We also estimated the prediction accuracy of ventricular tachycardia and arterial hyperten-

sion on two external test sets, which are based on the data from the DrugBank database (see

Materials and Methods) (Table 4).

The obtained relatively high accuracies (Tables 3 and 4) allow for the application of the cre-

ated models to solve practical tasks, e.g., to perform a search of new pairwise combinations of

drugs that potentially interact and cause cardiovascular ADEs.

Prediction of DDI-induced ADEs for the new drug pairs

The created datasets contain from hundreds to thousands of drug pairs that potentially cause

cardiovascular ADEs depending on the effect; however, the number of possible pairwise drug

combinations is much higher. To investigate the practical benefit of the created classification

models, we performed a prediction of the DDIs-induced ADEs for all of the possible drug

pairs that were generated from individual drugs with known data on five cardiovascular ADEs

(see Materials and Methods) [37]. Five large datasets were generated with more than 230000

drug pairs on average, and 190000 pairs (84%) of them were in the applicability domain of the

models (see Table 5).

Surprisingly, nearly half of the drug pairs in the datasets were predicted to cause corre-

sponding DDI-induced ADEs. A large number of predicted drug pairs can be explained by a

prediction probability distribution (Fig 2). Most of the predicted drug pairs have probability

estimates are near the threshold P > 0.5, and they are unlikely to cause ADEs, whereas there

are near 2.6% of drug pairs potentially cause ADEs at probability threshold P> 0.8 (Table 5).

To roughly estimate the accuracy of predictions for large datasets, we calculated AUC val-

ues based on ISs from Comparative Toxicogenomics Database at different thresholds of proba-

bilities (Fig 3).

Fig 3 demonstrates that the AUC values for most of ADEs increase with increasing the

probability threshold. The obtained AUC values at high probability thresholds are near the

corresponding values obtained on training sets (see Table 2). Thus, high probability thresholds

should be chosen for the selection of drug pairs potentially causing ADEs.

The results of these analyses and the results of 5-fold cross-validation (the average area

under the ROC curve, sensitivity, specificity and balanced accuracy were 0.837, 0.764, 0.754

and 0.759, respectively; see Table 3) indicate that the accuracy of the prediction of the most of

DDI-induced cardiovascular ADEs is relatively high and that the created models can be

applied in the search for new pairwise combinations of drugs that are the most or the least

Table 4. Prediction accuracy for ventricular tachycardia and arterial hypertension on external test sets.

AUC Sensitivity Specificity Balanced accuracy In applicability domain

Ventricular tachycardia 0.779 0.865 0.519 0.692 80.3%

Arterial hypertension 0.779 0.741 0.748 0.744 73.8%

https://doi.org/10.1371/journal.pcbi.1006851.t004

Table 5. Numbers of drug pairs with predicted ADEs.

Number of pairs Number of pairs in AD Pairs with ADE (P > 0.5) Pairs with ADE (P > 0.8)

Ventricular tachycardia 279283 231438 (82.9%) 121486 (52.5%) 2885 (1.2%)

Myocardial infarction 235328 195688 (83.2%) 115399 (58.9%) 12397 (6.3%)

Ischemic stroke 223862 189334 (84.6%) 79031 (41.7%) 2176 (1.1%)

Arterial hypertension 187842 162784 (86.7%) 54744 (33.6%) 2994 (1.8%)

Cardiac failure 232183 193083 (83.1%) 94075 (48.7%) 4707 (2.4%)

Average 231700 194465 (83.9%) 92947 (47.8%) 5032 (2.6%)

https://doi.org/10.1371/journal.pcbi.1006851.t005
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dangerous for the cardiovascular system. Because DTIs are needed for the creation of models

that were predicted by PASS Targets software based on structures of drugs, the developed

models can be used for any drug-like compounds, including those for which only structural

formulas are known. For example, they can be used to predict DDI-induced ADEs for drug

candidates on the stage of clinical trials.

Assessment of the potential mechanisms of DDI-induced ADEs

Since DDI-induced ADEs are effectively estimated by using data on predicted DTIs, the corre-

sponding information on drug targets may also be used to reveal the potential mechanisms of

cardiovascular ADEs and influence of DDIs on their manifestation.

We performed a corresponding analysis for the top 10 drug pairs from the large dataset

with the highest probability scores for ventricular tachycardia (Table 6). We selected only

those pairs where corresponding drugs do not cause ventricular tachycardia when adminis-

trated separately. According to prediction results, the drugs possibly cause ventricular tachy-

cardia when they are administered together.

