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Abstract

Motivation: Although there are many different algorithms and software tools for aligning sequencing reads, fast
gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for
the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In
addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus
algorithms which depend on fast and accurate alignment.

Contribution: We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing
infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners:
Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking
procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a
significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection,
bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length
increases ARYANA’s superiority in terms of speed and alignment rate becomes more evident. This is in perfect
harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA
makes it easy to develop mission-specific aligners for other applications using ARYANA engine.

Availability: ARYANA with complete source code can be obtained from http://github.com/aryana-aligner

Introduction
Every living cell carries a book of life consisting of several
thousand to billions of characters with answers to many
vital questions. Human efforts to decipher that book has
gained increasing momentum since 1953 when the double
helical structure of DNA was discovered. Twenty years
later. W. Gilbert and A. Maxarn read the first 24-character
word of the book [1]. when F. Sanger and his colleagues
were developing another sequencing method based on the
application of labeled dideoxynucleotide triphosphates
that act as chain-terminators in a PCR reaction [2,3].
About three decades after the first DNA sequencing, the

dream of reading the human book of life was realized by
completion of the human genome project [4-6]. The

International Human Genome Sequencing Consortium
used a laborious hierarchical process to divide the genome
into smaller covering tiles while the Celera Genomics firm
replaced that by a computational sequence-assembly soft-
ware applied to the data generated from blindly shredded
(shotgun) whole genome [7,8]. The automated Sanger
method was the gold standard for about two decades, as
the first generation of DNA sequencing, until increasing
demand for fast and inexpensive methods to produce high
volume of error-free genomic information caused emer-
gence of new technologies, the so called Next-Generation
Sequencing (NGS) [9].
A paradigm shift in both the experimental techniques

and computational methods occurred due to the transition
to the NGS technologies and also availability of finished
reference genomes, such as the human genome, for more
than 2000 prokaryotes. eukaryotes and Archaea. Long,
accurate, expensive Sanger mate-paired reads (~ 400 to
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750 bp) [11] which were mostly used for de novo sequen-
cing and assembly are now replaced by several fold more
(ultra-)short. erroneous, but inexpensive NGS reads.
There is significant ongoing effort for the de novo assem-
bly [11] of NGS data in combination with additional infor-
mation such as long reads and optical maps [12] in order
to uncover the whole genomes of different organisms.
However, the vast majority of NGS data generated today
in transcriptomics. epigenomics. and variation studies
belong to the organisms with identified whole-genomes.
which are mapped to the existing reference genomes using
short or long read aligners. Emergence of the 1000 human
genome project to catalogue all of the human genome var-
iants through population resequencing is a good represen-
tative evidence for this paradigm shift [13].
In the new paradigm, aligning reads to a reference

sequence lies in the core of numerous different applica-
tions including detection and annotation of single nucleo-
tide polymorphisms (SNPs) [14-17], structural and copy
number variations (CNVs) [18,19], detection and align-
ment of transcript variants and splicing [20-22], and
browsing and visualization [23-26]. There is a wide range
of software available to process the NGS data from light-
weight tools working on a small desktop [25] to more
sophisticated resources designed for clouds [27-29].
Although there are many different algorithms and soft-

ware tools for aligning NGS reads [30-41], of which BWA
[42,43] and Bowtie [44,45] have been extensively used in
many studies mainly due to their low memory footprint
and fast and highly accurate results, fast gapped sequence
search is still far from solved. A good evidence is the 106

prize of the Innocentive competition [46] entitled “Identify
Organisms from a Stream of DNA Sequences” on aligning
a collection of NGS reads, generated by diverse platforms
including Illumina, Roche 454, Ion Torrent, and Pacific
Biosciences, to a given database of reference genomes.
Here we introduce our seed-and-extend aligner called

ARYANA which is a fast and general purpose solution
with on-par accuracy and small memory usage. We
compare ARYANA with other aligners: Bowtie2 [45],
BWA-SW [43], and SeqAlto [30]. ARYANA is multiple
times faster than all of these aligners with comparable
generality and accuracy. This superiority in performance is
revealed more as the read length increases, which is in
perfect harmony with the fact that the read length is
increasing as the NGS technologies evolve.

