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Abstract: Optimization of structured reactors is not without some difficulties due to highly random
economic issues. In this study, an entropic approach to optimization is proposed. The model of
entropy production in a structured catalytic reactor is introduced and discussed. Entropy production
due to flow friction, heat and mass transfer and chemical reaction is derived and referred to the
process yield. The entropic optimization criterion is applied for the case of catalytic combustion
of methane. Several variants of catalytic supports are considered including wire gauzes, classic
(long-channel) and short-channel monoliths, packed bed and solid foam. The proposed entropic
criterion may indicate technically rational solutions of a reactor process that is as close as possible
to the equilibrium, taking into account all the process phenomena such as heat and mass transfer,
flow friction and chemical reaction.

Keywords: entropy production; optimization; reactor modelling; irreversible thermodynamics

1. Introduction

At the industrial level, optimization of chemical processes, including those based on structured
catalytic reactors, is an inherent issue of the design procedure. Process optimization considers the
prices of raw materials, energy, products and installations (apparatus); the prices may change rapidly
and unpredictably due to market fluctuations, even at the negotiation stage. Therefore, process
optimization is usually regarded as being within the engineering domain, it is in fact more connected
with business and economic issues. These issues usually exceed the knowledge of an engineer or a
scientist and require input from other individuals.

Structured reactors are very important in chemistry and catalysis [1–3]. The process design, i.e.,
the apparatus and the process conditions, has to secure some economic profitability in spite of potential
changes of costs. Regardless of possible economic fluctuations (excluding any collapses), the process
has to be profitable during the following years.

A review of the literature provides hints about recommended flow velocities, process temperatures
and catalyst carriers. The data originate from the long-standing technical and economic experience
of engineers and entrepreneurs. Recently, a new generation of structured catalytic reactors has
been introduced into industry, and there is a paucity of knowledge and experience about their
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optimization. Moreover, the inner-structure design of the reactors is complicated because many
geometrical parameters need to be optimized.

In the literature, different criteria can be found, which help identify optimal operating conditions
of chemical reactors. “The technical” or “engineering” optimization, with which this work deals,
focuses on reactor optimization in terms of fluid velocities, process (reaction) temperature, structured
catalyst carrier shape and dimensions. This kind of optimization has begun in energetics due to
the introduction of compact heat exchangers that usually exploit a combination of fins, turbulence
mixers and other features. In the current literature, even more sophisticated criteria are proposed for
multiparameter optimization of different equipment such as heat exchangers. So far, similar criteria for
catalytic reactors have been derived. The comprehensive performance evaluation criteria (PEC) use
three components: transport coefficients, reaction kinetics and pressure drop [4,5]. Another approach
is the comparison of reactor length (or catalyst mass) with the resulting flow resistance as shown
in [4,6]. For heat exchanger optimization, there are also evaluation criteria based on entropy production
during the process, as presented, e.g., by London [7] and Bejan [8], who also predicted the extension of
entropic criteria to chemical reactors. Entropy in economic analysis is treated as trade-off factor and
can be a substitute of currency [9]. The application of entropic criterion can also be found in [10–12].

The aim of the study is to propose a highly simplified approach, based on irreversible
thermodynamics, suitable for engineering optimization of chemical reactors. The entropic criterion
is proposed to optimize structured catalytic reactors. The assumed model process is the catalytic
combustion of methane.

2. Theoretical Background

To derive the equations governing entropy production, the reactor model must be specified.
For the purposes of this paper, the one-dimensional plug-flow model (neglecting axial dispersion) in
the steady-state was assumed. Due to the very thin catalyst layer deposited on the structured carrier,
the internal diffusional resistance can be neglected.

Mass balance of reactant A, in the flowing fluid, per unit surface area of the reactor cross-section,
is as follows:

w0
dCA
dx

+kCSv(CA −CAS) = 0 (1)

The initial conditions are: (i) x = 0; CA = CA0 and (ii) the reactant A, mass transferred from the gas
bulk to the catalyst surface is balanced by the first-order catalytic reaction:

kC(CA −CAS) = krCAS. (2)

Deriving concentration of A, at the catalyst surface from Equation (2), Equation (1) becomes:

−w0
dCA
dx

= Sv
kCkr

kC+kr
CA, (3)

and, after integration, local concentration CAx and the reactor length L, required for the outlet
concentration CAL are:

