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Abstract

The goal of this study was to address the need for comprehensive reference data regarding maturational and aging effects
on regional transverse relaxation rates (R2) of the brain in normal humans. Regional R2s were measured in twenty-five brain
structures from a sample of seventy-seven normal volunteers 9 to 85 years of age. The relationships between regional R2

and age were determined using generalized additive models, without the constraint of a specified a priori model. Data
analysis demonstrated that the brain tissue R2-age correlations followed various time courses with both linear and non-
linear characteristics depending on the particular brain structure. Most anatomical structures studied exhibited non-linear
characteristics, including the amygdala, hippocampus, thalamus, globus pallidus, putamen, caudate nucleus, red nucleus,
substantia nigra, orbitofrontal white matter and temporal white matter. Linear trends were detected in occipital white
matter and in the genu of corpus callosum. These results indicate the complexity of age-related R2 changes in the brain
while providing normative reference data that can be utilized in clinical examinations and studies utilizing quantitative
transverse relaxation.
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Introduction

The transverse relaxation time (T2) and transverse relaxation

rate (R2), where R2 = 1/T2, play a fundamental role in generation

of MRI contrast in the human brain. Quantitative T2 and R2

brain mapping has been used in studies of various neurological

disorders across a wide age range, e.g., white matter abnormalities,

brain tumors, schizophrenia, multiple sclerosis, autism, and

Alzheimer’s disease [1,2,3,4]. Previous studies on brain transverse

relaxation have shown a general trend of T2 decrease during

maturation while, conversely, showing a T2 increase during aging

[5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Despite these trends, the

T2-age correlation in the human brain is not yet well

characterized, making interpretation of deviations from normative

values uncertain.

Saito et al. studied 18 normal volunteers and 33 patients with

either no or small brain lesions at 1.5 T and showed that T2 for

the brain falls into four distinct periods of life: 0–2 years old

(maturation period), 2–20 years old (development period), 20–60

years old (adulthood period) and $60 years (senescence period)

[8]. Most of the subjects in this study, however, had brain

disorders, raising the concern that the reported T2 values do not

represent truly normal findings. A study at 1.5 T by Siemonsen et

al. on 50 patients (12–91 years of age) with no significant brain

lesions except white matter leukoaraiosis, found an increase in T2

that linearly correlated with age in the thalamus and three white

matter structures, but not in the caudate nucleus and lentiform

nucleus [9]. Another study on 70 normal subjects aged 3 weeks to

31 years showed that T2 decreased with increasing age; the rate of

decrease was greater at a younger age and slower in the years after

[10], indicating a nonlinear relationship with age. Kim et al.

studied the corpus callosum in 33 normal pediatric subjects aged

3–15 years at 3 T and reported a significant T2- age correlation in

the splenium, but not in the genu [11]. After studying 33 normal

subjects aged 19–59 years at 3 T, Hasan et al. did not find

significant T2-age correlation in the caudate nucleus [12]. The

discordant findings of these previous studies demonstrate the need

for establishing a more comprehensive T2 mapping data set, based

on a larger normal cohort with a greater age range and more brain

structures.

The analytic approaches used in the previous studies of T2-age

correlations have been based on a priori models. Most of them have

employed linear regression [9,11,12,13,18]. Hasan et al. reported

using both linear and quadratic terms to estimate the aging effects

on T2 and the relation between T2 and age in whole brain gray

and white matter, caudate nucleus, and the anterior limb of

internal capsule followed a quadratic, U-shaped curve [17].

Although plausible, little histopathological data is available to
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support these a priori models. Therefore, the current study was

designed to address these limitations and elucidate the effects of

development and aging on regional T2/R2 in the normal human

brain without the bias of a priori models. In this study, we employed

generalized additive models (GAM), a well-known nonparametric

approach to regression that can accommodate any potential

nonlinear relationship [19]. The goals of this study were: 1) to

establish standardized, normative T2 maps of several age intervals

as references for clinical trials and routine examinations, 2) to

determine continuous developmental and aging characteristics in

representative brain structures, and 3) to determine the regional

T2 differences among these brain structures.