We found that the DDIs for these drug pairs may occur at both levels of pharmacokinetics

and pharmacodynamics. First, the drugs from five of ten pairs are metabolized by the same

cytochromes P450. Second, corresponding drugs potentially interact with protein targets to

influence the action potential of cardiac cells. These targets, either known or predicted, are

shown in Table 6.

It is important that only chlorphenamine and alfentanil were predicted to interact with the

HERG (KCNH2) potassium channel, which is a well-known protein that is associated with

Fig 2. Distribution of predicted probabilities for five cardiovascular ADEs on large datasets of drug pairs.

https://doi.org/10.1371/journal.pcbi.1006851.g002
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ventricular tachycardia [5]. However, this and other drugs from selected pairs that are known

to or are predicted to interact with human proteins form compact fragments of the regulatory

network (Fig 4) and indirectly change the action potential. Such changes may form a basis for

the induction of ventricular tachycardia in predisposed patients.

Fig 3. The area under the ROC curve values calculated based on inference scores at different thresholds of

probabilities for large datasets.

https://doi.org/10.1371/journal.pcbi.1006851.g003

Table 6. Potential mechanisms of DDI-induced ventricular tachycardia for the top 10 scored drug pairs. The bold and underlined gene names mean known, experi-

mentally confirmed drug targets from DrugBank and DrugCentral (http://drugcentral.org/) databases. Symbols " and #mean up- and down-regulation of the protein

function by the drug.

Drug pairs Common cytochromes

P450

Known and predicted drug targets associated with ventricular tachycardia

Eszopiclone-

Chlorphenamine

CYP3A4 Eszopiclone: TSPO", CAMKK1, ULK1. Chlorphenamine: HRH1#, SLC6A2#, HTR2B, HRH2, KCNH2,

CALM

Oxytetracycline-

Temazepam

- Temazepam: CAMKK1, CAMKK2, CAMK2A, TSPO

Nisoldipine-

Chlorphenamine

CYP3A4, CYP3A5,

CYP3A7

Nisoldipine: CACNA1C#, NR4A1. Chlorphenamine: HRH1#, SLC6A2#, HTR2B, HRH2, KCNH2, CALM

Tobramycin-Temazepam - Temazepam: CAMKK1, CAMKK2, CAMK2A, TSPO

Amikacin-Temazepam - Temazepam: CAMKK1, CAMKK2, CAMK2A, TSPO

Tetracycline-Temazepam CYP3A4 Temazepam: CAMKK1, CAMKK2, CAMK2A, TSPO

Reboxetine-

Chlorphenamine

CYP2D6, CYP3A4 Reboxetine: SLC6A2#. Chlorphenamine: HRH1#, SLC6A2#, HTR2B, HRH2, KCNH2, CALM

Alfentanil-Temazepam CYP3A4 Alfentanil: KCNH2. Temazepam: CAMKK1, CAMKK2, CAMK2A, TSPO

Lovastatin-Guaifenesin - Lovastatin: SLC6A2. Guaifenesin: CALM, CAMKK2, SGK3

Celiprolol-

Chlorphenamine

- Celiprolol: ADRA2A#, ADRA2B#, ADRA2C#, ADRB2", ULK1. Chlorphenamine: HRH1#, SLC6A2#,

HTR2B, HRH2, KCNH2, CALM

https://doi.org/10.1371/journal.pcbi.1006851.t006
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Materials and methods

Data on cardiovascular ADEs of individual drugs

The data on cardiovascular ADEs of individual drugs were obtained from our previous study

[37]. Briefly, we created five datasets of individual drugs which cause and do not cause the fol-

lowing cardiovascular ADEs: ventricular tachycardia, myocardial infarction, ischemic stroke,

arterial hypertension, and cardiac failure. The primary source of information for the creation

of datasets was SIDER 4.1 (http://sideeffects.embl.de/), which contains data on ADEs of drugs

obtained from drug labels [23]. For each drug-ADE pair, we manually checked the section of

the drug label where the ADE was described. If it was described in “Boxed Warning” or

“Warnings and Precautions” sections, we considered that drug causes ADE. If ADE was

described in section “Adverse reactions,” which may contain effects unrelated to drug intake,

it had to be verified. To do this, additional information on ADEs was obtained using the fol-

lowing sources and approaches:

