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Introduction

After Paul Langerhans firstly described dendritic cells (DCs) as nerve cells in 1868, 

Steinman and Cohn firstly discovered DCs in 1973 as a large stellate or tree-like cell 

with dendritic morphology of prominent cytoplasmic veils and protrusions [1]. DCs 

are distinguished from other cells by their unique features, so called dendrites deliver-

ing the original name [2]. DCs are broadly expressed in the body but sparsely [3]. They 

are extremely proficient antigen presenting cells (APCs) that are fundamental to the 

adaptive immune responses [3-5]. DCs are not only critical for the induction of prima-

ry immune responses, but also important for the induction of immunological tolerance, 

as well as for the regulation of the type of T cell-mediated immune response [3,6-8].

 DCs are derived from hematopoietic bone marrow progenitors and initially trans-

form into immature DCs [9,10]. These cells are characterized by high endocytic activi-

ty and low T-cell activation potential [7]. After DCs contact with an antigen, they be-

come mature DCs and migrate to the adjacent lymph node (LN) [7]. Immature DCs 

can capture foreign antigens and degrade them into peptide level, and undergo the 

process which presents the antigen to cell surface by MHC molecules [11]. After anti-

gen capture during inflammation or infection, immature DCs undergo a complex mat-

uration process through Toll-like receptors (TLRs) or members of tumor necrosis fac-

tor receptor family. DCs upregulate cell surface costimulatory molecules in T-cell acti-

vation such as CD80, CD86, and CD40 highly enhancing their ability to activate T cells 

[12]. DCs also upregulate a chemotactic receptor such as C-C chemokine receptor 

type 7 (CCR7) that induces the DCs into the blood stream to the peripheral lymphoid 

organ or via the lymphatic vessel to lymph node. Finally, DCs activate T helper (Th) 

© Korean Vaccine Society.
This is an Open Access article distributed under the 
terms of the Creative Commons Attribution Non-Com-
mercial License (http://creativecommons.org/licenses/
by-nc/4.0) which permits unrestricted non-commercial 
use, distribution, and reproduction in any medium, pro-
vided the original work is properly cited.

K O R E A N 
V A C C I N E 
S O C I E T Y

K O R E A N 
V A C C I N E 
S O C I E T Y

K O R E A N 
A C C I N E 
O C I E T Y

V
S

Clin Exp Vaccine Res 2018;7:16-23
https://doi.org/10.7774/cevr.2018.7.1.16
pISSN 2287-3651 • eISSN 2287-366X 

Chaelin Lee*, Myungmi Lee*,  
Inmoo Rhee
Department of Bioscience & Biotechnology, 
Sejong University, Seoul, Korea

Received: November 25, 2017
Revised: December 22, 2017
Accepted: December 28, 2017

Corresponding author: Inmoo Rhee, PhD
Department of Bioscience & Biotechnology, 
Sejong University, 209 Neungdong-ro,  
Gwangjin-gu, Seoul 05002, Korea 
Tel: +82-2-6935-2432, Fax: +82-2-3408-3443
E-mail: nature@sejong.ac.kr 

*These authors contributed equally to this work.

No potential conflict of interest relevant to this 
article was reported.

This research was supported by Basic Science 
Research program through the National Research 
Foundation of KOREA (NRF) funded by the Minis-
try of Education (2015R1C1A1A02037462).

Dendritic cells (DCs) are the most professional antigen presenting cells that play important 
roles in connection between innate and adaptive immune responses. Numerous studies re-
vealed that the functions of DCs are related with the capture and processing of antigen as 
well as the migration to lymphoid tissues for the presenting antigens to T cells. These unique 
features of DCs allow them to be considered as therapeutic vaccines that can induce immune 
responses and anti-tumor activity. Here, we discuss and understand the immunological basis 
of DCs and presume the possibilities of DC-based vaccines for the promising cancer therapy.
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cells and natural killer (NK) cells as well as B cells by present-

ing the antigens together with costimulatory signals [13].