Methods
Every read is individually aligned by ARYANA, which
enables using it in distributed computing frameworks by
partitioning the input read data set, in addition to the
multithreaded parallel infrastructure embedded in
ARYANA that permits complete CPU usage when
running on a multi-core machine.

Alignment of a single read consists of two main
phases:

• In the first phase of the algorithm ARYANA extracts
a set of seeds from the read sequence that satisfies cer-
tain conditions. These conditions and the approach for
extracting these seeds are explained in the sections
searching for the exact matches of a seed and seed
extraction. For each exact match of these seeds in the
reference genome. ARYANA grants score to some cor-
responding genomic region. The genomic regions are
represented by partitions of the reference genome
called tags. The scores provide a preliminary criterion
for ranking the tags based on their associated genomic
region’s similarities to the read. Details of how the tags
are defined and handled and the scoring system is
explained in sections tags and scoring and accessing
and updating tag information.
• In the second phase we focus on the tags that
received the highest scores during the first phase and
consider them as candidates for the final alignment.
The read is more precisely aligned to each of these
candidate regions by using a differential-position
dynamic programming algorithm to find the region
which has the best alignment. More details of the
second phase of the algorithm is available in section
precise alignment to the candidate segments.

Searching for the exact matches of a seed
ARYANA uses the Burrows-Wheeler Aligner (BWA)

implementation of the Burrows-Wheeler transform
(BWT) and Ferragina-Manzini index (FM-index) [43,47]
to search for exact matches of a seed. To ensure the
reverse DNA strand is also being considered, the reverse
complement of the reference genome is attached to the
end of the forward genome, and index tables are con-
structed for the double sized reference.
We define two search procedures that work by using

this data structure:

• forward exact search: The search process is
performed in several iterations, starting from the right-
most letter of the seed and extending the suffix one
letter per iteration to the left. At each iteration we
have access (with O(1) time complexity) to list of the
exact matches of the current suffix.
• backward exact search: Since the index tables are
built by concatenation of the reference genome to its
reverse complement, we can search in the opposite
direction, from left of the seed to the right, by per-
forming forward exact search on the reversed comple-
ment of the seed. Although the matches found by this
search are reverse complements of the original seed,
we can still find out how far we can continue matching

Gholami et al. BMC Bioinformatics 2014, 15(Suppl 9):S12
http://www.biomedcentral.com/1471-2105/15/S9/S12

Page 2 of 10



and extending the prefix of the original seed (which
corresponds to the suffix for the reversed complement
of the seed).

By using this data structure we can find list of the BWT
indices for all matches of a suffix in O(k) where k is length
of the suffix. We should note that finding the genomic
positions from BWT indices can be done relatively fast.
Furthermore, our experiments showed ARYANA
consumes about 5.1 GB of memory when aligning reads to
a human genome which is an amount that even today’s
typical personal computers can provide.

Seed extraction
Which seeds to extract?
For aligning each read ARYANA extracts a maximal set of
seeds that has the following conditions:

1 Each seed has at least k basr pairs.
2 No couple of seeds overlap more than k basr pairs.
3 Each seed has at least one exact match in the
reference genome.
4 The seeds are maximal: i.e. if we extend a seed the
set no longer remains valid.

The value of k is decided dynamically by ARYANA,
being 16 for reads shorter than 50 bp and increased for
longer reads.
There are three main reasons for having these condi-