Fig 4. Influence of known and predicted protein targets of the top 10 scored drug pairs on the action potential in the heart. VT—ventricular tachycardia. Cyan

nodes represent known and predicted protein targets of drugs from selected pairs, and white nodes represent intermediate proteins in the regulatory network. Solid

edges represent direct interactions, and dashed edges represent indirect interactions. The figure was created based on data from KEGG pathways (https://www.

genome.jp/kegg/pathway.html) and from corresponding information in the literature.

https://doi.org/10.1371/journal.pcbi.1006851.g004
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• spontaneous reports (SRs) and electronic medical records. To identify potential relationships

between drugs and ADEs, disproportionality analysis was performed (see the publication

[37] for details);

• Comparative Toxicogenomics Database (http://ctdbase.org/) which contains information

about ADEs obtained from the literature.

We considered drug-ADE association from “Adverse reactions” section to be verified if it

was confirmed from at least one additional source. If ADE was not indicated in the drug labels

and publications although the compound had been used clinically for> 5 years and had> 50

SRs about other effects, then it was considered not to cause the corresponding effect. We pro-

posed that integration of information from various sources allow filtering out most of false

positive and false negative drug-ADE associations from created datasets.

Assessment of DDI-induced ADEs through the analysis of SRs

In our current study, we used the AEOLUS database [36] as a source of SRs. AEOLUS is a

curated version of publicly available parts of the FDA database of SRs (https://www.fda.gov/

Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.

htm), where the names of ADEs, drugs and indications are standardized. We selected only

those SRs that contain description of drugs, ADEs and drug indications, because all of these

types of data are required for further analysis. A total of 4028051 SRs were selected. The ADEs

and indications in the database were described by the preferred terms (PTs) of the MedDRA

dictionary (https://www.meddra.org/). Since some PTs may describe pathologies that are

related to the same or similar ADEs, we selected the main PTs, which exactly match the inves-

tigated ADEs and supporting PTs, which are conditions that are similar to or are indirectly

related to ADEs. The main and supporting PTs for five investigated cardiovascular ADEs are

presented in Table 7.

At the next step, we selected those drugs in the AEOLUS database that have annotations on

five investigated cardiovascular ADEs: ventricular tachycardia, myocardial infarction, ische-

mic stroke, arterial hypertension and cardiac failure. The data on drugs that caused and did

not cause five ADEs was obtained from our previous study [37] (see above). The following

numbers of drugs were selected: 496 drugs for ventricular tachycardia, 460 drugs for myocar-

dial infarction, 447 drugs for ischemic stroke, 398 drugs for arterial hypertension, and 467

drugs for cardiac failure. The data on the five ADEs of these individual drugs are represented

in S2 Table.

We selected drug pairs that were formed by these drugs with at least 100 SRs wherein both

drugs are mentioned. For each pair of drugs and each PT from Table 7, we performed an anal-

ysis which is based on three steps. At the first step, we found which of the drug pairs are associ-

ated with selected PTs. At the second step we used LASSO logistical regression [35] to estimate

the potential synergistic and additive DDIs that are associated with the drug pairs that were

selected in step 1. At this step, noninteracting drug pairs were also determined. At the third

step, we integrated the obtained data on different PTs into single ADEs to create datasets with

positive and negative examples of DDI-induced ADEs (see Table 1).

Step 1. Identification of the association between drug pairs and PTs. A proportional

reporting ratio (PRR) was used to determine the drug pairs that are associated with each PT.

PRR is calculated as follows:

PRR ¼
AðBþ DÞ
BðAþ CÞ

ð1Þ
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The value A is a number of the SRs where both the drug pair and PT are mentioned; B is a

number of SRs where PT is mentioned, but the drug pair is not mentioned; C is a number of

SRs where the drug pair and other PTs are mentioned; and D is a number of SRs where the PT

and drug pair are not mentioned.

According to previously published criteria [26, 28], we considered a relationship between

the drug pair and PT if PRR� 2, A� 3 and chi-square� 4. The selected associations were

used at the next step of analysis.

Step 2. Identification of synergistic and additive DDIs. We identified synergistic and

additive pairwise DDIs that are associated with each PT by using LASSO logistic regression

with propensity scores (PSs). The method is described in detail in the original publication [35].