Methods

Seventy-seven volunteers without known neurologic or psychiat-

ric disorders aged 9 to 85 years (41 males and 36 females)

participated in the study (see Table 1). There was no significant

difference between the age distributions in the two genders. To

exclude abnormal cognitive disorders, the 39 subjects over the age

of 50 (average education 14.961.6 years) received the Mini-Mental

State Examination (MMSE) [20] and the Clinical Dementia Rating

Scale (CDR) [21]. All 39 subjects had a CDR score of 0, meaning

fully oriented; their average score on the MMSE was 29.161.0,

which is in the normal range of 25 to 30. The study protocol was

approved by the Penn State Hershey Institutional Review Board.

All subjects or parents of subjects under 18 years old gave informed,

written consent prior to participation.

The T2/R2 mapping was acquired on a 3 T scanner (Bruker

MedSpec S300 with TEM head coil, Bruker BioSpin Corporation,

Ettlingen, Germany) with maximal strength 3 gauss/cm using a 9-

echo spin-echo sequence with TE from 11.8 to 106.2 ms

(TR = 4000 ms, flip angle = 180u, Gaussian radio-frequency (RF)

pulse, bandwidth = 80 kHz, 20 2.5-mm-thick axial slices with no

gap between slices centered at hippocampus, FOV = 25625 cm2,

acquisition matrix = 2566192, reconstruction matrix = 2566256,

number of average = 1). A test-retest was performed on five

normal young subjects (all male, 29.063.3 years of age), who

received two back-to-back brain T2/R2 mapping protocol on the

same magnet. No significant difference was observed between R2s

obtained from the two scans (paired t-test, p.0.20).

The R2 maps were generated using linear regression of the

logarithm of the signal intensity:

S tð Þ~S0
:e{R2

:TE , ð1Þ

with custom-designed software qMRI (http://pennstatehershey.

org/web/nmrlab/resources/software/qmri) written with Interac-

tive Data Language (Research Systems, Inc., Boulder, CO).

Figure 1 shows an example of the T2 relaxation regression plot. As

indicated in the figure, the first echo of the echo train had a

significant contribution from a stimulated-echo that depended on

T1 of the tissue for a given TR and, thus, was excluded from the

T2/R2 estimation. The resultant spatial resolution of the R2 map

was 16162.5 mm3. Then the R2 maps were normalized to the

Montreal Neurological Institute brain template [22] using SPM5

(Wellcome Trust Centre for Neuroimaging, University College

London, UK) [23]. The normalized R2 maps had a spatial

resolution of 16162.5 mm3. These data are available on-line at

http://www.pennstatehershey.org/web/nmrlab/resources1.

Regional R2s were obtained from manually drawn regions of

interest (ROI) in twenty-five brain structures as shown in Figure 2.

These structures were chosen because they are: 1) functionally

important and well-studied; 2) clinically important as they involve

in many neurological disorders such as Alzheimer’s disease and

Parkinson’s disease; and 3) they are relatively homogeneous

structurally and have clear boundaries with neighboring struc-

tures. Cortical gray matter was not studied because of significant

partial volume effects from subcortical white matter and

cerebrospinal fluid signal on the surface of the brain. In order to

select regions of interest (ROIs) that were representative of given

brain structures with minimal contaminations of surrounding

tissues, the following rules were followed: 1) an ROI should be in

the center of the structure where the R2 distribution is relatively

homogeneous; 2) tissues surrounding an ROI in the two adjacent

slices should be within the same structure; and 3) an ROI should

be at least one voxel away from surrounding structures in the

image plane. Eighteen gray matter and seven white matter

structures with clear boundaries from surrounding structures were

selected from the R2 maps, as illustrated in Figure 2. They are the

amygdala, head of hippocampus, genu of corpus callosum,

anterior and posterior nucleus of thalamus, head of caudate

nucleus, globus pallidus, putamen, substantia nigra, red nucleus,

orbitofrontal white matter, anterior temporal white matter, and

occipital white matter. The size of ROIs varied from 21 voxels

(e.g., red nucleus) to 107 voxels (e.g., the anterior nucleus of

Table 1. Age distribution of the study cohort.