 The tumor microenvironment promotes immune tolerance 

and innovative approaches are required to stimulate immu-

nological antitumor activity or modulate favorable immune 

system. DCs are the most authoritative candidates which can 

be helpful to promote immune responses in tumor microen-

vironment. DCs promote tumor tolerance and modulate the 

imbalance of Th cells responses. Mature DCs enable to acti-

vate T helper 1 (Th1) cells and antigen specific CD8+ cytotoxic 

T lymphocytes (CTL) under the tumor microenvironment. In 

this review, we will discuss fundamental features of DCs and 

the roles of DC-based vaccine as promising cancer therapy.

The Features of DCs

Migration of DCs is an indispensable process before DCs ini-

tiate their immune responses (Fig. 1) [14]. Most DCs circulate 

in the body as an “immature” state. Even though immature 

DCs lack important functions to induce a strong T-cell response, 

they are ideally controlled and well equipped to capture anti-

gens and microbes [3,15]. Once they have acquired and pro-

cessed the foreign antigens, DCs move to the T-cell areas in 

peripheral lymphoid organs such as LNs and the spleen, and 

undergo maturation and stimulate immune responses [16]. 

Circulating DCs and their precursors exit the blood via tissue-

specific recruitment signals such as chemokines that derive 

from sites of inflammation [17]. DCs are located at surfaces 

where antigens gain access to the body. DCs are also positioned 

in distinct incoming channels, called lymphatic vessels, which 

allow cells to move from peripheral tissues to lymphoid or-

gans [16,18,19]. DCs can encounter immune lymphocytes, 

selecting those cells that specifically recognize the antigens 

being carried by the DCs [20]. The lymphocytes begin to grow 

vigorously and they start to produce materials that will serve 

to eliminate infections and other sources of antigens [20].

Conventional/Classical DCs
Conventional or classical dendritic cells (cDCs) function as 

efficient APCs and can induce immune activation or promote 

tolerance. cDCs have a characteristic morphology defined by 

long dendrite extensions, and high levels of CD11c and MHC 

class II expression [21,22]. Human cDCs are found in both 

lymphoid and peripheral tissues [21]. Although there appears 

to be functional homology between human and mouse cDCs, 

these cells express their own unique markers, respectively. 

Two subsets of human cDCs have been characterized that 

are Lin- (CD3-, CD14-, CD19-, CD20-, and CD56-) and either 

CD1c/BDCA-1+ or CD141/BDCA-3+ [23,24]. CD1c/BDCA-1+ 

DCs promote a Th1 immune response and act in a tolerogen-

ic manner in response to Escherichia coli [23]. CD141/BDCA-3+ 

DCs also cross-present extracellular antigens to CD8+ T cells, 

promote CTL lymphocytes activation, and induce a Th1 im-

mune response [23].

 Mouse resident cDCs are found in the central and periph-

eral lymphoid organs including thymus, spleen, LNs, and Pay-

er’s patches. Mouse cDCs comprise two subsets as CD8- cDCs 

and CD8+ cDCs [25,26]. CD8- cDCs can increase MHC class 

II-mediated presentation of exogenous antigen. Like human 

CD141/BDCA-3+ cDCs, CD8+ cDCs are able to induce antigen 

cross-presentation to CTL lymphocytes [25]. Mouse CD8α+ 

cDCs show their ability to cross-present extracellular antigens 

to CTLs [27]. They act to maintain tolerance in the steady state 

and produce IL-12 and interferon (IFN)-γ upon activation [28]. 

CD8α- cDCs are efficient activators of CD4+ T cells. CD4+CD8α- 

cDCs comprise a significant proportion of cDCs localized to 

the spleen, while CD4-CD8α- cDCs account for a significant 

proportion of cDCs present in mucosal-associated lymphoid 

tissues [29]. In addition to the lymphoid-resident cDCs, two 

subsets of mouse migratory cDCs have also been identified 

that are either Integrin αE/CD103+ or Integrin αM/CD11b+ [30]. 
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FIGURE 1. General properties of dendritic cells
Fig. 1. Role of dendritic cells (DCs) in antigen capture, processing and 
presentation. Immature dendritic cells capture exogenous particles, 
proteins, and pathogens in peripheral tissues. Upon maturation in 
response to inflammatory stimuli, antigen-loaded dendritic cells then 
migrate to secondary lymphoid organs. In these sites, mature den-
dritic cells present antigen to T cells and induce T-cell priming, lead-
ing to generation of helper T cells (Th), regulatory T cells (Tregs) and 
cytotoxic T lymphocytes (CTLs). Under certain conditions, antigen-
loaded dendritic cells can induce T-cell tolerance.
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Integrin αE/CD103+ cDCs enable to cross-present antigens to 

CTL cells [31]. They mediate immune tolerance or induce Th2 

immune responses. Integrin αM/CD11b+s are found in most 

tissues including the lung, intestine, and skin [30].