Briefly, PS is a conditional probability of being exposed to a drug that is calculated for each

SR. This probability depends on the patient’s diseases and, indirectly, on co-administered

drugs. The PS indirectly reflects the influence of human diseases and co-administered drugs

on the development of ADE, and, thus, allows for the filtering of many false positive drug-

ADE associations. We calculated the PSs for each drug-SR pair based on the top 100 co-admin-

istered drugs and the top 100 most relevant drug indications. The relevance of co-administered

drugs and indications of a drug were measured by a phi correlation coefficient, which is a

square root of ratio of the corresponding chi-squared statistic to the total number of SRs [42].

The final values of the PSs were calculated by using the following logistic regression:

PS ¼ logitðPðdrug ¼ 1ÞÞ ¼ aþ
X100

i¼1

biIni þ
X100

j¼1

gjDrj ð2Þ

In formula (2), the values Ini and Drj are the indication and co-administered drug with rele-

vance ranks i and j.

Table 7. Main and supporting PTs for five investigated cardiovascular ADEs.

Main PTs Supporting PTs

Torsade de Pointes

Ventricular Tachycardia

Electrocardiogram QT Prolonged

Electrocardiogram QT Corrected Interval Prolonged

Ventricular Arrhythmia

Acute Myocardial Infarction

Acute Coronary Syndrome

Myocardial Infarction

Angina Pectoris

Angina Unstable

Arteriosclerosis Coronary Artery

Arteriospasm Coronary

Coronary Artery Disease

Coronary Artery Occlusion

Coronary Artery Stenosis

Coronary Artery Thrombosis

Myocardial Ischemia

Hypertension

Hypertensive Crisis

Blood Pressure Increased

Blood Pressure Systolic Increased

Blood Pressure Diastolic Increased

Cerebrovascular Accident

Cerebral Infarction

Ischemic Stroke

Cerebral Ischemia

Transient Ischemic Attack

Cardiac Failure Acute

Cardiac Failure Congestive

Cardiac Failure

Cardiogenic Shock

Cardiopulmonary Failure

Left Ventricular Failure

Right Ventricular Failure

–

https://doi.org/10.1371/journal.pcbi.1006851.t007
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Next, we used LASSO logistic regression to estimate the probability of PT for each SR that

depends on the presence of two drugs in SR, their possible interaction, and the corresponding

PSs as follows:

logitðPðPT ¼ 1ÞÞ ¼ b0 þ b1PS1 þ b2PS2 þ b3Drug1 þ b4Drug2 þ b5Drug1 � Drug2 þ ljbj1 ð3Þ

In formula (3), PS1 and PS2 are PSs for drug1 and drug2, |β|1 is l1 norm of coefficients, and λ is

a tuning parameter of regularization. Parameter λ was determined through a 3-fold cross-vali-

dation procedure using all SRs. The potential synergistic and additive DDIs that are associated

with PTs were determined based on β3, β4 and β5 coefficients:

• synergistic DDI for drug pair-PT association was considered if β5 was more than 0;

• additive DDI for drug pair-PT association was considered if β5 equals 0, β3 and β4 were more

than 0, and drug1, drug2 have known links to the corresponding ADE in datasets from our

previous study [37].

• absence of DDI for the drug pair-PT association was considered if either β3 or β4 were less or

equal to 0, and β5 was less or equal to 0. Additionally, we considered the absence of DDIs if

the corresponding drug pair-PT association was not determined at step 1 (the condition

PRR� 2, A� 3 and chi-square� 4 was not true), but the drug pair itself was mentioned in

at least 500 SRs with other PTs. This threshold was chosen because it allows achieving the

highest accuracy of classification using predicted drug-target interactions as descriptors and

Random Forest.

Step 3. Integration of data on different PTs. To create final datasets with the informa-

tion on DDI-induced ADEs, we integrated data on the PTs as follows:

• The drug pair was considered to be potentially “positive” according to the corresponding

ADE if it was linked to at least two main PTs, or at least to one main and one supporting PT

at step 2 of the analysis.

• The drug pair was considered to be potentially “negative” according to the corresponding

ADE if it was linked to neither of the PTs that are associated with this ADE. Additionally, we

removed from this category those drug pairs in which both drugs are ADE-causing, accord-

ing to data from our previous study [37], as potentially false negatives.

As a result, datasets for the five cardiovascular ADEs were created (see Results and Discus-

sion, Table 1).