CAx = CA0 exp
(
−

x
w0

SvkCkr

kC+kr

)
, (4)

L=
w0

Sv

kC+kr

kCkr
ln

(
CA0

CAL

)
. (5)

The energy balance may be presented (assuming no heat losses to the environment) as:

w0%cp
dT
dx

+αSv(T − TS) = 0, (6)

the initial conditions: at x = 0, T = T0.
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The mass and heat transfer in a heterogeneous catalytic reactor are strictly bound up (released
reaction heat depends on the reactants mass transferred to the catalyst), thus

q= α(TS − T) = −∆HR JA= −∆HRkC(CA −CAS). (7)

The above equations assume an isothermal process. In reality, the process is adiabatic. However,
the concentration of organic air pollutants is usually low. For the volatile organic compounds (VOCs),
a concentration of very few ppm is typical; for methane, it depends on the kind of source and may be
within 1–1000 ppm. The level of concentrations of 100 ppm and higher can be treated by homogeneous
combustion in, e.g., reverse-flow reactors due to important reaction heat. Thus, we assumed the
concentration of methane at 200 ppm as rational for our analysis. In such a case, the adiabatic
temperature rise is about 6 K, so the temperature increase along the reactor can be securely neglected.

Entropy production is an increase of system entropy due only to the irreversible phenomena [13].
This means that there is no entropy production at equilibrium or during a quasi-static process that
runs infinitely close to the equilibrium. Any industrial process runs far from the equilibrium, and it
produces entropy at irreversible conditions. In irreversible thermodynamics, entropy production is
derived as the product of flux Ji and the driving force ∆π (causing the stream) divided by absolute
temperature T [13,14]:

Si =
Ji∆π

T
. (8)

Assuming that the stream Ji is proportional to the driving force:

Ji = ki∆π, (9)

entropy production is proportional to the square of the driving force, thus it increases rapidly with the
distance from the equilibrium:

Si =
ki(∆π)

2

T
. (10)

In this paper, entropy production is considered due to the following irreversible phenomena:

• heat transfer between the gas phase and the catalyst surface (further denoted as H);
• diffusional mass transfer between the gas phase and the catalyst surface (denoted as D);
• irreversible catalytic reaction (denoted as R);
• flow friction, i.e., work performed against the flow resistance (denoted as F).

Total entropy production (per 1 mole of reactant A consumed in the reactor) is the sum of all
the components:

SP = SH+SD+SR+SF. (11)

The above-mentioned components of entropy production are gathered in Table 1.
In the first column, basic equations of local entropy production are presented. In the second and

third columns, the equations for the stream and the driving force are presented, respectively, derived
using the reactor model. The last column presents reactor-integrated entropy production per 1 mole
of substrate A consumed (e.g., burned) in the reactor. Detailed derivations, simple in fact, are not
presented for reason of conciseness. The last position in Table 1, flow friction needs further comment.
The entropy source considered is the volume fluid flow. The stream (flux) is the flow velocity and the
driving force is the pressure gradient. The entropy produced is tantamount to viscous dissipation of
pumping energy. This approach seems more friendly for engineers than viscous momentum flux often
presented by irreversible thermodynamics; the flux is the pressure tensor and the driving force is the
velocity gradient [11].

The impact of the reaction rate constant, kr, and the heat and mass transfer coefficients, α and kC,
respectively, on the entropy produced by the heat (SH) and mass (SD) transfer is illustrated in Figure 1
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for the combustion process and exemplary kr and kC values. The heat and mass transfer coefficients
are bound by the Chilton–Colburn analogy [15], Equation (12), which allows the influence of mass
transport on SH to be determined.

j =
Nu

RePr1/3
=

Sh
ReSc1/3

. (12)

SD = Rln
(
1+

kr

kC

)
, (13)

SH =
kr

kC+kr

 (−∆HR)
2(CA0 −CAL)DASc1/3

2λT2 Pr1/3

. (14)

Table 1. Local and reactor-averaged components of entropy produced.