tions. Firstly, we force the seeds to have some minimum
size and to be maximal in order to avoid the seeds that
have too many matches in the reference. These seeds gen-
erally do not help distinguishing the correct region among
its rivals. Secondly, it is possible for a seed to not match to
the correct region due to some error or variant but to
match to another region. In this case we do not want to
lose all other seeds that overlap with this seed. This is why
we have allowed overlaps with less than k base pairs.
Thirdly, by limiting the size of the overlaps the total num-
ber of seeds and their lengths reduces thus the speed
improves.
How to extract these seeds?
ARYANA starts from the right end of the read and uses a
greedy iterative approach for extracting the valid set of
seeds. At the beginning of each iteration ARYANA consi-
ders an initial seed that is the rightmost substring of
length k which is not fully covered by previously extracted
seeds. Next the algorithm starts matching this seed to the
reference, with the direction from left to right, by using
reverse exact search described in section searching for the
exact matches of a seed. If it successfully matched the
whole seed, it then extends the seed maximally towards
left by using forward exact search described in section
searching for the exact matches of a seed. This maximal

seed is then extracted to use its found matches in the
reference for scoring the related tags (Figure 1).
If the reverse exact search fails to match the whole seed,

assume it fails when trying to match the jth base pair
(j < k), every seed that contains this substring of length j
will also fail to find a match in the reference. To reduce
the work for the next iterations we can jump over this j
base pairs by behaving as the k − j base pairs left to this
j-length substring was covered by previously extracted
seeds (Figure 2).
Algorithm 1 is a pseudo code for the above procedure.

MATCHLEFTTORIGHT(seq, s, max) is based on the
reverse exact match introduced in section searching for
the exact matches of a seed. It matches at most match
of seq to the reference starting at s, moving from left to
right. It returns the length of the matched string.
MATCHLEFTTORIGHT(seq, s, max), which is based on
the forward exact match introduced in section searching
for the exact matches of a seed, does the same except
moving from right to left. It returns BWT indices for
the beginning and end of the matched region and length
of the matched string. BWTPOSITION(index) returns
the reference position of index, where index is a BWT
index. GRANTSCORE(pos, s) grants score for the tag
associated with the position pos, and adds s points to its
score. The scoring system and the tags are explained in
section tags and scoring.
Algorithm 1 extracting seeds
function MAXIMALLYSEED(seq, k)
right ¬ LENGTH(seq)
while right ≥ k do
matched ¬ MATCHLEFTTORIGHT(seq, right −

k + 1, k)
if matched < k then
right ¬ right − k + matched
continue

end if
begin, end, matched ¬ MATCHRIGHTTOLEFT

(seq, right, INF)
for index from begin to end do
pos ¬ BWTPOSITION(index)
GRANTSCORE(pos − (right − matched + 1),

matched)
end for
right ¬ right − matched + k − 1

end while
end function

Tags and scoring
We define tags as consecutive non-overlapped partitions
of the reference genome, each of length L. In our imple-

mentation we have L =
R

c
where c is a constant integer

(with the default value 10) and R is the length of the
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read. The intuition is that each tag is an approximate
region around the leftmost position of the inexact
match of the whole read sequence. Tags are not defined
to cover the whole match of a read and only the start
position of the read has to be inside the tag. In Figure 3.
a read sequence with some matched seeds and the cor-
responding tag are depicted.

Each exact match of a seed increases the score asso-
ciated with exactly one of the tags, which is the one that
contains the start position of the whole read. To find
this tag we compute the relative start position of the
read and update score of the tag containing this position
(Figure 3). More precisely, if there are n letters before
the seed in the read, and the match position starts at
the m-th letter of the genome we estimate m − n to be
roughly the start position of the read if it were to be
aligned to the genome accordingly. This way the conse-
cutive seeds of the same read will produce similar esti-
mated read start positions if their exact match locations
are consecutive.
The actual start position of the read might be slightly

different from the estimated value due to possible indels.
Likewise, the start positions estimated for consecutive
matches of different seeds of the same read might
slightly differ: however, the estimated start positions fall
into one or at most two adjacent tags if the total size of
indels inside the read is less than L.
For each exact match of the seed, the tag containing

estimated start position of the read is granted a score
equal to the length of that seed. As a result the final
score of each tag will be sum of the size of the seeds

Figure 1 Maximally extending a seed exact match, (a) When there is an exact match of length k for the seed sequence, (b) it is
extended to the left as much as possible and the extended seed is granted score. Afterwards, (c) the k − 1 leftmost letters from the seed
are kept for the next iteration of MAXIMALLYSEED in Algorithm 1.