Plasmacytoid DCs 
Plasmacytoid DCs (pDCs) are rare subset of DCs that is spe-

cialized in type I interferon production [32-35]. pDCs have 

round lymphocytic morphology and express low level of MHC 

class II and costimulatory molecules [36,37]. pDCs develop 

in the bone marrow from Flt3+ c-Kitlow progenitors including 

lymphoid progenitors and common DC progenitors [38]. pDCs 

are low or negative for CD11c in mouse or human, respec-

tively, but positive for the B-cell marker B220/CD45RA. Par-

ticularly, steady-state pDCs are similar to the features of lym-

phocytes but are different from those of cDCs. Human pDCs 

express the surface markers blood dendritic cell antigen-2 

(BDCA-2; CD303) and immunoglobulin-like transcription-7 

[39]. Mouse pDCs express Siglec-H and BST-2/Tetherin [40]. 

Human IL-3Rα (CD123), BDCA-4 and murine Ly6C, Ly49Q 

are also useful markers [36]. As components of the innate im-

mune system, pDCs express intracellular TLR7 and TLR9 that 

detect ssRNA and CpG DNA motifs, respectively [41,42]. Up-

on stimulation and subsequent activation, pDCs produce large 

amounts of type I interferon (mainly IFN-α and IFN-β), which 

are pleiotropic anti-viral compounds facilitating various ef-

fects [34].

Inflammatory DCs/Monocyte-derived DCs 
Monocyte-derived DCs (moDCs) are newly discovered a sub-

set of DCs, which shows common features with classical DCs 

[43]. moDCs have essential roles in defense mechanisms that 

induce of both adaptive and innate immune responses [44]. 

In contrary to cDCs, moDCs are differentiated from Ly6Chigh 

monocyte progenitors only during inflammatory reactions 

[45]. However, they share their common features with cDCs; 

morphology, migration property, priming of T cells, and ex-

pression surface markers such as CD11c, MHC II, CD40, CD80, 

and CD86 [43].

General Properties of DCs

Antigen uptake
DCs are professional antigen processing cells [5,46]. Imma-

ture DCs have several features that allow them to capture an-

tigen. They have a variety of receptors to perform the uptake 

of antigens, and they are specialized to convert these antigens 

into MHC-peptide complexes that can be recognized by lym-

phocytes [46,47]. Immature DCs firstly take up antigens by 

phagocytosis [48]. Next, they form large pinocytic vesicles via 

a process called macropinocytosis or interaction with a vari-

ety of cell surface receptors [49]. Finally, they express recep-

tors that mediate adsorptive endocytosis [48,50]. DCs express 

a variety of receptors that include members of pattern recog-

nition receptors family (such as TLRs, C-type lectin receptors, 

intracytoplasmic nucleotide oligomerization domain‒like re-

ceptors), Fc receptors (FcR), complement receptors, mannose 

receptors and receptors involved in uptake of apoptotic bod-

ies such as phosphatidylserine receptor [51-53]. The most prev-

alent antigen receptors expressed by DCs include members 

of the C-type lectin family [54,55]. For example, DEC-205, a 

type I C-type lectin containing multiple calcium-dependent 

binding domains and a unique cytoplasmic tail, may function 

in directing captured antigens to specialized antigen-process-

ing compartments within DCs [56].