Entropy, σi Flux, Ji Driving Force, ∆π
Entropy, Reactor Average Value, Si

(per mol of Substrate A)

Heat transfer (H)
σH = −

q
T2∇T

Heat flux
q = −∆HR JA =

= α(Ts−T)

Temperature gradient
(Ts − T) =

=
kC(−∆HR)(CA−CAS)

α

SH = kCkr
kC+kr

(−∆HR)
2(CA0−CAL)

2αT2

Mass transfer (D)
σD = −

∑
i

Ji
T∇µi

Diffusive mass flux
JA = kC(CA −CAS) =

= kCrCA

Chemical potential gradient
∇µA = RT µA−µAS

se f

SD= Rln
(

kC+kr
kC

)
Reaction (R)
σR = −ArASv

T

Reaction rate
rA = krCAS = kCrCA

Chemical affinity
A= −

∑
i
νiµi =

= −∆Go,T
R − RT

∑
i
νilnyi

SR = A
T

Flow friction (F)
σF = W

TFcL = −w∇P
T

Fluid stream
w

Pressure gradient
−∇P SF =

f
2T

w3
0%

ε3kCr

ln
(

CA0
CAL

)
(C A0−CAL)
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Figure 1. Impact of the mass transfer coefficient and reaction rate on entropy production due to: (a)
mass transfer and (b) heat transfer.

In Figure 1, a distinct increase of entropy produced with the reaction rate constant, kr, is observed.
Conversely, entropy decreases with the mass transfer coefficient, kC (due to heat, SH, and mass, SD,
transfer). A rapid chemical reaction (i.e., high kr) generates intense mass transport of substrates to the
catalyst surface and adequate heat transfer in the opposite direction. The faster the reaction, the further
the process runs from the equilibrium. When the transfer coefficients are small compared to the reaction
rate, the concentration and temperature gradients are large, and even the substrates concentration on
the catalyst goes to zero. Entropy production is large, being proportional to the square of the driving
force (concentration or temperature gradient, cf. Equation (10)).

The impact of the mass transfer coefficient is opposite. The higher the transfer coefficient for a
given reaction rate, the lower the temperature and concentration gradients are and the closer to the
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equilibrium the process runs. Smaller driving forces lead to lower entropy according to Equation
(10). However, when analysing the plots in Figure 1, the impact of mass transfer intensification is
distinct only if kC is close to the kr value. If kC is much smaller than kr, slight transfer enhancement will
give nothing as the concentration and temperature gradients are still large (zero concentration at the
catalyst surface). The gradients start to decrease as the reaction and transfer become comparable.

Obviously, the values of kr and especially of kC in Figure 1, may not be found in reality as the
plots presented are theoretical, to illustrate the common impact of transfer and reaction rates on
entropy production.

3. Catalyst Supports Considered

The aim of this study is to show the optimal adjustment of the catalyst carrier geometry, as well
as its transfer and friction characteristics to the catalytic reaction kinetics. The catalyst performance
(reaction kinetics) is treated as a model parameter only. Therefore, analysed catalyst supports were
selected on the basis of similar value of specific surface area. This means that, in all considered cases,
approximately, the same area was available for active layer catalyst deposition. For comparison,
monolith and packed bed are also examined.

Correlations for the heat transfer and Fanning friction factor were derived experimentally and
presented in detail in our earlier papers [4,16]. A photo of catalyst supports considered in the study is
presented in Figure 2, and a summary of equations for Fanning friction factor, Nusselt number and
Sherwood number of investigated supports are presented in Table 2 and compared in Figure 3.
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Figure 2. Catalyst supports: (a) triangular short-channel structure, (b) wire gauze, and (c) nickel
chromium foam.

The kinetic tests were performed experimentally. Two different catalyst deposition methods were
applied: (1) for Pd/ZrO2, the incipient wetness (IW) method [20] and (2) for Pd/Al2O3, sonochemical
(SC) method [4]. The kinetic studies were conducted in the temperature range of 373–823 K [20].
Kinetic data are presented in Table 3. As was found in [21], the sonochemical method allows higher
catalyst activity to be obtained in comparison to the incipient wetness method.
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Table 2. Correlations used to calculate flow resistance, heat and mass transfer for analysed
catalyst supports.