Age (year) Number of Subjects

9–12 6

13–19 8

20–29 14

30–39 6

40–49 4

50–59 16

60–69 9

70–79 6

.80 8

doi:10.1371/journal.pone.0031907.t001

Figure 1. Example T2 relaxation regression plot of left putamen
from a healthy 33-year-old man. The plus signs are the signal
intensity; the solid line is the fitted curve for the T2/R2 estimation
(R2 = 0.999).
doi:10.1371/journal.pone.0031907.g001
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thalamus) in order to provide representative values for the given

brain structures.

The relationship between R2 and age was examined with

generalized additive models [19]. These models allow the mean of

the dependent variable (R2) to depend on an additive predictor

(age) through a nonlinear link function and are especially useful for

visualizing the relationship between a dependent variable and one

or more independent variables. The specific GAM employed

extends simple linear regression by expanding the linear form of

the expected value of the dependent variable:

E R2ð Þ~azb|age: ð2Þ

Thus, the model relating R2 to age can be expressed as:

E R2ð Þ~azb|agezspline ageð Þ, ð3Þ

where a is the intercept, b is the slope, and spline(age) is the partial

smoothing spline term.

Plots of partial predictions spline(age), the estimated smoothing

spline function, versus age along with a 95% confidence band were

used to assess where nonlinearities occurred between R2 and age.

If the 95% confidence limits cover the zero axis of the independent

variable, it indicates that the nonlinear component of age is not

significant. The shape of the plot of partial spline predictions

indicates the form of the functional relationship between R2 and

age. For example, a quadratic shape of the plot would indicate a

quadratic relationship between R2 and age. Additionally, plots of

the prediction of R2 overlaid with the observed data allow

assessment of the goodness of fit. All models were fit using the

GAM procedure in SAS (SAS Institute, Inc. Cary, NC, USA).

Results

Among the twenty-five ROIs in this study, twenty-four were

symmetrically located on the two hemispheres (bilateral) while one

in the midline of the brain. Among these twenty-four bilateral

ROIs, no significant difference in R2 between the two corre-

sponding ROIs on each hemisphere (paired t-test, p.0.14) was

Figure 2. ROIs shown on a normalized R2 map from a healthy 33-year-old man. ROIs include: amygdala, head of hippocampus, anterior
thalamic nucleus, posterior thalamic nucleus, genu of globus pallidus, putamen, head of caudate nucleus, red nucleus, substantia nigra, genu of
corpus callosum, orbitofrontal white matter, anterior temporal white matter, and occipital white matter.
doi:10.1371/journal.pone.0031907.g002