Antigen processing and presentation
Antigen processing by DCs is primarily through two major 

pathways such as exogenous or endogenous pathway [5]. For 

exogenous pathway, the captured antigens undergo the en-

docytic pathway and proteases initiate the degradation of an-

tigens. DCs degrade antigens within a MHC class II-rich en-

dosomal compartment (MIIC) and preserve sufficient pep-

tide structure to be expressed on their cell surface bound to 

MHC class II, which are produced in endoplasmic reticulum 

(ER) [57,58]. During this process, MIICs change to non-lyso-

somal vesicles and release the peptide bound MHC com-

plexes on the surface of cells. For endogenous pathway, the 

phagocytosis and receptor-mediated endocytosis enable an-

tigen uptake, the restricted proteolysis, and the active trans-

port into the cytosol [59]. The cytosolic antigens are addition-

ally degraded via the proteasome. Antigens enter the ER uti-

lizing transporter associated with antigen presenting, and are 

bound to newly generated MHC class I molecules. MHC class 

I-peptide is consequently transported by vesicular transport 

to the surface of cells. 

 In addition to two antigen-processing pathways, DCs have 

a specialized antigen-processing process called cross-presen-

tation [60-63]. Antigen cross-presentation describes the pro-

cess through which DCs obtain exogenous antigens on MHC 

class I. The antigen is hydrolyzed into oligopeptides after trans-

ferring into the cytosol. Then, the antigens are transported to 
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MHC class I molecules in phagosomes or ER [63]. Alterna-

tively, the cleaved antigens by endosomal proteases such as 

cathepsin S are processed by MHC class I in the endocytic 

compartment.

Linking of Innate and adaptive immunity
DCs link innate and adaptive immunity by receiving danger 

signals that render them capable of maturing and inducing 

productive immunity [7,64]. DCs also respond to danger sig-

nals deriving from foreign substances mentioned to as patho-

gen-associated molecular patterns that let DCs undergo mat-

uration. TLRs are the most important receptors that recog-

nize microbial products and communicate the information 

to initiate adaptive immunity. Once primed, the DCs migrate 

to secondary lymphoid organs, and then present antigens to 

naïve CD4+ T cells and CTLs. Moreover, DCs release cytokines 

that further modulate the immune response. 

Activation of immune cells
Antigen presentation by DCs is of crucial for the initiation of 

primary immune responses, due to their unique role in cap-

turing, processing, and transporting antigens [3]. Following 

activation by antigen encounter, DCs migrate from tissues in-

to LNs. During this process, DC upregulates MHC class I and 

II as well as costimulatory molecules such as B7.1 and B7.2. 

This is important for the activation of naïve T cells because 

they require both signaling the antigen-specific T-cell recep-

tor (TCR) interaction and the costimulatory B7/CD28 medi-

ated second signal. In addition, adhesion molecules such as 

intercellular adhesion molecule-1 and lymphocyte function-

associated antigen 1 are also highly expressed by DCs and in-

duce prolonged cell to cell interaction. They allow naïve T 

cells differentiate into effector cells. Productive activation of 

naïve T cells by DCs results in clonal expansion and the effec-

tor and memory T cells differentiation [65]. 

 Besides T cell stimulation, DCs are able to stimulate of B 

cells where happens in LN and germinal centers. Antigens 

are captured by FcRγIIB can be reserved in intracellular vesi-

cles and presented to B cells [66]. DCs also modulate the func-

tions of NK cells and CTL cells and influence the immune re-

sponse [67].

Immune tolerance
DCs also induce immune tolerance in both central and pe-

ripheral lymphoid organs. They are involved in the important 

regulatory mechanisms that are clonal selection in thymus, 

TCR/B-cell receptor editing and regulatory T cells (Tregs) 

generation [7,68,69]. DCs allow the immune system to toler-

ate harmless antigens that are originated from own body’s tis-

sues, cells and proteins [70]. This is essential to inhibit the 

body from self-immune response. During the T-cell develop-

ment in the thymus, DCs contribute in eliminating those cells 

bearing self-reactive antigens via a mechanism known as 

central tolerance. DCs also regulate the mechanisms of pe-

ripheral tolerance that represent T-cell death, T-cell anergy, 

and active suppression by Treg [68,69]. Proficient immune 

responses occur when DCs present optimal levels of MHC-

peptide complexes with costimulatory molecules. In the 

event, T cells recognize only low levels of MHC-peptide and 

have a low affinity for their cognate ligand, or receive no co-

stimulation from DCs, they become anergic or undergo apop-

tosis [71,72].