Structure Description Correlations

Wire gauze [4]

f = 118.09/Re + 0.836
Nu = 2.19Re0.636 Pr1/3

Sh = 2.19Re0.636Sc1/3

Sv = 1355
ε = 0.97

Triangular short channel [16]

( f Re) = 13.33 + 11.59(L+)−0.514

Nu =
(
3.11 + 0.45(L∗)−0.61

)(
0.55(PrL∗)−0.15

)
Sh =

(
3.11 + 0.45

(
L∗M

)−0.61
)(

0.55
(
PrL∗M

)−0.15
)

Sv = 1314
ε = 0.95

Nickel chromium foam (NC 0610), Recemat®

(Dodewaard, The Netherlands); [4]

f = 79.9/Re + 0.445
Nu = 0.96Re0.53 Pr1/3

Sh = 0.96Re0.53Sc1/3

Sv = 1298
ε = 0.89

Monolith [17]

( f Re) = 14.23
(
1 + 0.045/L+

)0.5

Nu = 3.608(1 + 0.095/L∗)0.45

Sh = 3.608
(
1 + 0.095/L∗M

)0.45

Sv = 1339
ε = 0.72

Packed bed [18,19]

f= (ε−1)[600η(ε−1)−7Dh%w]
8Dhε%w

Nu = 2 + 1.1Re0.6 Pr1/3

Sh = 2 + 1.1Re0.6Sc1/3

Sv = 1240
ε = 0.38

Table 3. Kinetic data of tested catalysts.

Catalyst Pre-Exponential Coefficient in
Arrhenius Equation, k∞, m s−1 Activation Energy, Ea, kJ mol−1

Slow kinetic, incipient wetness
(IW)

Pd/ZrO2

252.49 62.79

Fast kinetic, sonochemical (SC)
Pd/Al2O3

1.07·1010 110.4

4. Results and Discussion

Plots referring to analysis of entropy production were constructed assuming reactor length
required for 90% conversion and show the entropy produced per 1 kmole of methane combusted in
the reactor under given process conditions. Entropy production is presented as a function of process
temperature and the Reynolds number. Entropy is produced due to the four components denoted as
R—reaction, H—heat transfer, D—diffusional mass transfer and F—flow friction. The subscript HDFR
means total entropy produced due to the H, D, F and R components.

The components of entropy production (according to Table 1) for the knitted wire gauze are
compared for the methane catalytic combustion process vs. process temperature (Figure 4) and the
Reynolds number (Figure 5) for the fast (Pd/Al2O3) and slow (Pd/ZrO2) kinetics assuming initial
methane concentration of 200 ppm in both cases.
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T = 773 K, CH4 inlet concentration: 200 ppm: (a) fast kinetics, Pd/Al2O3 and (b) slow kinetics, Pd/ZrO2.

When analysing the Pd/Al2O3 catalyst (Figure 4a) within the lower temperature range, entropy
due to flow friction, SF, is the major component, and it is close to the total entropy production
SHDFR. The heat and mass transport components, SH and SD, play less important roles. However, for
higher temperatures, the kinetics become much faster, causing significant shortening of reactor length
necessary to attain 90% conversion. The share of flow friction entropy decreases; simultaneously,
the entropy components due to heat and mass transport play more important roles. For the highest
temperature range analysed, total entropy SHDFR is close to the reaction component SR, while the
remaining components are comparable. Increased entropy production due to heat and mass transport
at higher temperatures is a result of faster reaction rate. This leads to lower methane concentration on
the catalyst surface, and thus to higher temperature and concentration gradients, in consequence of
more intense entropy production (cf. Table 1, Equation (10) and Figure 1).

For the Pd/ZrO2 catalyst (Figure 4b), total entropy production is close to the flow friction
component in the whole temperature range analysed. The transport component SD, SH are minor due
to low gradients (a result of slow kinetics), and even the reaction component SR is much lower than the
flow friction one, SF.

Figure 5 illustrates entropy production as a function of the Reynolds number for knitted wire
gauze assuming a rather high temperature of 773 K. The transport components SD and SH are almost
constant within the whole Re range analysed. The flow friction component SF increases with Re,
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reaching an even higher value than SR, especially in the case of the Pd/ZrO2 catalyst. Moreover, in
Figure 5b, the total entropy produced is close to the flow friction component, with a minor role played
by the remaining components.