Maturational and Aging Effects on Human Brain T2

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31907



observed. Thus, the R2 values from bilateral ROI pairs were

averaged and used for subsequent analysis. The R2 values in

Figures 3, 4, 5, 6, 7 are from 13 discrete brain structures with

twelve being bilateral and one along the midline. Significant

correlations between R2 and age were observed in all brain

structures examined (see Table 2). As a general trend, the

relationship between R2 and age was nonlinear (p,0.05) in most

of the structures. Moreover, all examined gray matter structures,

except the caudate nucleus, exhibited strong, nonlinear age

correlations, while most white matter structures showed negative

linear age correlations. These relationships are illustrated in

Figures 3, 4, 5, 6, 7 and, depending on the particular structures,

comprise several different patterns. For example, the R2 in the

genu of corpus callosum and occipital white matter decreased

linearly with age (p,0.001 for the linear component and p.0.17

for the nonlinear component) (see Figures 6 and 7). In these cases,

the corresponding plots of the smoothing spline functions lie within

the 95% confidence band containing the zero axis over the entire

age range. For the remaining structures some portion of the 95%

confidence band lies outside of the zero axis, indicating non-linear

age correlations. The R2 vs. age plots for most of the gray matter

structures (e.g., the hippocampus, amygdala, globus pallidus,

thalamus, red nucleus and substantia nigra) showed a quadratic

pattern where R2 increases during adolescence and young

adulthood (,30 years), plateaus in middle age (30 to as early as

40 or as late as 60 years, depending on the structures), and finally,

decreases in older age (Figures 3, 4, 5). In the putamen and

caudate nucleus, the R2-age correlation appears to follow a

logarithmic pattern that continues to increase after adolescence,

but at a slower rate (Figures 4 and 5). In contrast, most of the white

matter structures studied (e.g., the genu of corpus callosum,

bilateral orbitofrontal and occipital white matter) showed a

significant descending trend between R2 and age (Figures 6 and 7).

Table 3 shows the average T2 values of thirteen brain structures

in normal adults. A significant heterogeneity in the T2 distribution

in the brain was observed. The average T2 of these structures in

twenty-six 30–59 year-old healthy normal subjects varied from

60.5862.21 ms (globus pallidus) to 100.3461.29 ms (hippocam-

pus). When the sample age range was extended to 20–85 years, the

average R2 varied from 61.3162.42 ms (globus pallidus) to

101.6062.25 ms (hippocampus). No significant gender difference

in T2 for the brain structures studied was shown (for the age range

30–59 years, two-sample t-test, p.0.24; for the age range 20–85

years, two-sample t-test, p.0.07).

Discussion

This study presents the maturational and aging effects on

transverse relaxation in representative human brain structures at

3 T. The results provide needed normative data for clinical

examinations and research studies utilizing transverse relaxation at

this field strength. Compared to the 3 T data published previously,

the transverse relaxation times acquired in this study are similar to

the results reported by Wansapura et al. [15], but significantly

shorter than those from other reports [7,13,17,18]. Most of the T2

data previously published [13,17,18] were collected using the dual-

echo method, which tends to estimate a longer than reality

relaxation time. The T2 data in Wansapura’s study were acquired

with a multi-echo sequence, however, they were only acquired

from a single slice, which are not sufficient to determine a

quantitative baseline for general human brain studies [15]. The

data from Gelman et al. [7] were obtained using a novel

‘‘Gradient-Echo Sampling of Free Induction Decay and Echo

(GESFIDE)’’ pulse sequence designed to simultineously measure

both T2 and T2
* [24]. Although innovative, the GESFIDE method

leads to a systematically shortened T2 compared to those

measured with the conventional, multiple spin-echo sequence on

clinial systems. In the GESFIDE sequence, a long inter-echo delay

(98 ms) was used to acquire a spin-echo and a series of gradient

echoes during the inter-echo delay with multiple strong readout

gradients. The source of the difference in T2 is likely from the

enhanced T2 sensitvity to the static magnetic inhomogeneity due

to water diffusion by the applied gradients during the inter-echo

delay by the GESFIDE method. Bartha et al. investigated the

mechanism of T2 relaxation in the human brain measured with

multi-echo spin-echo method. Their study demonstrated that the

loss of phase coherence of water magnetization due to local static

magnetic field gradient could not be refocused by the 180u pulse if

a significant water diffusion present during the inter-echo delay

[25]. In fact, the T2 relaxion rate depends on the square of inter-

echo delay time between acquisitions of spin-echo images for T2

measurement. The inter-echo delay for our measurement was

11.8 ms compared to delays as long as 98 ms in other studies.

Thus, from a mechanistic point of view, apparent T2/R2 values

could vary significantly depending on the imaging sequence used

and acquisition parameter settings. For the purpose of general

clinical applications where measurement reproducibility and

general availability are important, our apparent T2 measurement

from the brain was conducted with a commonly used multi-echo

spin-echo sequence with minimum inter-echo delay.