DC-Based Vaccines as Cancer Therapy

DCs are considered as a leading light of the immune system 

that connects between innate immunity and adaptive immu-

nity. As mentioned previously, once DC meet the antigen, the 

antigen is processed and degraded into small peptide to ex-

press on the cell surface. These unique functions allow DC-

based vaccines to introduce the potent immunotherapeutics 

for the patients suffering from serious disease such as cancer 

DC vaccineImmature 
DCs

Mature DCs

Vaccine administration

Maturation factors
Tumor-specific antigens

(whole cell protein, mRNA, 
peptide etc.)

DC sources Immune boosting
Vaccine adjuvant
Chemotherapy

DC collection

FIGURE 2. Dendritic cell vaccineFig. 2. The generation of dendritic cell (DC) vaccine. The multiple steps 
of process are inevitable for the generation of DC-based vaccine. The 
syngeneic source of DCs are collected and undergo the maturation of 
immature DCs to mature DCs by the exposure to the tumor specific 
antigens, mRNA, or peptides, etc. Finally, DC-based vaccines are ad-
ministered with contemporary immune modulators or adjuvants.
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(Fig. 2) [73,74]. DC-based vaccines can be generally catego-

rized by the matured autologous monocytes in vitro or ex vi-

vo, and an antigen-stimulated DCs just before injection [75-

77]. DC-based immunotherapy is theoretically safe and can 

promote antitumor immune responses and prolonged sur-

vival of patients [78]. DC-based vaccines aims to initiate the 

immune responses by the stimulation of T cells that can de-

stroy cancer cells and the induction of the memory cells to 

prevent cancer recurrence [77]. Currently, there exist two types 

of DC-based vaccines. The one is ex vivo antigen-loaded DC-

based vaccines and the other is in vivo DC-targeted vaccines 

[79]. For in vivo DC-targeted vaccine, it can be divided again 

according to the types of reactive targets. The first target is li-

gand such as TLR agonists, and the other is antibody such as 

DEC205, DC-SIGN, CD11c, and FcγR [80]. In addition, new 

target is being focused on the delivery system using nanopar-

ticles even though this system is still need to be improved [81,82].

 DCs for vaccine therapy can be generated from monocytes 

or CD34+ progenitor cells by the stimulation of cytokines and 

granulocyte-colony stimulating factor culture medium ex vi-

vo [83]. moDCs are more advantageous than CD34+ progeni-

tor derived DCs because they are possible to be fully differenti-

ated and homogeneous [84]. moDCs are frequently applied for 

clinical application or trial, and they induce efficient immune 

responses by tumor-derived antigens.

 In tumor microenvironment, DCs can take up damaged 

tumor cells and then can respond tumor-specific immune 

responses according to the inflammatory signals. The popu-

lation of myeloid-derived suppressor cells and Treg keeps 

high levels at the steady state which means that tumor cells 

are suppressive [85]. However, the maturation of DCs is in-

hibited by the specific factors such as vascular endothelial 

growth factor, interleukin 10 resulting in T-cell anergy and tu-

mor progression [86]. Under tumor microenvironment, the 

maturation of DCs and the production of mature DCs are de-

creased and impair tumor suppressive immune response 

[87]. Also, cancerous cells prevent the efficient antigen pre-

sentation and recognition of cytotoxic effects by the conver-

sion of monocytes into macrophages instead of DCs [88].

 Recently, DC-based immunotherapy has been focused as 

a therapeutic approach for cancer treatment. The ability of 

DCs against tumor has been proven and DCs are produced 

from monocytes with granulocyte-macrophage colony-stim-

ulating factor/interleukin 4 in vitro, and tumor-derived anti-

gens or tumor mRNA-loaded DCs were directly injected into 

patients as cancer vaccine resulting the antitumor immune 

response or tumor killing ability of DCs [87,89]. DC-based 

immunotherapy can be useful for the treatment of unique 

diseases such as cancer basically depends on functional and 

immunobiology of DCs. 

Conclusion

During more than four decades, the impor¬tance of DCs fi-

nally has been accepted as indispensable immune cells that 

connect between innate and adaptive immunity. The pro-

spective roles of DCs as an immunotherapeutic tool are hav-

ing been effectively resumed by verifying the limitation of 

cellular and molecular mechanisms of DCs. DC based thera-

py is supposed to influence to the leader of cancer immuno-

therapy.
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