Large entropy production is due to the irreversible reaction of methane catalytic combustion.
Moreover, this entropy component is almost the same per mole of reactant, regardless of process
conditions (T, Re and catalyst); analysis of the equation for SR (Table 1) should render this as no
surprise. Chemical affinity is close to the standard Gibbs energy of reaction (at the process temperature)
∆GR

o,T, because the sum of the concentration logarithms is minor. For optimization purposes, the place
of the minimum total entropy production reflects the process optimum, making the precise value less
important. Analysis of Figures 4 and 5 shows that the SR component is nearly constant within the ranges
studied. Note that reaction component, SR, is the lowest possible entropy that can be produced in the
chemical reactor. For engineering purposes, such as process optimization, the remaining components
are more interesting because they make entropy production higher than that due to chemical reaction
(SR) and they are dependent on the physical properties of carriers. For slow reaction, there is no
difference between the analysed approaches, because, in this case, flow resistance plays a major role
(cf. Figures 4b and 5b) and the minimum is not observed within the considered temperature range.
In summarising the catalytic structures displaying close specific surface area Sv (i.e., similar catalyst
amount), SR will be neglected during next analysis.

Analysis of entropy production due to the heat and mass transfer and flow friction (denoted as
SHDF) is presented in Figures 6 and 7 presents SHDF as a function of the Reynolds number and process
temperature for the five catalyst supports considered. In the following figures, minimal entropy
production for each support is shown; these points give optimal process conditions for particular
catalyst supports.
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Figure 6. Entropy production vs. Reynolds number for different catalyst supports for the fast kinetics,
Pd/Al2O3 at temperature: (a) 573 K and (b) 773 K.

In Figure 6, entropy is presented for two selected temperatures, moderate (573 K) and high (773 K).
For the moderate temperature of 573 K (Figure 6a), packed bed seems the best for Re < 20. For Re < 500,
knitted wire gauze is optimal (minimum value at Re = 84) in that this results in the lowest entropy
production and the most profitable behaviour within this analysis. For a higher Reynolds number,
monolith displays the lowest entropy production, undoubtedly due to its lowest flow resistance.
For higher temperatures of 773 K (Figure 6b), the impact of transfer properties is more pronounced
as a result of faster reaction rate, and knitted wire gauze appears to be the best with classic and
short-channel monoliths. Packed bed produces the largest entropy in almost the entire Reynolds range,
due to the highest flow resistance. For the higher temperature (773 K), the minima are generally slightly
shifted to higher Reynolds numbers and entropy production is several times higher.
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When considering temperature influence on entropy production (Figure 7), the same conclusions
may be derived. Low process temperature is favourable for the classic monolith, while for higher
temperatures, wire gauze and monolith seem to be the best choice. For Re = 100 (Figure 7a), above 650 K,
all the internals display close entropy production. Interestingly, all the structures except packed bed
show minima within the narrow range of 500–540 K. For Re = 500 (Figure 7b), entropy produced is
higher, especially for packed bed. The minima are shifted towards higher temperatures by 60–100 K.
Above 600 K, knitted gauze and monolith are the best.

Analogous plots for slow kinetics (Figures 8 and 9) show quite different behaviour. Here,
the reactor is long due to the slow reaction rate. Moreover, slow reaction does not require intense
heat and mass transfer. Concentration and temperature differences between the flowing fluid and
catalyst surface are very small; entropy production due to transfer is small compared to that due
to flow friction. Consequently, entropy produced for the slow kinetics is ordered identically to the
friction factors (Figure 3b) vs. the Reynolds number and process temperature. Flow friction is the
main entropy source (when neglecting chemical reaction). For slow kinetics, entropy production
characteristic considered for all the internals is similar. The shift observed (towards higher or lower
entropy produced) results mainly from the flow resistance. All the curves are nearly parallel, and only
slight convergence is observed for low Re as a result of different transport properties. The internals
displaying the lowest flow resistance (monolith and short-channel structure, cf. Figure 3) offer the
lowest entropy production, while those of high flow resistance (packed bed, cf. Figure 3) produce
larger entropy, so are less profitable.Entropy 2020, 22, x 10 of 13 
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5. Conclusions

The results obtained by entropy analysis indicate that wire gauze is the best choice for the
Pd/Al2O3 catalyst and the packed bed is the worst one. In the case of the Pd/ZrO2 catalyst, the best
carriers are monolith and short-channel structures, while the worst solution is a packed bed. However,
meeting the efficiency criteria cannot be regarded as the ultimate verdict. Any process has its own
characteristics and limitations. It is rare for a process to occur separately, as it is usually part of a larger
installation. For example, process temperature is limited by catalyst thermal deactivation, and the
flow resistance may be limited by the gas pressure available. Therefore, each process needs to be
considered individually, and any overall limiting parameters must also be taken into consideration
during optimization.