An important implication related to the above issue is the

underlying mechanism of T2 change with age demonstrated by

this study. T2 relaxation depends on water molecule mobility and

microscopic magnetic environment that, in turn, depends on

histological and physiological factors in the tissues and can be

altered by pathological changes. As discussed earlier, depending

on the specific brain structures, imaging acquisition parameters,

such as echo time and inter-echo delay, should also be considered

for data interpretation. For example, T2 relaxation measured

using longer inter-echo delay is more sensitive to the local static

magnetic field gradients associated with tissue conditions such as

iron contents, particularly, in the iron-rich regions (e.g., substantia

nigra). Conversely, shorter echo-delay would lead R2 to be more

dependent on tissue cellularity changes in the brain structures such

as white matter where water molecule diffusions are more

restricted. In our study, the shortest possible inter-echo delay

(11.8 ms) was used.

With respect to specific brain structures and the range of age,

our data exhibited varied R2-age relationships. From 9 to 30 years

of age, significant positive correlation between tissue R2 and age

was observed in all of the nine gray matter structures studied (i.e.,

amygdala, hippocampus, anterior and posterior nucleus of

thalamus, globus pallidus, putamen, caudate nucleus, red nucleus,

and substantia nigra). The R2-age correlation after age 40,

however, demonstrated more diverse characteristics. In the

anterior nucleus of thalamus, R2 increases with age and reaches

its maximum at about age 40, and decreases steadily in the older

age. It is interesting to note that R2 reaches its maximum in the

hippocampus at a much later age, at about age 60, indicating its

more dynamic characteristic over the life span. In the iron-rich

brain structures (globus pallidus, red nucleus, and substantia

nigra), the downward trend in R2 after age 40 is less apparent, and

in some structures (putamen and caudate nucleus), there was even

an upward trend. Thus, the characteristics of R2-age correlations

identified, particularly in iron-reach structures, are likely a result of

two major contributing effects: 1) decreasing cellularity that

decreases R2, and 2) increasing iron content that increases R2. A

postmortem study showed that non-heme iron concentration in

Maturational and Aging Effects on Human Brain T2
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Figure 3. Scatter plots and fitted curves of R2-age correlations in amygdala, hippocampus and anterior thalamus. Graphs in the left
column are partial predictions plots of estimated smoothing spline functions against age with a 95% confidence band for the whole curve; graphs in
the right column plot the predicted values of R2 against age (solid line) with the observed data overlaid (plus signs). Top, amygdala; middle, head of
hippocampus; bottom, anterior thalamic nucleus.
doi:10.1371/journal.pone.0031907.g003
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Figure 4. Scatter plots and fitted curves of R2-age correlations in posterior thalamus, globus pallidus and putamen. Graphs in the left
column are partial predictions plots of estimated smoothing spline functions against age with a 95% confidence band for the whole curve; graphs in
the right column plot the predicted values of R2 against age (solid line) with the observed data overlaid (plus signs). Top, posterior thalamic nucleus;
middle, globus pallidus; bottom, putamen.
doi:10.1371/journal.pone.0031907.g004
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Figure 5. Scatter plots and fitted curves of R2-age correlations in caudate, red nucleus and substantia nigra. Graphs in the left column
are partial predictions plots of estimated smoothing spline functions against age with a 95% confidence band for the whole curve; graphs in the right
column plot the predicted values of R2 against age (solid line) with the observed data overlaid (plus signs). Top, head of caudate nucleus; middle, red
nucleus; bottom, substantia nigra.
doi:10.1371/journal.pone.0031907.g005
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Figure 6. Scatter plots and fitted curves of R2-age correlations in corpus callosum, orbitofrontal and temporal white matter. Graphs
in the left column are partial predictions plots of estimated smoothing spline functions against age with a 95% confidence band for the whole curve;
graphs in the right column plot the predicted values of R2 against age (solid line) with the observed data overlaid (plus signs). Top, genu of corpus
callosum; middle, orbitofrontal WM; bottom, anterior temporal WM.
doi:10.1371/journal.pone.0031907.g006
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the brain increases with age [26], which would lead to an increase

in R2 accordingly [27]. The increase in iron concentration with

age in the putamen and caudate nucleus has reached a level that

its contribution to R2 becomes so significant even though our R2

mapping method is relatively less sensitive to tissue iron contents

because of the short inter-echo spacing. Thus, tissue iron likely

plays an important role in the changes of transverse relaxation in

the iron-rich brain structures during normal aging.