Figure 2 No exact match of the seed exists, (a) When the seed
sequence of length k has no exact match in the reference
genome, (b) only those leftmost letters in the seed that have a
short exact match are kept, and the right tail of the seed is
trimmed for the next iteration of MAXIMALLYSEED in
Algorithm 1.
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that correspond to this tag. In case of too small seed
lengths or repeat elements where there might be many
exact matches for the same seed sequence, only the first
P matches are granted the scores, where the default
value for P is 50 but can be changed through com-
mand-line parameters.
Because of using non-overlapped tags there is the possi-

bility of dividing the total score regarding one match of
the read between two adjacent tags. This happens in
extreme cases where the read’s start or end position is
near the boundaries of a tag and at the same time there is
an indel inside the read: however this is not a significant
problem as we consider several candidate tags for the
second phase.

Accessing and updating tag information
There are a total of G/L tags, where G and L are the
lengths of the genome and the tags, respectively. A simple
way is to assign tag scores to an array of size G/L, which
might not seem a problem at the first glance. However, it
takes long time to reset the whole array for each read, and
the storage space would also be considerable if there are
multiple threads aligning the reads simultaneously. To
address this challenge, ARYANA keeps track of only those
tags that have a non-zero score in a hash table with open-
addressing collision management that provides fast access
to the records. Upon granting some score to a tag, first the
segment number is looked up in the hash table and if
found its score is updated: otherwise, a new record is
assigned and inserted into the hash table.
While the hash table size is considerably smaller than

the total number of tags, it still takes considerable time to
free it upon a new read. Additionally, each hash record
contains the read ID for which the scores were granted.
While looking up a tag, all hash records belonging to the
previous reads are ignored and the corresponding cells of
hash table are treated as if empty. Hence, there is no need

to reset the hash table on a new read, which has a great
impact on efficiency of ARYANA. Furthermore, to get rid
of scanning the hash table for selecting the top score tags,
a dynamic list keeps track of the t top-scoring tags, where
t is 10 by default. The list is updated if necessary following
each update in the hash table.
In addition to the tag number as the hash key and the

tag score, for each tag we store the seed information for
all of the seeds that have resulted in updating its score.
This information includes the seed length, its position in
the read sequence and the genomic position of its match
in reference.

Precise alignment to the candidate segments
The t top scoring tags are selected for the second phase of
the algorithm that performs a precise dynamic program-
ming alignment of the given read to each of the regions
associated with the candidate tags and finds the best over-
all alignment consisting of matches, mismatches and
indels (the so-called CIGAR sequence in the SAM files).
The region associated to the tag is extended e nucleotides
(20 bp by default) from both sides to ensure the potential
alignment region of the read is completely covered by the
extended segment.
For the sake of performance we use those seeds of the

read that were associated to this tag in the previous phase.
A consistent and non-overlapping subset of these matched
seeds are selected greedily as a fixed set of matched blocks.
The algorithm performs dynamic programming alignment
only on the gaps between these blocks (Figure 4).
The dynamic programming algorithm we used for align-

ing the gaps is a variant of the Needleman-Wunsch algo-
rithm [48] that tries to align two sequences to each other
with the minimum number of mismatches and indels (in
our implementation mismatches and indels have the same
cost). The dynamic programming matrix has two dimen-
sions: (i) position inside the first sequence, and (ii) the

Figure 3 Scoring the tags according to the seeds. The red seeds are the ones which have exact matches in this region of the reference.
These seeds influence the score of the red tag which includes the relative start position of the whole read.
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difference between the positions inside the second and the
first sequence. The dynamic programming matrix is
updated as

D [i]
[
offset

]
= min

⎧⎨
⎩

D [i − 1]
[
offset

]
+ I

(
ref

[
i + offset

]
== read [i]

)
Match/Mismatch

D [i − 1]
[
offset + 1

]
+ 1 Insert

D [i]
[
offset − 1

]
+ 1 Delete

Above, ref and read are the reference and the read
respectively, I [true] = 0, I [false] = 1, and 0 < i < length
(gap) and |offset| < d for the dimension sizes in which
length(gap) is the size of the gap in the read and d is the
largest difference between the sizes of any two corre-
sponding subsequences on the best alignment path. This
algorithm has the running time of O(dn) and is faster
than the regular Needleman-Wunsch algorithm for a lim-
ited d.