The entropy-based optimization methodology is able to optimize reactor structure (indicating
the best geometry, specific surface, etc.), as well as the process temperature and fluid velocity for
considered reaction kinetics. The criterion, ensuring the minimum entropy production, ignores the
reactor cost and is able to indicate the best structure from among the considered ones, as well as the
optimal working conditions of a reactor (e.g., temperature and flow velocity).

Irreversible chemical reaction produces almost the same entropy, per mole of reactant, regardless
of the process conditions. Therefore, it can be safely neglected during entropic optimization.
The hypothesis is confirmed by analysis presented in Figure 4. For proper results, entropy produced
by heat transfer, mass transfer and flow friction should be accounted for.

The gauze structures are assessed as being very effective due to their satisfactory transfer and
friction properties. The monolith and short triangular channel display good efficiency for slow
kinetics (Pd/ZrO2 catalyst) due to their low flow resistance. The packed bed usually appears as an
unsatisfactory solution.

For fast kinetics (Pd/Al2O3 catalyst), the transfer properties of the catalyst support are the most
important for low entropy production. The intense transfer properties of, e.g., knitted wire gauze,
make the support excellent for such processes. The impact of flow resistance is minor as, for a fast
reaction not hampered by insufficient transfer rate, the reactor is very short.

For slow kinetics (Pd/ZrO2 catalyst), the reactor is long. The impact of flow resistance becomes
important. In contrast, heat and mass transfer contributions to entropy production are minor. Heat and
mass transfer resistance is low, so temperatures (concentrations) gradients between fluid and catalyst
surface are low, and the process runs near to the equilibrium.

The optimization methodology presented in this study obviously requires further development,
including thorough experimental industrial and economic application. In spite of this, the entropic
criterion seems able to indicate technically rational solutions of the reactor process considering the
heat and mass transfer, flow resistance and reaction kinetics.
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Nomenclature

A chemical affinity, J mol−1

CA reagent concentration, mol m−3

cp heat capacity, J kg−1 K−1

DA diffusivity, m2 s−1

Dh hydraulic diameter, = 4εSv
−1, m

Fc reactor cross-sectional area, m2

f Fanning friction factor, = %w0
2L(2∆PDhε

2)−1

JA diffusional mass flux, mol s−1 m−2

Ji stream (flux) of irreversible process, Equation (9)
kC mass transfer coefficient, m s−1

kr kinetic rate constant of the first-order reaction, referred to the catalyst surface area, m s−1

k∞ pre-exponential coefficient in Arrhenius equation, m s−1

kCr =

kCkr/(kC+kr)
combined transfer-reaction coefficient, m s−1

L bed length, m
∆P pressure drop, Pa/m
q heat flux, W m−2

R gas constant, J mol−1 K−1

rA reaction rate, mol m−2 s−1

S entropy production rate, J K−1mol−1

sef film thickness, m
Sv specific surface area, m2 m−3

T temperature, K
W pumping power, W
w0 superficial fluid velocity, m s−1

yi mole fraction
∆HR reaction enthalpy, J mol−1

∆GR reaction Gibbs energy, J mol−1

Greek symbols
α heat transfer coefficient, W m−2 K−1

ε porosity
η dynamic viscosity, Pa s
λ thermal conductivity, W m−1 K−1

µ chemical potential, J mol−1

ν stoichiometric coefficient
∆π driving force of irreversible process
% density, kg m−3

σ entropy production per m3 of reactor volume, W m−3 K−1

Dimensionless numbers
L+ dimensionless length for the hydrodynamic entrance region, = LDh

−1Re−1

L* dimensionless length for the thermal entrance region, = LDh
−1Re−1Pr−1

L*M dimensionless length for the mass transfer entrance region, = LDh
−1Re−1Sc−1
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Pr Prandtl number, = ηcpλ−1

Re Reynolds number, = w0Dh%η−1ε−1

Sc Schmidt number, = η%−1DA
−1

Sh Sherwood number, = kCDhDA
−1

Subscripts
A key reactant
D entropy production due to mass transfer
F entropy production due to flow friction
H entropy production due to heat transfer
P total entropy production
R entropy production due to chemical reaction
S catalyst surface
x reactor arbitrary axial coordinate
0, L reactor inlet, outlet
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