The relationships between R2 and age showed quadratic

depedence in most gray matter structures studied, which is

consistent with the observation by Hasan et al. in a study of

normal subjects aged 15–58 years [17]. In the white matter

structures, R2 appears to follow a general downward trend with

less apparent quadratic age-correlation than those in gray matter.

The change in R2 in these brain structures could reflect the more

dominant changes in tissue cellularity and/or myelination during

maturation and aging processes. T2 in white matter is known to

consist of multiple components significantly influenced by the

structure of myelin. They are generally classified into three

components: 1) a fast relaxing component (T2,10–50 ms) from

the water located within the myelin sheath, 2) an intermediate

component (T2,55–110 ms) from intracellular and extracellular

water in the tissue, and 3) a long component (T2.1 s) from

cerebrospinal fluid [28]. The fast component of R2 from myelin

water needs to be measured using special sequences with short

echo-times (,10 ms) and very long echo-trains (.32 echoes)

Figure 7. Scatter plot and fitted curve of R2-age correlation in the occipital white matter. Graph on the left side is a partial prediction plot
of estimated smoothing spline function against age with a 95% confidence band for the whole curve; graph on the right side plots the predicted
values of R2 against age (solid line) with the observed data overlaid (plus signs).
doi:10.1371/journal.pone.0031907.g007

Table 2. Linear and non-linear correlation between R2 and age in the brain.

Structure Linear Non-linear

b (year21?sec21) t-value p-value Chi-square p-value

Amygdala 0.0047 4.5 ,0.0001 65.56 ,0.0001

Hippocampus 0.0017 2.44 0.017 101.18 ,0.0001

A_Thalamus 20.0078 25.09 ,0.0001 80.05 ,0.0001

P_Thalamus 0.0024 1.00 0.32 54.13 ,0.0001

Globus Pallidus 0.0054 1.77 0.081 40.09 ,0.0001

Putamen 0.0353 11.19 ,0.0001 27.59 ,0.0001

Caudate Nucleus 0.0205 8.37 ,0.0001 8.66 0.013

Red Nucleus 0.0034 1.2 0.2344 54.85 ,0.0001

Substantia Nigra 0.0131 3.9 0.0002 41.09 ,0.0001

G_Corpus Callosum 20.0160 29.01 ,0.0001 3.60 0.17

Orbitofrontal_WM 20.0138 28.61 ,0.0001 19.58 0.0004

A_Temporal_WM 20.0042 22.39 0.0192 19.77 ,0.0001

Occipital_WM 20.0152 210.76 ,0.0001 2.51 0.29

Note: A, anterior; P, posterior; G, genu; WM, white matter.
doi:10.1371/journal.pone.0031907.t002
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[29,30]. Relevant to standard clinical studies on 3 T scanners, the

apparent R2 measured in this study was an average of all three

components weighted by TE settings (TE 11.8 to 106.2 ms with a

spacing of 11.8 ms).

Growth and development of the human brain are known to

occur not only in childhood, but also much later during adolescent

and adult years, and such developmental trajectories vary on

different timelines in different brain structures. Accordingly, the

data presented here demonstrate that brain tissue R2-age

correlations are predominantly non-linear in most brain structures

while specific structures may follow significantly different time

courses. Our results emphasize the importance of applying a

neurodevelopmental and aging perspective to the study of neural

imaging during adolescence and adulthood. The detailed age

dependence of R2 curves established here provide a foundation for

clinical studies using transverse relaxation brain mapping.
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