Validation of datasets of drug pairs with information on five ADEs

Since the datasets on five cardiovascular ADEs were created using analysis of SRs, they may

still contain false positive and false negative associations between drug pairs and correspond-

ing effects, thus, datasets have to be validated before performing further analysis. For this pur-

pose we used inference scores (ISs) from Comparative Toxicogenomics Database [38]. ISs

were calculated based on known interactions of drugs with human genes which have links to

corresponding diseases in literature. ISs reflect the degree of similarity between drug–gene–

disease networks and a similar scale-free random network. The higher the score, the more

likely the inference network has atypical connectivity (see original publication [38] for details)

and the higher the probability of possible relationship between drug and disease. If drug is not

known to cause ADE according to data from our previous study (see above) [37] we took IS

from Comparative Toxicogenomics Database for corresponding disease; however if the drug is

known to cause ADE we took the maximal value of ISs among all drugs. It was done because
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many drugs, which have description of cardiovascular ADEs in “Boxed Warning” and “Warn-

ings and Precautions” sections of drug labels, demonstrate low ISs due to insufficient informa-

tion on target genes in literature. To describe pairs of drugs with corresponding ISs we used

sums of the scores of individual drugs. We calculated AUC values for each of the five datasets

based on ISs for corresponding diseases (ventricular tachycardia, myocardial infarction, ische-

mic stroke, arterial hypertension and cardiac failure). We proposed that the values of AUC

reflect the quality of datasets.

Prediction of drug-target interactions

Interactions of individual drugs with human proteins were predicted by the PASS Targets soft-

ware [39]. PASS (Prediction of Activity Spectra for Substances) [43–45] can be used for the

prediction of various types of biological activities and is associated with several hundred suc-

cess stories of its practical application, with experimental confirmation of the prediction results

[45, 46]. It uses Multilevel Neighborhoods of Atoms (MNA) descriptors and the Bayesian

approach and is available as a desktop program as well as a freely available web service on the

Way2Drug platform (http://www.way2drug.com/PASSOnline/) [47]. PASS Targets is a special

version of PASS that is based on training data from the ChEMBL database (https://www.ebi.

ac.uk/chembl/) and allows for predicting interactions with 1553 human protein targets with an

average AUC 0.97 and a minimal AUC 0.85 [39]. The full list of human targets is presented in

S3 Table.

PASS provides two estimates of probabilities for each target of a chemical compound: The

Pa probability to interact with a target, and the Pi probability to not interact with a target. If a

compound has Pa> Pi, it can be considered as interacting with the target. The larger the Pa

and Pa−Pi values, the greater the probability of obtaining an activity against a target in the

experiment. In this study, we used a threshold Pa>0.3 for the estimation of protein targets of

drugs from the top 10 scored drug pairs potentially causing ventricular tachycardia (see the

last section of the Results and Discussion).

We used sums and absolute values of differences of Pa/(Pa+Pi) values, calculated by PASS

for individual drugs, to obtain corresponding values for pairs of drugs. Thus, each drug pair

was described by a vector of 3106 values, which were further used as descriptors for the crea-

tion of classification models (see below).

Creation of classification models for DDI-induced cardiovascular ADEs

Classification models for the prediction of five DDI-induced cardiovascular ADEs were cre-

ated by the Random Forest method. We used the RandomForest function from “RandomFor-

est” R package (https://cran.r-project.org/web/packages/randomForest/) for this purpose. All

arguments of this function were set to default. Since the training sets were imbalanced (see

Table 1) which is a problem for the creation of accurate classification models we used multiple

under-sampling procedure when majority class of the training set was randomly sampled up

to the size of the minority class. This process was repeated multiple times, and prediction prob-

abilities from multiple models were averaged.

The applicability domain of the obtained models was determined by the local (Tree)

approach, which was described earlier [40].

The accuracy of created models was determined by a 5-fold cross validation procedure

according to the “compound out” approach, wherein each drug pair in the test set must con-

tain at least one drug that is absent in all drug pairs of the training set [41].

The accuracies of the models for ventricular tachycardia and arterial hypertension were

also estimated on two external test sets generated based on information from DrugBank
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(https://www.drugbank.ca/) database. The database contains some data on known DDIs that

lead to ventricular tachycardia (or prolongation of the QT interval on an electrocardiogram)

and arterial hypertension. These DDIs were extracted from drug labels and scientific publica-

tions by DrugBank team. We used this data as positive examples to create external tests sets.

To create negative examples, we randomly generated drug pairs in the amounts equal to posi-

tive examples. We did not include as negative examples those pairs, where both individual

drugs cause corresponding ADE according to data from our previous study [37] (see above),

as potentially false negatives.
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