Aligning paired-end reads
For paired-end data, ARYANA aligns each read separately
and finds a couple of match groups, each containing t best
matches of one read to the reference (the default value for
t is 10). It then looks for a pair of matches one from each
group that meet the requirements given for the paired
alignment, including maximum and minimum distances
between the reads and their relative orientation. In the
case of multiple answers, the total scores for each pair of
matches are used to rank them and report the best pair.

Results and discussion
We compared ARYANA with three other NGS aligners in
terms of speed and accuracy. We selected BWA and
Bowtie2 as the two most widely cited aligners and also
SeqAlto which is a more recent aligner that outperforms
many other recent aligners. All aligners were tested with

the default parameters but executed with multithread in
some experiments.
The experiments were performed on a platform with

48 AMD Opteron Processor 6174 CPUs each having 12
cores with clock speed of 2.2 GHz. The hg19 human gen-
ome assembly was used as the reference for all test cases.
We used dwgsirn (https://github.com/nh13/DWGSIM/
wiki) to simulate data sets similar to real reads produced
by Illumina NGS platforms.
To study the behavior of the aligners in response to

sequencing errors, we generated four data sets with differ-
ent error rates, each containing 1 million 200 bp reads.
We measured recall, precision and running time of the
aligners on these data sets (Table 1). All aligners exhibited
almost similar recall when the error rate was up to 2%, but
at 4% error rate, ARYANA and BWA outperformed the
others, and at 6%, the difference was much more signifi-
cant (Figure 5). SeqAlto showed higher precision com-
pared to other aligners on reads with high error rate.
However this was not surprising as at the same time it
demonstrated very low recall on the same reads (around
61.59% for reads with 6% error rate). The same happens
for Bowtie2 with a smaller scale on reads with 6% error
rate. Other than these, ARYANA showed higher or almost
similar precision (Figure 6). The running times of ARYAN
A and Seq Alto were relatively similar for reads with low
error rates (2% and 4%). but Seq Alto’s running time sig-
nificantly increased for reads with higher error rate (6%).
For all error rates ARYANA had less running time than
Bowtie2 and BWA (Figure 7).
We tested the aligners on different read lengths, from 50

to 500 bps. with a fixed 2% error rate. The data set for
each test contained 1 million reads. We measured recall,

Figure 4 Gap-filling dynamic programming. To make a complete alignment between the read and the reference genome, only gaps
between matches seeds are aligned using a variant of the Needleman-Wunsch dynamic programming [48].

Table 1 Time (s), recall (%), and precision (%) for aligning reads with different error rates.

1% error 2% error 4% error 6% error

T(s) R(%) P(%) T(s) R(%) P(%) T(s) R(%) P(%) T(s) R(%) P(%)

ARYANA 469 99.06 92.74 664 98.76 92.46 869 97.64 91.37 933 95.45 88.93

SeqAlto 507 93.12 98.55 562 93.07 98.54 945 89.29 98.85 3320 61.59 99.39

Bowtie2 1358 92.73 98.17 1349 92.23 97.71 1217 90.10 96.69 1066 83.73 95.63

BWA 2509 93.04 98.46 2338 92.84 98.24 2046 91.69 97.15 1773 88.25 95.11

For each test case, a data set including 1 million 200 bp single simulated Illumina reads was processed.
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precision and running time of the aligners on these data
sets (Table 2). ARYANA had higher recall than other
aligners for short reads (i.e. 50 bp) with 83% recall, while
the second best was Bowtie2 with 79% recall (Figure 8).
Also it demonstrated superior precision in comparison
with the other aligners (Figure 9). As the read lengths
increased, the aligners exhibited closer accuracies but
divergent running times. ARYANA aligned 500 bp reads
almost twice faster than SeqAlto. the second fastest
aligner, and more than 3.3 folds faster than Bowtie2. The
exponential-like uptrend of the running times shows that

ARYANA would be even much faster than the other
aligners for longer reads (Figure 10).
To see how ARYANA works on the real data, we

compared the aligners on two datasets SRR946843
(http://trace.ncbi.nlm.nih.gov/Traces/sra/?
run=SRR946843) and SRR003161 (http://trace.ncbi.nlm.
nih.gov/Traces/sra/?run=SRR003161). The SRR946843
dataset has been generated by the very recent Ion Tor-
rent PGM technology with the average read length of
172 bp. and the SRR003161 dataset is produced by
Roche 454 with an average read length of 572 bp as a
part of the 1000 human genomes project.
All the aligners were executed with 48 threads in par-

allel, on identical cluster machines having 48 AMD
Opteron(tm) processors at 2200 MHz speed and 64GB
of memory, running Scientific Linux release 6.4 (Car-
bon). For both data sets. ARYANA was significantly fas-
ter than all of the other aligners, particularly on the 454
reads as they are longer in average. SeqAlto was signifi-
cantly slower than other aligners for both experiments
(Figure 11). ARYANA not only finished alignment the
fastest, but it also left the least number of reads una-
ligned (Figure 12).

Conclusion
There are many different factors that lead to the
impressive performance of ARYANA. The algorithm we
use to extract seeds collects a smaller set of seeds in
compare to the classic approach of using fixed seeds,
thus reducing the total time spent on matching them to
the reference genome while not significantly losing pre-
cision and recall. Furthermore, our algorithm extracts
these seeds much faster than the naive approaches that

Figure 5 Recall of the aligners for experiments on data with
different error rates

Figure 6 Precision of the aligners for experiments on data with
different error rates

Figure 7 Running time of the aligners for experiments on data
with different error rates
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Table 2 Ti me (s), recall (%), and precision (%) for aligning reads with different read lengths.

50 bp 75 bp 100 bp 200 bp 500 bp

T(s) R(%) P(%) T(s) R(%) P(%) T(s) R(%) P(%) T(s) R(%) P(%) T(s) R(%) P(%)

ARYANA 159 83.01 92.66 302 88.29 95.83 271 90.14 97.05 647 92.47 98.75 2437 93.42 99.46

SeqAlto 333 78.18 91.75 353 88.61 95.95 367 91.23 97.29 567 93.10 98.55 4843 93.74 99.20

Bowtie2 260 79.62 90.74 386 86.98 94.04 589 89.41 95.43 1342 92.25 97.71 8054 93.51 98.96

BWA 369 70.15 90.76 609 85.04 94.43 890 89.67 96.08 2350 92.87 98.25 6603 93.70 99.15

For each test case, a data set including 1 million Illumina reads with fixed 2% error rate was processed.

Figure 8 Recall of the aligners for experiments on data with
different read lengths.

Figure 9 Precision of the aligners for experiments on data with
different read lengths

Figure 10 Running time of the aligners for experiments on
data with different read lengths

Figure 11 Running time of the aligners for experiments on
SRR946843 and SRR003161 data sets
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extract the same seeds. The main reason for this is that in
many cases our algorithm is confident that a seed will fail
to match to the reference based on the information it had
gained when it was matching the previous seeds. Addition-
ally, the data structure we have used (the hash table) to
manage the information regarding the possible genomic
positions of the read (tags) provides functions to update
and access this genome wide information fast enough to
be guaranteed of no overall time overhead, while consum-
ing an inconsiderable amount of memory. Finally the pre-
viously matched blocks during the first phase and the
approach we have in the dynamic programming algorithm
have generally- decreased the time spent for the second
phase.
In overall, our results on both simulated and experimen-

tal data are evident for the efficient and accurate algorith-
mic architecture used in ARYANA. We have developed
ARYANA such that it would be convenient to use the
same architecture in development of the mission-specific
aligners for analysing the other types of biological data.
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